毛 虎 吳德偉 盧 虎 閆占杰
?
對(duì)GPS接收機(jī)的一種新寬帶壓制干擾樣式分析
毛 虎*吳德偉 盧 虎 閆占杰
(空軍工程大學(xué)信息與導(dǎo)航學(xué)院 西安 710077)
針對(duì)單頻連續(xù)波干擾極易通過(guò)頻域?yàn)V波加以抑制,而寬帶連續(xù)阻塞式干擾又存在干擾效率低下的問(wèn)題,提出脈沖連續(xù)波這種新的寬帶梳狀攔阻式干擾樣式。根據(jù)C/A碼、P(Y)碼和M碼信號(hào)功率譜特點(diǎn)分別設(shè)置脈沖連續(xù)波的干擾頻率覆蓋范圍。以碼跟蹤誤差作為干擾效果評(píng)估指標(biāo),對(duì)不同干擾環(huán)境下采用窄帶非相干延遲鎖定環(huán)的GPS接收機(jī)碼跟蹤性能進(jìn)行仿真分析。仿真結(jié)果表明:脈沖連續(xù)波干擾對(duì)不同偽隨機(jī)噪聲碼(PRN)編號(hào)和副載波調(diào)制相位下的C/A碼和M碼信號(hào)影響是不同的,在相同干信比(JSR)條件下,脈沖連續(xù)波的干擾效果要優(yōu)于寬帶高斯噪聲和匹配譜干擾。
全球定位系統(tǒng)擴(kuò)頻偽碼;脈沖連續(xù)波;干擾頻率范圍;碼跟蹤誤差
本文依據(jù)衛(wèi)星信號(hào)的歸一化功率譜密度越低抗干擾能力越強(qiáng)的特點(diǎn)[13],參照文獻(xiàn)[7]和單頻連續(xù)波干擾的頻點(diǎn)設(shè)置原則,采用基于寬帶梳狀攔阻式干擾類型的自回歸(Auto Regressive, AR)信號(hào)模型單脈沖連續(xù)波作為壓制干擾信號(hào)樣式,通過(guò)對(duì)GPS C/A碼、P(Y)碼和M碼功率譜的特征分析得出其易感性的干擾頻率覆蓋范圍,以此設(shè)置預(yù)干擾頻點(diǎn)等參數(shù),在機(jī)動(dòng)靈活的同時(shí)又避免了干擾資源的浪費(fèi),對(duì)上述3種GPS偽碼信號(hào)都能夠取得較好的干擾效果。
單頻連續(xù)波干擾效果較好,但其所占頻帶過(guò)窄,通過(guò)簡(jiǎn)單的頻域?yàn)V波就可將其抑制到熱噪聲水平上。由于頻域?yàn)V波在抑制干擾信號(hào)的同時(shí)也抑制了這些頻率區(qū)間上的期望信號(hào),所以其對(duì)寬帶攔阻式干擾是無(wú)能為力的。攔阻式干擾按照其頻譜特點(diǎn)又可分為連續(xù)攔阻式和梳狀攔阻式:連續(xù)攔阻式雖然免除了對(duì)信號(hào)頻率、帶寬的偵察和估計(jì),但由于干擾帶寬較大,導(dǎo)致干擾消耗急劇增加,顯著降低了干擾效率;梳狀攔阻式的頻帶成梳形,僅落入這些頻帶內(nèi)的期望信號(hào)受到干擾,且干擾頻帶能夠移動(dòng),可對(duì)期望信號(hào)功率譜易感頻段進(jìn)行有效覆蓋,從而獲得較為理想的干擾效果。根據(jù)上述的討論分析,可采用單脈沖連續(xù)波作為干擾信號(hào)樣式,其數(shù)學(xué)模型為
對(duì)GPS C/A碼、P(Y)碼和M碼信號(hào)的干擾易感頻段分別進(jìn)行分析。
可以證明隨著干擾帶寬的增加,干擾效果下降??紤]最小帶寬為極限情況下的單頻干擾,即
M碼信號(hào)采用二進(jìn)制偏置載波(Binary Offset Carrier, BOC)調(diào)制方式,BOC調(diào)制可視為BPSK調(diào)制與一個(gè)方波副載波的乘積,其擴(kuò)頻符號(hào)波形可表示為
圖1 BOC(10,5,)調(diào)制功率譜隨副載波相位變化情況
對(duì)脈沖連續(xù)波干擾效能的分析以非相干超前減滯后處理(Non-coherent Early-Late Processing, NELP)的碼跟蹤誤差為評(píng)估指標(biāo)(這里的碼跟蹤誤差特指碼跟蹤均方根(Root Mean Square, RMS)誤差,以秒為單位,且不考慮接收機(jī)自身熱噪聲的影響)。
C/A碼功率譜為起伏的離散譜線,以相關(guān)輸出的干擾分量服從零均值高斯分布和偽碼連續(xù)譜為假設(shè)而推導(dǎo)出的碼跟蹤誤差解析式不再適用。根據(jù)NELP碼環(huán)對(duì)混有單頻干擾的中頻輸入信號(hào)處理過(guò)程,假設(shè)早遲碼間距足夠小(趨近于零),可推導(dǎo)得到單頻干擾下C/A碼碼跟蹤誤差近似解析式為
由圖4、圖5、圖6、圖7可以看出,在同等干信比條件下,干擾效能由低到高依次為寬帶高斯噪聲、匹配譜、脈沖連續(xù)波和單頻連續(xù)波干擾,這個(gè)仿真結(jié)果與前面的理論分析是一致的。盡管單頻連續(xù)波干擾效能最優(yōu),但其對(duì)頻域?yàn)V波極其敏感;脈沖連續(xù)波、匹配譜和寬帶高斯噪聲都屬于寬帶阻塞式干擾類型,脈沖連續(xù)波參照單頻連續(xù)波,針對(duì)不同偽碼信號(hào)的功率譜最大值設(shè)置干擾參數(shù),集中干擾能量對(duì)期望信號(hào)有效功率帶寬進(jìn)行覆蓋,因而其干擾效能要優(yōu)于匹配譜和寬帶高斯噪聲。另外,這四種干擾樣式還無(wú)一例外的顯示出C/A碼極易受干擾的影響,而M碼則具有較強(qiáng)的抗干擾性能。
圖2 脈沖連續(xù)波對(duì)不同PRN#C/A碼碼跟蹤誤差
圖3 脈沖連續(xù)波對(duì)不同調(diào)制相位M碼碼跟蹤誤差
圖4 寬帶高斯噪聲干擾下的偽碼跟蹤誤差
圖5 匹配譜干擾下的偽碼跟蹤誤差
圖6 單頻連續(xù)波干擾下的偽碼跟蹤誤差
圖7 脈沖連續(xù)波干擾下的碼跟蹤誤差
[1] 楊會(huì)軍, 李文魁. GPS衛(wèi)星有效載荷對(duì)抗技術(shù)研究[J]. 航天電子對(duì)抗, 2012, 28(1): 14-16.
Yang Hui-jun and Li Wen-kui. Research on countermeasures technique of GPS satellite payload[J]., 2012, 28(1): 14-16.
[2] Oshman Y and Koifman M. Robust GPS navigation in the presence of jamming and spoofing[C]. Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Washington, USA, 2003: 1-11.
[3] Hu Hui and Wei Na. A study of GPS jamming and anti- jamming[C]. Proceedings of the 2nd International Conference on Power Electronics and Intelligent Transportation System, Shenzhen, China, 2009: 388-391.
[4] 孔令文, 王濤. GPS干擾技術(shù)及其防護(hù)措施研究[J]. 航天電子對(duì)抗, 2012, 28(6): 35-37.
Kong Ling-wen and Wang Tao. Research on GPS jamming techniques and its protection measures[J]., 2012, 28(6): 35-37.
[5] Iyidir B and Ozkazanc Y. Jamming of GPS receivers[C]. Proceedings of the IEEE 12th Signal Processing and Communications Applications Conference, California, USA, 2004: 747-750.
[6] 汪捷, 趙學(xué)軍. 導(dǎo)航對(duì)抗背景GPS信號(hào)寬帶壓制干擾分析[J]. 海軍工程大學(xué)學(xué)報(bào), 2010, 22(6): 30-34.
Wang Jie and Zhao Xue-jun. Analysis of wideband suppressing jamming on GPS in counterwork facing navigational system[J]., 2010, 22(6): 30-34.
[7] 周晗, 黃芝平, 王淑云. 一種針對(duì)直擴(kuò)系統(tǒng)的高效干擾方案[J]. 電訊技術(shù), 2012, 52(10): 1566-1570.
Zhou Han, Huang Zhi-ping, and Wang Shu-yun. An effective jamming method for DSSS systems[J]., 2012, 52(10): 1566-1570.
[8] 吳志建, 方勝良, 吳付祥. 高空無(wú)人機(jī)載GPS/INS系統(tǒng)干擾效能及對(duì)策研究[J]. 航天電子對(duì)抗, 2013, 29(2): 16-19.
Wu Zhi-jian, Fang Sheng-liang, and Wu Fu-xiang. Research on interference effectiveness analysis of high-altitude UAV airborne GPS/INS system[J]., 2013, 29(2): 16-19.
[9] 胡修林, 劉禹圻, 冉一航, 等. 單頻干擾下衛(wèi)星導(dǎo)航信號(hào)的碼跟蹤性能評(píng)估[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 38(8): 5-8.
Hu Xiu-lin, Liu Yu-qi, Ran Yi-hang,.. Tracking performance evaluation of GNSS signals in CW interference [J]..&(), 2010, 38(8): 5-8.
[10] 劉禹圻, 胡修林, 冉一航, 等. 衛(wèi)星導(dǎo)航信號(hào)抗單頻干擾性能研究[J]. 電子學(xué)報(bào), 2011, 39(6): 1410-1416.
Liu Yu-qi, Hu Xiu-lin, Ran Yi-hang,.. Study on evaluating the impact of CWI on DLL tracking performance for GNSS signals[J]., 2011, 39(6): 1410-1416.
[11] 宋帥, 王新龍. GPS接收機(jī)跟蹤環(huán)的抗干擾性能研究與分析[J]. 航空兵器, 2011, (6): 29-35.
Song Shuai and Wang Xin-long. Research and analysis on anti-interference performanceof tracking loop for GPS receiver[J]., 2011, (6): 29-35.
[12] 孟生云, 楊文革. 直擴(kuò)/跳頻測(cè)控信號(hào)偽碼跟蹤抗干擾性能分析[J]. 電訊技術(shù), 2013, 53(5): 560-564.
Meng Sheng-yun and Yang Wen-ge. Analysis on evaluating the jamming impact on DS/FH TT&C signals code tracking performance[J]., 2013, 53(5): 560-564.
[13] 羅顯志, 王垚, 張志新, 等. GNSS抗干擾方法研究[C].第一屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì), 北京, 中國(guó), 2010: 1-6.
Luo Xian-zhi, Wang Yao, Zhang Zhi-Xing,.. Study of interference mitigation approaches for GNSS[C]. CSNC, Beijing, China, 2010: 1-6.
[14] Balaei A T, Dempster A G, and Presti L L. Characterization of the effects of CW and pulse CW interference on the GPS signal quality[J]., 2009, 45(4): 1418-1431.
[15] 唐祖平. GNSS信號(hào)設(shè)計(jì)與評(píng)估若干理論研究[D]. [博士論文], 華中科技大學(xué), 2009.
Tang Zu-ping. Research on relevant theory for GNSS signal design and evaluation[D]. [Ph.D. dissertation], Huazhong University of Science and Technology, 2009.
[16] Betz J W and Kolodziejski K R. Generalized theory of code tracking with an early-late discriminator part II: noncoherent processing and numerical results[J]., 2009, 45(4): 1551-1564.
毛 虎: 男,1987年生,博士生,研究方向?yàn)閷?dǎo)航對(duì)抗.
吳德偉: 男,1963年生,教授,研究方向?yàn)檐娛聦?dǎo)航定位理論、技術(shù)與應(yīng)用.
盧 虎: 男,1975年生,副教授,研究方向?yàn)樾l(wèi)星導(dǎo)航定位.
閆占杰: 男,1989年生,碩士,研究方向?yàn)閷?dǎo)航對(duì)抗.
Analysis of a New Wideband Blanket Jamming Type to GPS Receiver
Mao Hu Wu De-wei Lu Hu Yan Zhan-jie
(,,’710077,)
Aiming at the problem that a Continuous Wave (CW) is easy to be suppressed by the frequency domain filtering and the efficiency of a broadband continuous blanket jamming is low, this paper presents a new broadband comb spectrum jamming type which is called single pulse CW. The jamming frequency domain range of single pulse CW is set respectively according to the power spectral density characteristic of C/A code, P(Y) code and M code signal. Taking code tracking error as the evaluation index of jamming effect, the GPS receiver code tracking performance of using a narrowband non-coherent delay lock loop is simulated and analyzed under different jamming circumstance. The simulation results show that the influence of single pulse CW jamming to C/A code and M code with the different Pseudo Random Noise Code (PRN) and phase of modulating sub-carrier are different, under the same Jamming-to-Signal Ratio (JSR) condition, the jamming effect of single pulse CW is better than the broadband Gaussian noise and matched spectrum.
Global Positioning System (GPS) spread spectrum code; Single pulse Continuous Wave; Jamming frequency range; Code tracking error
TN967.1
A
1009-5896(2014)12-2929-06
10.3724/SP.J.1146.2014.00123
毛虎 mao_hu1987@163.com
2014-01-20收到,2014-10-10改回
國(guó)家自然科學(xué)基金(61174194)資助課題