景小榮 楊 洋 張祖凡 陳前斌
?
高斯噪聲背景下多用戶波達(dá)方向估計(jì)與互耦自校正
景小榮①②楊 洋*①?gòu)堊娣并佗陉惽氨螈佗?/p>
①(重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065)②(移動(dòng)通信技術(shù)重慶市重點(diǎn)實(shí)驗(yàn)室 重慶 400065)
在高斯噪聲背景下,針對(duì)互耦條件下的均勻線陣(Uniform Linear Array, ULA),該文提出了一種聯(lián)合多用戶波達(dá)方向(Direction Of Arrival, DOA)估計(jì)與互耦誤差自校正算法。該算法首先利用特征矩陣聯(lián)合相似對(duì)角化(Joint Approximative Diagonalization of Eigen matrix, JADE)方法估計(jì)出各用戶廣義空間特征矢量,然后定義了一個(gè)將各用戶廣義空間特征矢量轉(zhuǎn)換為只與部分陣元相關(guān)的轉(zhuǎn)換矩陣,進(jìn)而在斜投影及前后向空間平滑的基礎(chǔ)上,實(shí)現(xiàn)了多用戶相干信源DOA估計(jì),最后以多用戶相干信源DOA及廣義空間特征矢量估計(jì)值為基礎(chǔ),給出一種互耦自校正方法。仿真結(jié)果表明:該算法具有較高的DOA估計(jì)精度及DOA估計(jì)成功率,而且對(duì)高斯白噪聲/色噪聲背景,陣列互耦誤差已知/未知情形,均具有普適性。
信號(hào)處理;多用戶DOA估計(jì);均勻線陣;互耦自校正
高分辨測(cè)向技術(shù)廣泛地應(yīng)用于雷達(dá)、聲吶及無(wú)線通信領(lǐng)域,目前已涌現(xiàn)出許多性能優(yōu)良的DOA估計(jì)算法,其中以多重信號(hào)分類(MUltiple SIgnal Classification, MUSIC)算法[1]及基于旋轉(zhuǎn)不變技術(shù)的信號(hào)參數(shù)估計(jì)(Estimating Signal Parameters via Rotational Invariance Techniques, ESPRIT)算法[2]最為經(jīng)典。然而,這兩種算法均基于理想陣列流形提出。在實(shí)際應(yīng)用中,受陣元間互耦影響,實(shí)際陣列流形與理想陣列流形之間總存在一定偏差,導(dǎo)致這些算法DOA估計(jì)性能急劇下降,甚至失效。
為了解決互耦條件下DOA估計(jì)問題,國(guó)內(nèi)外學(xué)者進(jìn)行了深入研究。文獻(xiàn)[3]將互耦條件下的DOA估計(jì)轉(zhuǎn)化為多維非線性優(yōu)化問題,并利用多步迭代法求解,然而,無(wú)法保證迭代收斂性。Wang等人[4]則利用互耦矩陣(Mutual Coupling Matrix, MCM)的Toeplitz結(jié)構(gòu),提出一種DOA估計(jì)與互耦自校正方法。文獻(xiàn)[5]利用稀疏分解的方法,實(shí)現(xiàn)了互耦條件下的DOA估計(jì)問題。Liao等人[6]將互耦誤差轉(zhuǎn)換成與角度相關(guān)的復(fù)陣列增益,提出了一種DOA與互耦誤差聯(lián)合估計(jì)算法。文獻(xiàn)[7]基于改進(jìn)稀疏分解算法,實(shí)現(xiàn)了信源DOA估計(jì)。Wang[8]基于最大似然(Maximum Likelihood, ML)準(zhǔn)則,利用輔助校正源的空域與時(shí)域波形信息來實(shí)現(xiàn)DOA與互耦/幅相誤差的聯(lián)合估計(jì)。這些研究成果均針對(duì)非相干信源。
在實(shí)際無(wú)線通信中,同一用戶信號(hào)經(jīng)過障礙物時(shí),會(huì)造成反射,從而形成多徑信號(hào),當(dāng)多徑時(shí)延差較小時(shí),通常認(rèn)為這些多徑信號(hào)是相干的,即形成相干信源。相干信源的存在使得上述DOA估計(jì)算法不再適用。為此,Dai等人[9]提出利用改進(jìn)空間平滑算法解相干,進(jìn)而實(shí)現(xiàn)互耦條件下相干信源DOA估計(jì)。文獻(xiàn)[10]中提出兩種解相干算法,用以解決互耦條件下相干信源的DOA估計(jì)問題。
以上文獻(xiàn),均假設(shè)高斯白噪聲環(huán)境,且只利用了接收數(shù)據(jù)的二階統(tǒng)計(jì)量信息。而在移動(dòng)蜂窩通信系統(tǒng)中,受小區(qū)外多址干擾(Out-cell Multiple Access Interference, OMAI)的影響,將通信背景噪聲建模為高斯色噪聲顯得更為合理。同時(shí),相比二階統(tǒng)計(jì)量,四階累積量(Fourth-Order Cumlants, FOC)具有更好的信號(hào)表征特性,同時(shí)又具有盲高斯性及虛擬陣列孔徑擴(kuò)展的能力。Li等人[11]基于FOC,研究了互耦條件下獨(dú)立信源的DOA估計(jì)問題,然而,文中算法對(duì)相干信源DOA估計(jì)仍然無(wú)能為力。更為重要的是,在實(shí)際移動(dòng)通信環(huán)境中,與基站間同時(shí)通信的終端用戶往往不止一個(gè)。為此,在多用戶通信場(chǎng)景(或存在多組相干信源時(shí)),Gonen等人[12]提出了一種虛擬ESPRIT算法(Virtual ESPRIT Algorithm, VESPA),用以解決多用戶相干信源DOA估計(jì)問題;Cardoso等人[13]則提出JADE方法,用于解決多用戶相干信源盲波束形成問題,但是,這些方法均不適用陣元間存在互耦誤差的情形。
綜合分析以上成果,本文針對(duì)均勻線陣(ULA)互耦條件下多用戶DOA估計(jì)的難點(diǎn),提出了一種聯(lián)合DOA估計(jì)與互耦自校正算法。與VESPA算法相比,該算法不但在DOA估計(jì)精度及DOA估計(jì)成功率上,具有明顯的優(yōu)勢(shì),而且對(duì)于高斯白/色噪聲背景,陣列互耦誤差已知/未知情形,均具有普適性。
圖1 空間功率譜
圖2 隨SNR變化曲線
圖3 隨SNR變化的關(guān)系曲線
圖4 DOA估計(jì)成功率隨SNR變化的曲線
高斯噪聲環(huán)境下,本文針對(duì)ULA互耦條件下多用戶DOA估計(jì)及互耦誤差校正問題,結(jié)合JADE方法,提出了一種聯(lián)合DOA估計(jì)與互耦誤差自校正算法。該算法不僅可以有效地實(shí)現(xiàn)多用戶DOA估計(jì),還能夠自動(dòng)對(duì)來波按用戶進(jìn)行分組;與VESPA算法相比,該算法無(wú)論從DOA估計(jì)精度及DOA估計(jì)成功率,均具有明顯的優(yōu)勢(shì),而且對(duì)于互耦已知及未知情形,以及高斯背景噪聲均具有普適性;同時(shí),算法在實(shí)現(xiàn)DOA估計(jì)的基礎(chǔ)上,還可精確地估計(jì)出互耦系數(shù)矢量,從而實(shí)現(xiàn)陣列的自校正。此外,由于本文算法利用JADE方法來估計(jì)廣義空間特征矩陣,且采用斜投影來消除多用戶間干擾,因此,算法復(fù)雜度相對(duì)較高,然而,隨著微處理器運(yùn)算能力的提升,該問題會(huì)逐步得到解決。
[1] Schmidt R O. Multiple emitter location and signal parameter estimation[J]., 1986, 34(3): 276-280.
[2] Roy R H and Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J].,, 1989, 37(7): 984-995.
[3] Friedlander B and Weiss A J. Direction finding in the presence of mutual coupling[J]., 1991, 39(3): 273-284.
[4] Wang B H, Wang Y L, Chen H,.. Robust DOA estimation and array calibration in the presence of mutual coupling for uniform linear array[J].., 2004, 47(3): 348-361.
[5] Wang L B and Chen C. Direction-of-arrival estimation in the presence of mutual coupling based on joint sparse recovery[J].(), 2012, 29(5): 408-414.
[6] Liao B, Zhang Z G, and Chan S C. DOA estimation and tracking of ULAs with mutual coupling[J]., 2012, 48(1): 891-905.
[7] Dai J S, Zhao D A, and Ji X F. A sparse representation method for DOA estimation with unknown mutual coupling [J]., 2012, 11: 1210-1213.
[8] Wang D. Sensor array calibration in presence of mutual coupling and gain/phase errors by combining the spatial- domain and time-domain waveform information of the calibration sources[J]., 2013, 32(3): 1257-1292.
[9] Dai J S and Ye Z F. Spatial smoothing for direction of arrivalestimation of coherent signals in the presence of unknownmutual coupling[J]., 2011, 5(4): 418-425.
[10] Liao B and Chan S C. DOA estimation of coherent signals for uniform linear arrays with mutual coupling[C]. 2011 IEEE International Symposium on Circuits and Systems (ISCAS),Hong Kong, 2011: 377-380.
[11] Li X, Ye Z F, Xu X,.. Direction of arrival estimation for uniform circular array based on fourth-order cumulants in the presence of unknown mutual coupling[J]., 2008, 2(3): 281-287.
[13] Cardoso J F and Souloumiac A. Blind beamforming for non-Gaussian signals[J]., 1993, 140(6): 362-370.
[14] Dou H, Li G P, and Shi J C. A fast algorithm for DOA estimation based on fourth-order cumulants[J]., 2012, 127(4): 61-67.
[15] Behrens R T and Scharf L L. Signal processing applications of oblique projection operators[J]., 1994, 42(6): 1413-1424.
景小榮: 男,1974年生,副教授,博士,研究方向?yàn)槎嗵炀€(包括智能天線)系統(tǒng)中的信號(hào)處理.
楊 洋: 男,1987年生,碩士生,研究方向?yàn)橹悄芴炀€系統(tǒng)信號(hào)處理.
張祖凡: 男,1972年生,教授,博士,研究方向?yàn)橐苿?dòng)通信網(wǎng)絡(luò)及理論.
Multiuser DOA Estimation and Mutual Coupling Error Self-calibration in Gaussian Noise Backgrounds
Jing Xiao-rong①②Yang Yang①Zhang Zu-fan①②Chen Qian-bin①②
①(,,400065,)②(,400065,)
In the Gaussian noise background, an algorithm is proposed to jointly estimate the multiuser DOA and self-calibrate the mutual coupling error for Uniform Linear Array (ULA). First, the generalized spatial feature vector of each user is estimated by utilizing the Joint Approximative Diagonalization of Eigen (JADE) matrix method. Second a transformation matrix is defined, and based on which the generalized spatial feature vector is converted to the one which is related with part elements of the ULA. Then the multiuser coherent DOA estimates are obtained on the basis of the oblique projection and Forward and Backward Spatial Smoothing(FBSS) methods. Finally, a mutual coupling self-calibration method is presented by utilizing the estimates of the DOA and the generalized spatial feature vector of each user. The computer simulation indicates that the algorithm has higher performance of DOA estimation accuracy and successful rate. The simulation results also demonstrate that, the proposed algorithm is universal for the situations where the mutual coupling error is known or not with white or colored additive Gaussian noise.
Signal processing; Multiuser DOA estimation; Uniform linear array; Mutual coupling self-calibration
TN911.7
A
1009-5896(2014)05-1266-05
10.3724/SP.J.1146.2013.01042
楊洋 yangyme@163.com
2013-07-16收到,2013-11-07改回
國(guó)家科技重大專項(xiàng)(2013ZX03003008-005)和重慶市自然科學(xué)基金(CSTC, 2010BB2417, 2013JJB40001)資助課題