亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        平面不規(guī)則結(jié)構(gòu)彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性研究

        2014-06-07 07:15:48陸秀麗虞終軍
        結(jié)構(gòu)工程師 2014年5期
        關(guān)鍵詞:筒體結(jié)構(gòu)分析

        楊 杰 陸秀麗 虞終軍

        (同濟大學(xué)建筑設(shè)計院(集團)有限公司,上海200092)

        平面不規(guī)則結(jié)構(gòu)彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性研究

        楊 杰*陸秀麗 虞終軍

        (同濟大學(xué)建筑設(shè)計院(集團)有限公司,上海200092)

        目前對平面不規(guī)則結(jié)構(gòu)扭轉(zhuǎn)振動效應(yīng)研究集中于彈性階段,對結(jié)構(gòu)非彈性受力階段的扭轉(zhuǎn)效應(yīng)控制缺乏明確的評價方法和指標(biāo)。提出通過考察θr/u在彈塑性階段的變化來對結(jié)構(gòu)扭轉(zhuǎn)振動響應(yīng)進(jìn)行評價,并以此為基礎(chǔ)定義了結(jié)構(gòu)彈塑性扭轉(zhuǎn)振動效應(yīng)的斂散性。采用PERFORM-3D對三種典型的結(jié)構(gòu)平面布置進(jìn)行彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性計算,對計算結(jié)果進(jìn)行對比分析,驗證了斂散性分析對結(jié)構(gòu)彈塑性扭轉(zhuǎn)振動效應(yīng)評價的有效性和必要性,并進(jìn)一步對結(jié)構(gòu)彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性的主要影響因素進(jìn)行簡要分析。最后,探討了斂散性指標(biāo)作為結(jié)構(gòu)的彈塑性扭轉(zhuǎn)振動效應(yīng)評價指標(biāo)的合理性和優(yōu)越性。

        平面不規(guī)則結(jié)構(gòu),彈塑性,扭轉(zhuǎn)振動效應(yīng),斂散性

        1 引 言

        近年來,各種復(fù)雜體型和平面不對稱、不規(guī)則結(jié)構(gòu)的多高層建筑不斷涌現(xiàn),使得地震作用下的扭轉(zhuǎn)振動效應(yīng)越來越成為不規(guī)則建筑結(jié)構(gòu)抗震設(shè)計中的焦點問題。然而,對不規(guī)則結(jié)構(gòu)的扭轉(zhuǎn)振動效應(yīng)研究還存在著很多沒有被完全解決的關(guān)鍵問題,尤其是對結(jié)構(gòu)彈塑性階段扭轉(zhuǎn)振動效應(yīng)的研究和評價還處于較為初級的階段,隨著抗震設(shè)計日益向精確化、性能化的方向發(fā)展,有必要對結(jié)構(gòu)彈塑性扭轉(zhuǎn)振動效應(yīng)進(jìn)行更深入的研究和探討,從而為不規(guī)則結(jié)構(gòu)抗震設(shè)計提供更明確和科學(xué)的指導(dǎo)。

        2 現(xiàn)行結(jié)構(gòu)扭轉(zhuǎn)振動效應(yīng)評價指標(biāo)

        現(xiàn)有的結(jié)構(gòu)扭轉(zhuǎn)振動效應(yīng)研究成果主要集中于結(jié)構(gòu)的彈性階段,取得了豐碩的成果,并以扭轉(zhuǎn)控制指標(biāo)的形式指導(dǎo)抗震設(shè)計[1]。我國規(guī)范主要通過結(jié)構(gòu)彈性階段的位移比和周期比控制結(jié)構(gòu)的扭轉(zhuǎn)振動反應(yīng),根據(jù)文獻(xiàn)[2],在考慮偶然偏心影響的地震作用下,樓層豎向構(gòu)件的最大水平位移和層間位移之比,A級高度高層建筑不宜大于該樓層平均值的1.2倍,不應(yīng)大于該樓層平均值的1.5倍;B級高度高層建筑,混合結(jié)構(gòu)高層建筑及復(fù)雜高層建筑不宜大于平均值的1.2倍,不應(yīng)大于該樓層平均值的1.4倍。同時,對于結(jié)構(gòu)的平扭周期比,規(guī)范也有明確的要求。

        對于非彈性階段的扭轉(zhuǎn)效應(yīng)控制,上述指標(biāo)難以完全適用。在非彈性階段,結(jié)構(gòu)的剛度處于動態(tài)變化過程中,且側(cè)向剛度和扭轉(zhuǎn)剛度的退化并非線性關(guān)系,相應(yīng)結(jié)構(gòu)位移與位移比的變化并不同步,某一時刻的靜態(tài)位移比難以反映結(jié)構(gòu)的扭轉(zhuǎn)振動特性,因此彈性階段位移比的限值未必適用于非彈性階段;而周期比即使對彈性階段扭轉(zhuǎn)振動效應(yīng)的控制也相對間接和不全面,在非彈性階段,并不適于作為一個主要的扭轉(zhuǎn)控制指標(biāo)。

        近年來,隨著計算機硬件和軟件的快速發(fā)展,對結(jié)構(gòu)進(jìn)行各種工況下全面彈塑性分析越來越方便。因此,對于結(jié)構(gòu)在非彈性階段的扭轉(zhuǎn)振動效應(yīng),有必要也有可能以一種更直接和全面的指標(biāo)來評價和控制。

        3 彈塑性扭轉(zhuǎn)振動效應(yīng)的斂散性的定義

        根據(jù)文獻(xiàn)[3],結(jié)構(gòu)頂部相對扭轉(zhuǎn)振動響應(yīng)可以用θr/u來表達(dá)(θ,r分別為扭轉(zhuǎn)角和結(jié)構(gòu)的回轉(zhuǎn)半徑,u為質(zhì)心平動位移)。這個指標(biāo)是一個結(jié)果型的指標(biāo),直接反映了結(jié)構(gòu)的扭轉(zhuǎn)振動響應(yīng),在非彈性階段也應(yīng)是同樣適用的。但長期以來,對于θr/u作為扭轉(zhuǎn)控制指標(biāo)在彈塑性階段的限值缺乏研究和共識,因此難以直接采用。鑒于此,本文建議通過考察θr/u在彈塑性階段的變化來對結(jié)構(gòu)扭轉(zhuǎn)振動響應(yīng)進(jìn)行評價,以根據(jù)現(xiàn)行規(guī)范設(shè)計的結(jié)構(gòu)在彈性階段的θr/u作為起點,研究θr/u在彈塑性階段的變化規(guī)律。

        若結(jié)構(gòu)在彈塑性階段的θr/u總體呈現(xiàn)不斷上升的趨勢,則將其定義為扭轉(zhuǎn)發(fā)散型結(jié)構(gòu);反之,則為扭轉(zhuǎn)收斂型結(jié)構(gòu)。顯然,在抗震設(shè)計中,扭轉(zhuǎn)收斂型結(jié)構(gòu)代表了更好的抗震性能,因為θr/u不斷下降意味著,結(jié)構(gòu)振動的扭轉(zhuǎn)成分呈下降趨勢,結(jié)構(gòu)的扭轉(zhuǎn)效應(yīng)在塑性階段將不會是引起結(jié)構(gòu)破壞的主要因素。對于扭轉(zhuǎn)收斂型結(jié)構(gòu),彈性階段的抗扭設(shè)計對于塑性階段總體是偏安全的。而扭轉(zhuǎn)發(fā)散型結(jié)構(gòu)進(jìn)入非彈性階段后,其扭轉(zhuǎn)效應(yīng)有一個持續(xù)發(fā)展強化的過程,具有一定不確定性,應(yīng)盡力避免。對于扭轉(zhuǎn)發(fā)散型結(jié)構(gòu),彈性階段的抗扭設(shè)計很有可能是不夠的,如實在無法避免,就應(yīng)進(jìn)行深入分析,并進(jìn)一步加強彈性階段的抗扭設(shè)計,使其也能滿足塑性階段的需求。

        平面不規(guī)則結(jié)構(gòu)在彈性階段由于質(zhì)量中心和剛度中心的不重合導(dǎo)致平扭耦聯(lián)反應(yīng),從而使結(jié)構(gòu)構(gòu)件的變形需求分布在結(jié)構(gòu)平面內(nèi)并不一致;而在非彈性階段,受到結(jié)構(gòu)的材料和幾何非線性不斷發(fā)展的影響,結(jié)構(gòu)剛度不斷不均勻退化和重分布,構(gòu)件變形需求的不一致性往往與彈性階段有著很大區(qū)別。這種區(qū)別可以通過θr/u的變化顯現(xiàn)出來,從而成為我們抗扭設(shè)計考慮的重要因素。

        不同類型的不規(guī)則結(jié)構(gòu)彈塑性扭轉(zhuǎn)振動響應(yīng)有著不同的特點和規(guī)律,下面對幾種典型結(jié)構(gòu)類型的彈塑性扭轉(zhuǎn)振動響應(yīng)進(jìn)行一些分析和探討。

        4 幾種典型結(jié)構(gòu)形式的彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性分析

        4.1 分析軟件介紹

        本文采用PERFORM-3D作為主要的彈塑性分析工具,PERFORM-3D主要用于對結(jié)構(gòu)進(jìn)行抗震分析和性能化評估,其分析結(jié)果的得到了國際學(xué)術(shù)界和工程界的廣泛認(rèn)可,尤其擅長分析錯綜復(fù)雜的剪力墻體系,能夠提供較為準(zhǔn)確的動力彈塑性分析功能。

        采用考慮強度損失的三折線模型(圖1)定義混凝土材料的本構(gòu)關(guān)系,采用兩折線模型定義鋼材的本構(gòu)關(guān)系(圖2),通過定義基于應(yīng)變的耗能指標(biāo),來考慮材料在循環(huán)加載過程中的剛度退化。

        圖1 混凝土材料本構(gòu)關(guān)系Fig.1 Concretematerial constitutive relationship

        圖2 鋼筋材料本構(gòu)關(guān)系Fig.2 Steelmaterial constitutive relationship

        模型中的框架梁及連梁的彈塑性模型由中間的彈性桿、兩端的塑性彎曲鉸和剪切強度截面組成(圖3)??蚣苤膹椝苄阅P陀芍虚g的彈性桿和兩端的纖維截面組成,采用纖維截面模擬剪力墻的彈塑性彎曲破壞,并定義相應(yīng)的非線性剪切材料來模擬剪力墻的彈塑性剪切破壞特性??蚣苤图袅χ械睦w維截面通過直接讀取材料的彈塑性參數(shù)來實現(xiàn)對相應(yīng)構(gòu)件彈塑性變形的模擬。在剪力墻中設(shè)置內(nèi)嵌梁,以確保連梁與剪力墻單元的彎矩連續(xù)傳遞。輸入時間間隔均為0.02 s,持續(xù)時間均為20 s。建筑結(jié)構(gòu)的阻尼比為0.05。

        4.2 基本對稱框筒

        常規(guī)設(shè)計的框架-筒體結(jié)構(gòu),其核心筒均為居中布置,而框架則沿四周布置,該結(jié)構(gòu)體系平面上對稱規(guī)則,剛度中心與質(zhì)量中心基本重合,具有合理的地震作用傳遞途徑,因而在實際工程中被普遍采用。下面對一典型的框架-筒體結(jié)構(gòu)做彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性分析。某高層辦公樓,層高4.8 m,地上18層,總高86.4 m,設(shè)防烈度8度,設(shè)計基本地震最大加速度值0.2 g,場地類別Ⅱ類。結(jié)構(gòu)的彈性模型采用PKPM-SATWE(2012年版)建模和計算,考慮5%的偶然偏心,標(biāo)準(zhǔn)層平面圖見圖4,主要計算結(jié)果詳見表1,均滿足現(xiàn)行規(guī)范的各項要求,導(dǎo)入PERFORM-3D后結(jié)構(gòu)的前三階周期為1.88 s、1.87 s、1.51 s,與SATWE計算結(jié)果基本保持一致。

        圖3 框架梁彈塑性模型Fig.3 Frame beam elasto-plastic model

        本文分析基于結(jié)構(gòu)未發(fā)生嚴(yán)重剪切破壞的基礎(chǔ)上,由于剪切破壞帶有脆性特征,發(fā)生嚴(yán)重的剪切破壞將使后續(xù)分析失去意義。因此,應(yīng)通過構(gòu)造措施,使結(jié)構(gòu)主要構(gòu)件處于剪切彈性狀態(tài)。

        在PERFORM-3D中,采用對主要構(gòu)件設(shè)置剪切強度截面并計算其需求能力比的方法控制其剪切強度滿足要求。

        計算分析共采用3條地震波,均為二類場地波,分別是El Centro波,唐山波和蘭州波;前兩條為天然波,后一條為人工波。每條波均考慮雙向地震作用,兩個方向的最大地震加速度按1∶0.85的比例調(diào)整。為便于分析,每條地震波按小震至大震的順序依次分為五個分析工況,其對應(yīng)的地震加速度時程最大值分別為70 cm/s2、152.5 cm/s2、235 cm/s2、317.5 cm/s2、400 cm/s2。地震波計算

        圖4 典型樓層平面圖(單位:mm)Fig.4 Typical structural plan(Unit:mm)

        表1 SATWE彈性計算總信息Table 1Prelim inary results of the SATWE analysis

        選用前述三條地震波對其進(jìn)行彈塑性分析,采用自編數(shù)據(jù)處理程序CTE1.0對其節(jié)點質(zhì)量和位移結(jié)果文件進(jìn)行提取和分析,繪出其多工況θr/u時程曲線(圖5—圖7)。將每個分析工況的θr/u最大值取絕對值后進(jìn)行連接,即得到了結(jié)構(gòu)的彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性曲線(圖8)。

        圖5 結(jié)構(gòu)頂部相對扭轉(zhuǎn)效應(yīng)時程曲線(El Centro波)Fig.5 Time histories of the elasto-plastic torsional effect at the building top(El CentroWave)

        圖6 結(jié)構(gòu)頂部相對扭轉(zhuǎn)效應(yīng)時程曲線(唐山波)Fig.6 Time histories of the elasto-plastic torsional effect at the building top(Tangshan Wave)

        圖7 結(jié)構(gòu)頂部相對扭轉(zhuǎn)效應(yīng)時程曲線(蘭州波)Fig.7 Time histories of elasto-plastic torsional effect at the building top(Lanzhou Wave)

        由圖8可知,在5%的偶然偏心條件下,典型框架-筒體結(jié)構(gòu)彈塑性扭轉(zhuǎn)振動效應(yīng)總體是收斂的,結(jié)合圖9結(jié)構(gòu)的塑性鉸發(fā)展歷程可知,隨著地震作用的加強,結(jié)構(gòu)核心筒連梁首先屈服,連梁協(xié)調(diào)變形能力下降,聯(lián)肢墻的受力體系快速退化為獨立墻肢受力,核心筒整體抗側(cè)剛度下降較快,而外圍框架體系雖然也出現(xiàn)塑性鉸,但個別構(gòu)件的屈服對體系的整體剛度影響并不顯著,結(jié)構(gòu)體系外圈剛度相對于內(nèi)圈剛度有所上升,結(jié)構(gòu)的振動趨向于平動。因此,結(jié)構(gòu)的相對彈塑性扭轉(zhuǎn)振動效應(yīng)總體呈下降趨勢。

        圖8 結(jié)構(gòu)的彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性曲線Fig.8 Convergence curves of elasto-plastic torsional effect

        圖9 結(jié)構(gòu)典型梁塑性鉸發(fā)展歷程(唐山波)Fig.9 Typical development of the beam plastic hinges(Tangshan Wave)

        由上述分析可知,現(xiàn)行規(guī)范強調(diào)通過連梁的屈服耗能并實現(xiàn)結(jié)構(gòu)的第二道防線,這也導(dǎo)致了按規(guī)范設(shè)計結(jié)構(gòu)的彈塑性剛度重分布朝著對抗扭有利的方向發(fā)展,因此合理設(shè)計的框架-筒體結(jié)構(gòu)普遍具有較好的彈塑性抗扭性能。這一點在實際地震中也屢有印證,如1985年的墨西哥地震中,采用外框內(nèi)筒結(jié)構(gòu)的十八層美洲銀行大廈,只受到了輕微破壞,而周圍有大量建筑物由于結(jié)構(gòu)扭轉(zhuǎn)發(fā)生破壞。此外,適當(dāng)加強體系外圍框架的抗側(cè)剛度對于結(jié)構(gòu)彈性和塑性階段的抗扭都是很有必要的。

        4.3 偏置筒體

        偏置筒體在建筑上有其合理的一面,常常能將豎向交通和附屬用房部分集中置于朝向較差方位,使辦公區(qū)獲得較好的朝向和景觀效果,并容易獲得更靈活的房間分割布置。但由于其偏心距較大,結(jié)構(gòu)扭轉(zhuǎn)效應(yīng)明顯,因此有必要對其彈塑性扭轉(zhuǎn)效應(yīng)作更深入的研究和探討。

        某偏置筒體高層商務(wù)樓,標(biāo)準(zhǔn)層高5 m,地上25層,總高125 m,設(shè)防烈度8度,設(shè)計基本地震最大加速度值0.2 g,場地類別Ⅱ類。標(biāo)準(zhǔn)層平面圖見圖10,加速度時程沿X向輸入,分析方法同上節(jié)框筒結(jié)構(gòu),不再贅述。圖11—圖13是其頂部相對扭轉(zhuǎn)振動效應(yīng)時程曲線,圖14是該模型的彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性曲線。

        圖10 典型樓層平面圖Fig.10 Typical structure plan

        表2 SATWE彈性計算總信息Table 2Prelim inary results of the SATWE analysis

        由圖14可見,結(jié)構(gòu)在彈塑性發(fā)展過程中的扭轉(zhuǎn)效應(yīng)在小震至大震階段總體呈發(fā)散趨勢,結(jié)合結(jié)構(gòu)的塑性鉸發(fā)展歷程可知,由于筒體位于結(jié)構(gòu)外側(cè),因此其抗側(cè)剛度的快速退化直接導(dǎo)致了相對抗扭剛度的下降,結(jié)構(gòu)扭轉(zhuǎn)振動的趨勢不斷加強,扭轉(zhuǎn)效應(yīng)呈發(fā)散趨勢。

        由上述分析可知,與對稱框筒不同,偏置筒體由于初始偏心距較大,按靜力計算結(jié)果進(jìn)行設(shè)計時,往往依靠在周邊設(shè)置強大的抗扭轉(zhuǎn)墻體使其滿足位移比和周期比的要求,進(jìn)入非彈性階段后,隨著外圍墻體剛度不斷退化,其對扭轉(zhuǎn)振動的限制能力減弱,體系在彈性階段的靜態(tài)扭轉(zhuǎn)平衡在進(jìn)入非彈性階段后有可能被打破,并在某一階段持續(xù)發(fā)展,彈性擬靜力分析對偏置筒體的扭轉(zhuǎn)效應(yīng)往往估計不足,因此對于偏置筒體的抗扭設(shè)計,宜進(jìn)行彈塑性階段的校核和驗算。

        圖11 結(jié)構(gòu)頂部相對扭轉(zhuǎn)效應(yīng)時程曲線(El Centro波)Fig.11 Time histories of the elasto-plastic torsional effect at the building top(El CentroWave)

        圖12 結(jié)構(gòu)頂部相對扭轉(zhuǎn)效應(yīng)時程曲線(唐山波)Fig.12 Time histories of the elasto-plastic torsional effect at the building top(Tangshan Wave)

        圖13 結(jié)構(gòu)頂部相對扭轉(zhuǎn)效應(yīng)時程曲線(蘭州波)Fig.13 Time histories of elasto-plastic torsional effect at the building top(Lanzhou Wave)

        圖14 結(jié)構(gòu)的彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性曲線Fig.14 Convergence curves of elasto-plastic torsional effect

        4.4 任意平面不規(guī)則結(jié)構(gòu)

        對于任意平面不規(guī)則結(jié)構(gòu),均可用前述方法分析其彈塑性扭轉(zhuǎn)的斂散性。以某“L”形高層辦公樓為例,標(biāo)準(zhǔn)層高4.5 m,地上22層,總高100 m,場地條件同前。結(jié)構(gòu)沿Y向初始偏心約5%,標(biāo)準(zhǔn)層平面圖見圖15,導(dǎo)入PERFORM-3D后結(jié)構(gòu)的前三階周期為2.43 s、2.32 s、1.93 s,與SATWE計算結(jié)果基本保持一致。加速度時程沿X向輸入,圖16是該模型典型頂部相對扭轉(zhuǎn)振動效應(yīng)時程曲線,圖17是該模型的彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性曲線。

        圖15 典型樓層平面圖Fig.15 Typical structure plan

        由圖17可見,結(jié)構(gòu)在彈塑性發(fā)展過程中的扭轉(zhuǎn)效應(yīng)總體快速收斂,結(jié)合結(jié)構(gòu)的塑性鉸發(fā)展歷程可知,由于結(jié)構(gòu)南側(cè)電梯筒體剛度較大,結(jié)構(gòu)在彈性階段剛心偏于南側(cè),進(jìn)入彈塑性階段后,南側(cè)

        由上述分析可知,設(shè)計較合理的小偏心率“L”形平面結(jié)構(gòu),依然具備較好的彈塑性抗扭轉(zhuǎn)性能。扭轉(zhuǎn)振動效應(yīng)受到多種因素影響,某些因素進(jìn)入塑性階段后才會逐漸顯現(xiàn),因此有必要對于不規(guī)則結(jié)構(gòu)扭轉(zhuǎn)振動效應(yīng)斂散性進(jìn)行具體分析以確定其在某一階段扭轉(zhuǎn)振動特性。電梯筒體連梁首先屈服,其抗側(cè)剛度的快速退化直接導(dǎo)致了結(jié)構(gòu)偏心距逐漸減小,結(jié)構(gòu)的振動更趨向平動。

        表3 SATWE彈性計算總信息Table 3Prelim inary results of the SATWE analysis

        圖16 結(jié)構(gòu)頂部相對扭轉(zhuǎn)效應(yīng)時程曲線(El Centro波)Fig.16 Time histories of the elasto-plastic torsional effect at the building top(El CentroWave)

        圖17 結(jié)構(gòu)的彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性曲線Fig.17 Convergence curves of elasto-plastic torsional effect

        5 結(jié)構(gòu)彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性的影響因素簡析

        結(jié)構(gòu)的扭轉(zhuǎn)振動效應(yīng)是結(jié)構(gòu)剛度特性與質(zhì)量特性共同作用的結(jié)果。進(jìn)入非彈性階段以后,結(jié)構(gòu)剛度特性處于持續(xù)變化的狀態(tài)中;其剛度特性的變化主要由結(jié)構(gòu)材料非線性和幾何非線性引起;對于混凝土結(jié)構(gòu),以前者為主。

        結(jié)構(gòu)剛度特性的變化主要表現(xiàn)為結(jié)構(gòu)相對和絕對抗扭剛度的變化(4.1、4.2節(jié)算例)、結(jié)構(gòu)相對偏心距的變化(4.3節(jié)算例)、以及由于結(jié)構(gòu)自振特性變化引起的振型耦聯(lián)狀態(tài)的變化,上述幾個因素的共同作用構(gòu)成了結(jié)構(gòu)彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性的主要影響因素。此外,結(jié)構(gòu)動力荷載形式、加載路徑以及結(jié)構(gòu)阻尼的非線性特征也對扭轉(zhuǎn)振動效應(yīng)斂散性有一定影響。

        6 結(jié) 論

        本文主要對平面不規(guī)則結(jié)構(gòu)的彈塑性扭轉(zhuǎn)振動效應(yīng)的斂散性進(jìn)行研究和分析,并得出以下體會和探討:

        (1)結(jié)構(gòu)在非彈性階段的扭轉(zhuǎn)振動效應(yīng)與彈性階段既有聯(lián)系又有所區(qū)別,彈性階段的剛度特性是向非彈性階段退化的起點,基于結(jié)構(gòu)自身的非線性特性,彈性階段的扭轉(zhuǎn)平衡或不平衡進(jìn)入非彈性階段后都有可能發(fā)生變化,這種變化可用彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性曲線來衡量和判別。

        (2)平面不規(guī)則結(jié)構(gòu)進(jìn)入非彈性階段后,其不規(guī)則性引起的扭轉(zhuǎn)效應(yīng)有可能逐漸被釋放,因此,對其進(jìn)行扭轉(zhuǎn)振動效應(yīng)斂散性分析是有必要的。

        (3)結(jié)構(gòu)的彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性是結(jié)構(gòu)自身多種非線性特性的綜合反映。不同類型的平面不規(guī)則結(jié)構(gòu),在不同的場地、荷載、阻尼工況條件下的表現(xiàn)應(yīng)具有不同的特點,前述4.1—4.3節(jié)算例僅為例證性分析,對不同類型結(jié)構(gòu)扭轉(zhuǎn)振動效應(yīng)斂散性規(guī)律的總結(jié)有待于基于更多工程實例的深入研究。

        (4)結(jié)構(gòu)的彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性是結(jié)構(gòu)的固有特性,是結(jié)構(gòu)動力規(guī)則性的一種體現(xiàn)。對其進(jìn)行研究,有助于我們更好地掌握結(jié)構(gòu)的性能,更準(zhǔn)確地評估其在地震作用下表現(xiàn)。目前,結(jié)構(gòu)的性能化設(shè)計向指標(biāo)化、精確化的方向發(fā)展;相關(guān)規(guī)范中已對結(jié)構(gòu)構(gòu)件的性能化指標(biāo)有所規(guī)定,結(jié)構(gòu)的彈塑性扭轉(zhuǎn)振動效應(yīng)斂散性指標(biāo)可以作為結(jié)構(gòu)的一個整體扭轉(zhuǎn)性能指標(biāo),成為性能化設(shè)計的一部分。

        (5)采用扭轉(zhuǎn)振動效應(yīng)斂散性指標(biāo)對結(jié)構(gòu)的彈塑性扭轉(zhuǎn)振動效應(yīng)進(jìn)行評價,有利于實現(xiàn)結(jié)構(gòu)彈性階段和非彈性階段設(shè)計分析的自然銜接。既是對彈性階段設(shè)計的校核與驗證,也是彈性階段設(shè)計的補充與延續(xù)。

        [1] 中華人民共和國住房和城鄉(xiāng)建設(shè)部.GB 50011—2010建筑抗震設(shè)計規(guī)范[S].北京:中國建筑工業(yè)出版社,2010.Ministry of Construction of the People’s Republic of China.GB 50011—2010 Code for seismic design of buildings[S].Beijing:China Architecture and Building Press,2010.(in Chinese)

        [2] 中華人民共和國住房和城鄉(xiāng)建設(shè)部.JGJ 3—2010高層建筑混凝土結(jié)構(gòu)技術(shù)規(guī)程[S].北京:中國建筑工業(yè)出版社,2010.Ministry of Construction of the People’s Republic of China.JGJ 3—2010 Technical specification for concrete structures of tall buildings[S].Beijing:China Architecture and Building Press,2010.(in Chinese)

        [3] 徐培福,黃吉峰,韋承基.高層建筑結(jié)構(gòu)在地震作用下的扭轉(zhuǎn)振動效應(yīng)[J].建筑科學(xué),2000,16(1):1-6.Xu Peifu,Huang Jifeng,Wei Chengji.Response of torsional vibration of tall building structures induced by seismic action[J].Building Science,2000,16(1):1-6.(in Chinese)

        [4] 王墩,呂西林.平面不規(guī)則結(jié)構(gòu)非彈性扭轉(zhuǎn)地震反應(yīng)研究進(jìn)展[J].地震工程與工程振動,2010,(4):51-58.Wang Dun,Lu Xilin.Progress in study on inelastic torsional seismic response of asymmetric buildings[J].Journal of Earthquake Engineering and Engineering Vibration,2010,(4):51-58.(in Chinese)

        [5] 洪婷婷.淺析框架-核心筒結(jié)構(gòu)設(shè)計中的幾個問題[J].結(jié)構(gòu)工程師,2010,(8):15-20.Hong Tingting.Analysis of some issues for design of frame-shearing wall structures[J].Structural Engineers,2010,(8):15-20.(in Chinese)

        [6] 孟春光,陸秀麗,耿耀明,等.某超高層抗震性能化設(shè)計及彈塑性時程分析[J].結(jié)構(gòu)工程師,2012,(4):74-79.Meng Chunguang,Lu Xiuli,Geng Yaoming,et al.Performance based seismic design and dynamic elasto-plastic analysis of a super high-rise building[J].Structural Engineers,2012,(4):74-79.(in Chinese)

        Convergence Study of the Elasto-plastic Torsional Effect in Asymmetric Buildings

        YANG Jie*LU Xiuli YU Zhongjun
        (Architectural Design and Research Institute of Tongji University(Group)Co.Ltd.,Shanghai200092,China)

        Current studies of the torsional vibration effect in symmetric buildings focus on the elastic stage and there is no clear evaluation methods or index for inelastic torsional effect control.This paper proposed a method to evaluate torsional vibration effect by investigating variation ofθr/u.A convergence index of elastoplastic torsional effect in asymmetric buildingswas also defined.Torsional vibration effect convergence calculation was finished for three typical buildings by using PERFORM-3D.Calculation resultswere analyzed to verify the necessity and effectiveness of convergence index.A brief analysis on main factors of convergence index was carried out.Finally,the rationality and superiority of convergence index as a structural elasto-plastic torsional vibration effect evaluation index were discussed.

        asymmetric building,elasto-plastic,torsional vibration effect,convergence

        2013-08-20

        *聯(lián)系作者,Email:tjad_yj@163.com

        猜你喜歡
        筒體結(jié)構(gòu)分析
        《形而上學(xué)》△卷的結(jié)構(gòu)和位置
        b型管板與筒體溫差應(yīng)力的分析計算和評定
        化工管理(2021年7期)2021-05-13 00:46:04
        回轉(zhuǎn)窯筒體對接操作方法
        一種臥式筒體糞污發(fā)酵裝置的筒體設(shè)計與分析
        隱蔽失效適航要求符合性驗證分析
        論結(jié)構(gòu)
        中華詩詞(2019年7期)2019-11-25 01:43:04
        電力系統(tǒng)不平衡分析
        電子制作(2018年18期)2018-11-14 01:48:24
        電力系統(tǒng)及其自動化發(fā)展趨勢分析
        論《日出》的結(jié)構(gòu)
        球磨機筒體鑄鋼端蓋裂紋的處理方法
        日本成年少妇人妻中文字幕| 九九九精品成人免费视频小说| 91香蕉视频网| 少妇爽到爆视频网站免费| 国产精品自产拍在线18禁| 欧美性猛交xxxx免费看蜜桃 | 日本女优中文字幕在线播放| 亚洲精品国偷拍自产在线| 成人性做爰aaa片免费看| 午夜a福利| 免费在线观看草逼视频| 日本韩国男男作爱gaywww| 成人黄色网址| 久热re在线视频精品免费| 久久精品视频日本免费| 少妇高潮太爽了在线视频| 久久久久亚洲av无码专区导航| 免费黄网站久久成人精品| 亚洲av永久一区二区三区| 97人人模人人爽人人喊网| 又硬又粗又大一区二区三区视频 | 国产va免费精品高清在线观看| 亚洲日本精品一区二区三区| 无码爽视频| 中文字幕人妻av一区二区| 亚洲狼人社区av在线观看| 一区二区三区在线观看人妖| 国产v片在线播放免费无码| 成全视频高清免费| 在线观看极品裸体淫片av| 精品人妻中文av一区二区三区| 国产一极内射視颍一| 久久久AV无码精品免费| 亚洲中文字幕乱码在线观看| 国产电影无码午夜在线播放| 最新亚洲av日韩av二区| 久久婷婷国产五月综合色| 男女真人后进式猛烈视频网站 | 国产精品欧美韩国日本久久| 亚洲av熟女传媒国产一区二区| 97久久精品人妻人人搡人人玩|