呂 凡,蔡 濤,朱 敏,何品晶*
(1.同濟(jì)大學(xué)固體廢物處理與資源化研究所,上海 200092;2.住房和城鄉(xiāng)建設(shè)部村鎮(zhèn)建設(shè)司農(nóng)村生活垃圾處理技術(shù)研究與培訓(xùn)中心,上海 200092)
蔬菜類廢物兩相厭氧消化水解酸化相顆粒降解規(guī)律
呂 凡1,2,蔡 濤1,朱 敏1,何品晶1,2*
(1.同濟(jì)大學(xué)固體廢物處理與資源化研究所,上海 200092;2.住房和城鄉(xiāng)建設(shè)部村鎮(zhèn)建設(shè)司農(nóng)村生活垃圾處理技術(shù)研究與培訓(xùn)中心,上海 200092)
研究蔬菜類廢物兩相厭氧消化過(guò)程中水解酸化液物化性質(zhì)隨水解時(shí)間的變化情況,結(jié)合總有機(jī)碳(TOC)、溶解性有機(jī)碳(DOC)、顆粒粒徑和溶解性有機(jī)物(DOM)分子量的分析,探討了蔬菜類廢物水解酸化過(guò)程中TOC溶出和顆粒降解之間的關(guān)系,分析了水解酸化相顆粒物降解規(guī)律.實(shí)驗(yàn)結(jié)果表明,蔬菜類廢物水解過(guò)程可以分成兩個(gè)階段:易水解的顆粒物在前5d迅速水解,TOC濃度迅速升高,在第5d達(dá)到最大值4920mg/L,水解產(chǎn)生顆粒態(tài)物質(zhì)的二次平均直徑從第1d的58.38μm降至第5d的4.64μm,有機(jī)物快速溶出,DOC/TOC比值在第4d達(dá)到最大值85%,該水解過(guò)程可用Contois模型模擬;第5d后,難水解顆粒物質(zhì)的緩慢水解起主導(dǎo)作用,顆粒態(tài)物質(zhì)的二次平均直徑從4.64μm開(kāi)始逐漸增大,并穩(wěn)定在8.97~10.68μm范圍內(nèi),TOC和DOC溶出率逐漸降低,且DOC溶出率小于TOC溶出率.大分子溶解性有機(jī)物的降解也主要集中在水解過(guò)程的前 5d,水解第 1d產(chǎn)生的大分子 DOM(1.6×109~1.9×109Da)到第 5d已經(jīng)全部降解成分子量在 5×104~4×106Da的DOM;第5d過(guò)后,DOM的分子量分布情況并未發(fā)生較大變化.表明蔬菜類廢物兩相厭氧消化工藝過(guò)程中水解時(shí)間可縮短為5d.
蔬菜廢物;兩相厭氧消化;分子量;顆粒態(tài)物料;水解
隨著農(nóng)村的產(chǎn)業(yè)結(jié)構(gòu)調(diào)整,蔬菜作物種植在農(nóng)業(yè)中所占比例越來(lái)越大,種植方式開(kāi)始向大規(guī)模集中種植轉(zhuǎn)變,相應(yīng)的蔬菜種植區(qū)會(huì)產(chǎn)生大量的蔬菜類廢物[1],此外,集貿(mào)市場(chǎng)也是主要的蔬菜類廢物產(chǎn)生源.目前國(guó)內(nèi)外處理蔬菜類廢物的方式有青貯法貯存作為動(dòng)物飼料[2]以及好氧堆肥法、厭氧消化法、好氧-厭氧聯(lián)合處理法[3].厭氧消化處理蔬菜類廢物,可實(shí)現(xiàn)廢物的減量化和資源化,近年來(lái)得到了廣泛的研究[4-5].Bouallagui[6]研究了兩相厭氧消化處理果蔬類廢物并獲得較好的處理效果.兩相厭氧消化工藝是將厭氧消化步驟中的水解酸化過(guò)程(水解酸化相)和乙酸化甲烷化過(guò)程(產(chǎn)甲烷相)分離成兩個(gè)獨(dú)立的處理單元,分別單獨(dú)調(diào)控,為水解酸化微生物和產(chǎn)甲烷微生物提供各自適宜的生存環(huán)境,從而達(dá)到改善厭氧消化效果的目的[7-9].水解酸化相蔬菜類廢物以顆粒態(tài)固體或半固體的形態(tài)存在,其生物化學(xué)組成主要是多糖、半纖維素、纖維素、蛋白質(zhì)和木質(zhì)素等聚合物[10-11],需要水解成單體有機(jī)物、從固相轉(zhuǎn)移至液相后,才能被微生物細(xì)胞吸收利用.因此,水解作為蔬菜類廢物厭氧消化過(guò)程的第一步驟,水解效率和水解產(chǎn)物的性質(zhì)會(huì)直接影響到后續(xù)酸化、乙酸化和甲烷化等厭氧消化步驟的效率[12-13],是蔬菜類廢物等顆粒態(tài)物料厭氧降解的控制步驟[14-16].Dimock等[17]認(rèn)為顆粒物的水解過(guò)程與顆粒表面緊密相關(guān),顆粒物縮減水解模式下顆粒表面積逐漸下降,而顆粒物破碎水解模式下大顆粒被水解成多個(gè)小顆粒,顆??傮w表面積則是先增加后下降.而 Batstone[18]認(rèn)為顆粒有機(jī)物水解過(guò)程可以分為瓦解、溶解和酶解3個(gè)階段.不同的顆粒有機(jī)物組成成分和顆粒水解模式會(huì)導(dǎo)致水解動(dòng)力學(xué)的差異[19-21].常見(jiàn)的水解動(dòng)力學(xué)模型包括一級(jí)反應(yīng)動(dòng)力學(xué)模型、兩階段水解模型、Contois模型、PBM 模型等[22-24].但是,目前對(duì)水解階段的研究大多僅基于水解液的pH值、COD、揮發(fā)性脂肪酸(VFA)等總量指標(biāo)來(lái)反映水解過(guò)程[25-27],而很少直接基于顆粒態(tài)物料水解過(guò)程中顆粒的變化規(guī)律.
本文通過(guò)分析水解酸化液中顆粒的粒徑和膠體的分子量分布及變化,研究了蔬菜類廢物兩相厭氧消化過(guò)程中水解酸化相顆粒的降解規(guī)律,以期為兩相厭氧消化工藝調(diào)控條件的選擇和優(yōu)化提供依據(jù).
1.1 實(shí)驗(yàn)材料
從學(xué)校食堂收集的蔬菜類廢物,其組成包括菜葉、菜頭和土豆皮.經(jīng)人工破碎,平均粒徑小于5mm,甲烷相的接種污泥為取自某生活污水處理廠的厭氧消化污泥,其物化組成見(jiàn)表1.
表1 實(shí)驗(yàn)材料的理化性質(zhì)Table 1 Physiochemical characteristics of materials
1.2 實(shí)驗(yàn)方法
兩相厭氧實(shí)驗(yàn)裝置如圖1所示,由水解酸化反應(yīng)器和甲烷化反應(yīng)器兩部分構(gòu)成.水解酸化反應(yīng)器由有機(jī)玻璃制成,體積為 40L,甲烷化反應(yīng)器是體積為18L的上流式厭氧復(fù)合床(UBF)反應(yīng)器,由下部的升流式厭氧污泥床(UASB)和上部的厭氧濾床(AF)兩部分串聯(lián)組成.AF段填充固定了直徑為 4~6mm的陶粒,以提供微生物附著生長(zhǎng)的表面及懸浮生長(zhǎng)的空間.兩相厭氧反應(yīng)器在中溫條件(35℃)運(yùn)行.
采用間歇批次操作方式,初始批次 9kg蔬菜類廢物采用甲烷化出水浸泡(每 500g蔬菜類廢物采用1L出水浸泡)約12d后,將水解酸化液一次性排入儲(chǔ)存罐備用.本課題組之前研究[28-29]發(fā)現(xiàn)甲烷化出水可以為水解酸化提供一定的堿度、微生物和酶.水解酸化液每日定量以3L/d流量用蠕動(dòng)泵輸入到甲烷化反應(yīng)器,甲烷化反應(yīng)器出水也用儲(chǔ)存罐收集,用來(lái)循環(huán)浸泡下一批新鮮的蔬菜類廢物.甲烷化反應(yīng)器每次進(jìn)水完畢后,開(kāi)啟內(nèi)部循環(huán) 1h,使進(jìn)水在反應(yīng)器內(nèi)部均勻.厭氧污泥在啟動(dòng)并穩(wěn)定運(yùn)行產(chǎn)甲烷過(guò)程時(shí),有機(jī)負(fù)荷(OLR)不能過(guò)低,OLR必須達(dá)到 1g TOC/(L·d)以上的水平.不同批次的廢物浸泡 12d后水解酸化液的TOC濃度在4500~6000mg/L的范圍內(nèi),為滿足1g TOC/(L·d)以上的OLR的要求,設(shè)置甲烷化反應(yīng)器的水力停留時(shí)間(HRT)為6d.
圖1 實(shí)驗(yàn)裝置示意Fig.1 Schematic diagram of experimental set-up
1.3 測(cè)試方法
從水解酸化液儲(chǔ)存罐中每日采集蔬菜類廢物在浸泡過(guò)程中產(chǎn)生的水解酸化液,以及甲烷化反應(yīng)器運(yùn)行穩(wěn)定后的甲烷化出水.收集到的液體樣品以12000r/min離心10min后,取上清液測(cè)總有機(jī)碳(TOC);水解酸化液過(guò)0.45μm PVDF膜后,測(cè)試溶解性有機(jī)碳(DOC)濃度和分子量分布,膜上物質(zhì)采用蒸餾水沖洗收集再懸浮后測(cè)試其粒徑分布.TOC和 DOC采用 TOC儀(SHIMADZU TOC-V CPH,日本島津)測(cè)定,分子量分布采用凝膠過(guò)濾色譜(SHIMADZU LC-10ADVP,日本島津)分析,粒徑分布采用激光粒度分析儀(Eyetech-combo,荷蘭安米德公司)分析.實(shí)驗(yàn)物料的TS、VS采用減重法測(cè)定,C、H、N采用元素分析儀(ELEMENTAR Vario EL III,德國(guó)元素分析系統(tǒng)公司)分析.
2.1 水解酸化液TOC和DOC的變化
圖2 水解酸化液TOC和DOC隨時(shí)間變化曲線Fig.2 Temporal evolution of TOC and DOC in hydrolytic acidification effluent
蔬菜類廢物在12d的浸泡過(guò)程中,水解酸化液的TOC和過(guò)0.45μm濾膜后的DOC濃度變化如圖2所示.在浸泡前5d有機(jī)物迅速溶出,TOC值快速升高,至第5d達(dá)到4920mg/L;之后,TOC上升速度趨緩,到第 12d浸泡結(jié)束,TOC濃度為5880mg/L.水解酸化液的DOC在浸泡初期4d內(nèi)也迅速增加,至第4d即達(dá)到3400mg/L;之后增加趨勢(shì)不明顯,至第12d時(shí)達(dá)4170mg/L.DOC/TOC的比值在前4d呈上升趨勢(shì),至第4d達(dá)到最大值85%;之后DOC/TOC值下降,并保持在67%~72%的范圍內(nèi).
2.2 膜上物質(zhì)的粒徑分布
圖3 水解酸化液0.45μm以上顆粒粒徑分布(a)及MDv值隨時(shí)間變化曲線(b)Fig.3 Particle size distribution and temporal evolution of MDv in hydrolysis acidification effluent
分析水解酸化液過(guò)0.45μm膜后的膜上物質(zhì)的粒徑分布,測(cè)試結(jié)果用顆粒體積對(duì)應(yīng)的直徑來(lái)表達(dá),如圖3a所示.可見(jiàn)第1d水解酸化液樣品的顆粒度直徑遠(yuǎn)遠(yuǎn)大于其他樣品,而其余樣品的顆粒度直徑分布非常接近.Day0水解酸化液表示蔬菜類廢物浸泡 1h后水解酸化液,顆粒都集中在30μm以下,而蔬菜類廢物在水解第1d降解產(chǎn)生的顆粒尺度在30μm以上的物質(zhì)占到80%.這些顆粒在第2d即被迅速降解成30μm以下的較小顆粒.以體積表征的二次平均直徑(MDv)來(lái)評(píng)價(jià)樣品的顆粒度大小,MDv指的是以與顆粒體積相同的球體直徑表征顆粒大小.如圖 3b所示:水解酸化液第1d的MDv最大,達(dá)58.38μm,第2d的MDv即降至13.29μm,之后緩慢下降,最低值出現(xiàn)在第5d,僅為4.64μm;第5d后,MDv值又呈上升趨勢(shì),但總體穩(wěn)定在8.97~10.68μm范圍.
2.3 溶解性有機(jī)物(DOM)分子量分布
水解酸化液過(guò)0.45μm膜后的分子量分布如圖4所示.圖中橫坐標(biāo)是分子量取對(duì)數(shù)后的值,橫坐標(biāo)方向數(shù)值越大,代表的分子量也就越大;縱坐標(biāo)是各個(gè)點(diǎn)位的分子量所占的百分比與DOC濃度的乘積,代表不同分子量的溶解性有機(jī)物占總?cè)芙庑杂袡C(jī)物的濃度比例.由圖4可知,蔬菜廢物浸泡1h(Day0)和第1d時(shí)DOM
分子量集中分布在 1.6×109~1.9×109Da和5×104~4×106Da兩個(gè)范圍內(nèi),前者表明水解產(chǎn)生了一些大分子物質(zhì);在后一范圍內(nèi)存在3個(gè)峰,分子量由小到大分別稱為峰a(約4×104Da)、峰b(約7.5×104Da)和峰 c(約 2.5×105Da).至第 3d 1.6× 109~1.9×109Da范圍內(nèi)的大分子物質(zhì)被降解 水解產(chǎn)物的分子量全部分布在 5×104~4×106Da范圍,3個(gè)峰的峰值都變大.從第 4d開(kāi)始,水解產(chǎn)物向5×104~4×106Da范圍的兩側(cè)衍化,出現(xiàn)小于5× 104Da和大于4×106Da的物質(zhì),分子量較小的峰a和峰b的峰值進(jìn)一步變大.可見(jiàn),溶解性水解產(chǎn)物在由大分子物質(zhì)向小分子物質(zhì)降解的同時(shí),也有部分顆粒水解成更大分子量的 DOM,顆粒的水解與水解產(chǎn)物進(jìn)一步降解是同時(shí)進(jìn)行的過(guò)程.從第5d~8d,峰a和峰b的峰值降低,水解產(chǎn)生分子量500Da左右的小分子物質(zhì),但這個(gè)過(guò)程的變化不顯著.到第 12d,水解產(chǎn)物中增加了很多分子量介于4×104Da和7×104Da的物質(zhì),分子量分布的峰值為1×104Da,處于峰a和峰b之間.甲烷化反應(yīng)器出水的分子量分布圖顯示主峰位于 2.3× 105Da的位置,主要分布在5×104~1×106Da范圍.從縱坐標(biāo)可以看出,甲烷化反應(yīng)器出水中各級(jí)分子量的 DOM所占的濃度比例明顯降低,這是由于水解液中大分子的 DOM 被甲烷化反應(yīng)器中的微生物分解造成的.
圖4 水解酸化液溶解性分子量分布曲線Fig.4 Molecular weight distributions of dissolved organic matters in hydrolysis acidification effluent
2.4 討論
TOC和DOC的溶出速率(dTOC/dt,dDOC/dt)如圖5所示.第1d TOC的溶出速率達(dá)1000mg/ (L·d),而第2d僅為100mg/(L·d),前2d的TOC升高應(yīng)歸因于初始物料破碎制備時(shí)發(fā)生的機(jī)械水解,第1d的水解率較高是因?yàn)樵谑卟藦U物切碎過(guò)程中表面已有一部分TOC溶出,而微生物分泌的水解酶催化水解作用從第2d開(kāi)始逐漸啟動(dòng).按水解速率高低,可以將水解過(guò)程分成初期的快速水解(前 5d)和后期的緩慢水解兩個(gè)階段.結(jié)合水解酸化液在浸泡過(guò)程中TOC、DOC的變化和膜上物質(zhì)顆粒度分布的變化看,從第 2~5d,有機(jī)物質(zhì)迅速溶出,DOC、TOC的溶出速率相當(dāng),而且此時(shí)粒徑分布的結(jié)果也顯示,表征顆粒度大小的二次平均直徑(MDv)從58.38μm下降到4.64μm,說(shuō)明水解酸化液中不溶性顆粒態(tài)物質(zhì)顆粒度減小.由此可知,該階段水解酸化液TOC濃度的增加主要源于易水解顆粒物水解過(guò)程不斷產(chǎn)生的溶解性水解產(chǎn)物.第 5d之后,膜上物質(zhì)二次平均直徑(MDv)增大,最終穩(wěn)定在 8.97~10.68μm范圍,且TOC和DOC的溶出速率大大降低,DOC溶出速率小于 TOC.可見(jiàn)第二階段中,難水解顆粒物的緩慢水解開(kāi)始占據(jù)主導(dǎo)作用,水解產(chǎn)物的溶出速率大大降低,DOC溶出速率小于 TOC.可見(jiàn)第二階段中,難水解顆粒物的緩慢水解開(kāi)始占據(jù)主導(dǎo)作用,水解酸化液中不溶性顆粒比例增加,水解酸化液TOC濃度的增加主要來(lái)自這部分不溶性顆粒的貢獻(xiàn).
圖5 TOC和DOC的溶出速率Fig.5 Dissolution rate of TOC and DOC
可用Contois模型來(lái)模擬(式1)[30-31]TOC溶出規(guī)律,Contois模型是基于顆粒有機(jī)物水解過(guò)程3階段中有機(jī)物的溶解為水解限速步驟[32], Vavilin[33-35]認(rèn)為該模型能夠較好地模擬有機(jī)垃圾厭氧水解過(guò)程.
式中:Xs是溶解性有機(jī)物的濃度,mg/L;XH是未水解的顆粒態(tài)有機(jī)物濃度,mg/L;KH為水解常數(shù),d-1;Kx為飽和水解常數(shù),無(wú)量綱.
XH=XT-Xs,其中,XT表示總有機(jī)物濃度,mg/L.
式(1)可以變換為式(2):
即溶解性有機(jī)物降解速率倒數(shù)和總有機(jī)物濃度與溶解性有機(jī)物濃度的比值呈線性關(guān)系.式2擬合了水解過(guò)程前5d的TOC和DOC實(shí)驗(yàn)數(shù)據(jù),具有較好的擬合精度(R2=0.9032),擬合確定KH=1.25×103d-1.而 5d之后的水解過(guò)程無(wú)法用Contois模型模擬得出較好的線性關(guān)系,這是由于5d之后,蔬菜類廢物水解過(guò)程進(jìn)入后期,較難水解顆粒物的水解起主導(dǎo)作用,其水解過(guò)程復(fù)雜且緩慢.單獨(dú)用 Contois模型不能較好模擬蔬菜類廢物后期水解過(guò)程,有待進(jìn)一步的探索.
從TOC的變化和DOM的分子量分布可知,水解酸化液TOC的溶出效率在浸泡的前5d最高.浸泡第5d的TOC值為浸泡第12d的84%,第5d時(shí)蔬菜類廢物的TS降解率達(dá)65%,而浸泡12d后,TS降解率也僅為78%.水解第1d產(chǎn)生的分子量在 1.6×109~1.9×109Da范圍的溶解性大分子有機(jī)物,到第 5d已經(jīng)全部降解成分子量在5×104~4×106Da范圍的DOM;第5d過(guò)后,處在該范圍的 DOM中極少一部分開(kāi)始緩慢的向兩側(cè)衍化,分子量分布情況并未發(fā)生較大變化.由此可見(jiàn), DOM分子量分布結(jié)構(gòu)變化也主要集中在水解過(guò)程的前 5d.因此,針對(duì)蔬菜類廢物厭氧水解過(guò)程的特點(diǎn),可以考慮縮短蔬菜類廢物水解浸泡時(shí)間到 5d,以提高蔬菜類廢物中有機(jī)質(zhì)的溶出速率.
3.1 蔬菜類廢物兩相厭氧消化工藝的水解過(guò)程,按照水解產(chǎn)物形態(tài)的不同可分成兩階段.水解反應(yīng)初期(前5d),易水解顆粒物快速水解,水解產(chǎn)物迅速溶出,且以溶解態(tài)物質(zhì)為主;水解反應(yīng)后期(5d以后),難水解顆粒物緩慢水解起主導(dǎo)作用,水解速率降低,且水解產(chǎn)物中不溶性顆粒比例增加.
3.2 蔬菜類廢物水解反應(yīng)初期(前5d),顆粒態(tài)物質(zhì)的二次平均直徑從 58.38μm 迅速減小到4.64μm,水解酸化液中DOC/TOC比值呈增加趨勢(shì),第4d達(dá)到最大值85%;水解反應(yīng)后期,顆粒態(tài)物質(zhì)二次平均直徑開(kāi)始有增長(zhǎng)趨勢(shì),最后穩(wěn)定在8.97~10.68μm范圍.水解液中DOC/TOC比值開(kāi)始下降,最后穩(wěn)定在 67%~72%范圍.水解反應(yīng)初期水解過(guò)程可用 Contois模型模擬,證實(shí)蔬菜類廢物水解反應(yīng)初期水解過(guò)程 3階段中有機(jī)物的溶解是水解過(guò)程的限速步驟.
3.3 水解進(jìn)行到第5d,產(chǎn)生的TOC濃度占整個(gè)水解的 84%.水解產(chǎn)物中大分子溶解性有機(jī)物(1.6×109~1.9×109Da)的降解主要集中在水解反應(yīng)初期(前 5d),至第 5d已全部降解成分子量在5×104~4×106Da范圍的DOM.表明蔬菜類廢物的水解反應(yīng)時(shí)間可縮短至5d,以減小水解反應(yīng)器容積,同時(shí)提高向甲烷化反應(yīng)器提供溶解性有機(jī)物的效率.
[1] 黃鼎曦,陸文靜,王洪濤.農(nóng)業(yè)蔬菜廢物處理方法研究進(jìn)展和探討 [J]. 環(huán)境污染治理技術(shù)與設(shè)備, 2002,3(11):38-42.
[2] Marquez M A, Dianez F, Camacho F. The use of vegetable subproducts from greenhouses (VSG) for animal feed in the Poniente region of Almeria [J]. Renewable Agriculture and Food Systems, 2010,26(1);4–12.
[3] Mata-Alvarez J, Mace S, Llabres P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives [J]. Bioresource Technology, 2000,74(1):3-16.
[4] Frenkel V S, Cummings G, Tang W Z, et al. Food-processing wastes [J]. Water Environ. Res., 2012,84(10):1485-1501.
[5] Gunaseelan V N. Anaerobic digestion of biomass for methane production: A review [J]. Biomass and Bioenergy, 1997,13(1/2): 83-114.
[6] Bouallagui H, Torrijos A, Godon J J, et al. Two-phases anaerobic digestion of fruit and vegetable wastes: bioreactors performance [J]. Biochemical Engineering Journal, 2004,21(2):193-197.
[7] Pavan P, Battistoni P, Cecchi F, et al. Two-phase anaerobic digestion of source sorted OFMSW (organic fraction of municipal solid waste): performance and kinetic study [J]. Water Sci. Technol., 2000,41(3):111-118.
[8] Mohan S, Bindhu B K. Effect of phase separation on anaerobic digestion of kitchen waste [J]. Journal of Environmental Engineering and Science, 2008,7(2):91-103.
[9] Demirel B, Yenigun O. Two-phase anaerobic digestion processes: a review [J]. Journal of Chemical Technology and Biotechnology, 2002,77(7):743-755.
[10] Jiang Y, Heaven S, Banks C J. Strategies for stable anaerobic digestion of vegetable waste [J]. Renew Energy, 2012,44:206-214.
[11] Raynal J, Delgenes J P, Moletta R. Two-phase anaerobic digestion of solid wastes by a multiple liquefaction reactors process [J]. Bioresource Technology, 1998,65(1/2):97-103.
[12] Khalid A, Arshad M, Anjum M, et al. The anaerobic digestion of solid organic waste [J]. Waste Manage, 2011,31(8):1737-1744.
[13] Lata K, Rajeshwari K V, Pant D C, et al. Volatile fatty acid production during anaerobic mesophilic digestion of tea and vegetable market wastes [J]. World J. Microbiol. Biotechnol., 2002, 18(6):589-592.
[14] Zhu M, Lü F, Hao L P, et al. Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation [J]. Waste Manage, 2009,29(7):2042-2050.
[15] Palmowski L M, Muller J A. Influence of the size reduction of organic waste on their anaerobic digestion [J]. Water Sci. Technol., 2000,41(3):155-162.
[16] Palmowski L M, Muller J A. Anaerobic degradation of organic materials - significance of the substrate surface area [J]. Water Sci. Technol., 2003,47(12):231-238.
[17] Dimock R, Morgenroth E. The influence of particle size on microbial hydrolysis of protein particles in activated sludge [J]. Water Research, 2006,40(10):2064-2074.
[18] Batstone D J, Keller J, Steyer J P. A review of ADM1extensions, applications, and analysis: 2002-2005 [J]. Water Sci. Technol., 2006,54(4):1-10.
[19] Martin A, Borja R, Banks C J. Kinetic-model for substrate utilization and methane production during the anaerobic-digestion of olive mill waste-water and condensation water waste [J]. Journal of Chemical Technology and Biotechnology, 1994,60(1):7-16.
[20] Sanders W T M, Geerink M, Zeeman G, et al. Anaerobic hydrolysis kinetics of particulate substrates [J]. Water Sci. Technol., 2000,41(3):17-24.
[21] Wen Z Y, Liao W, Chen S L. Hydrolysis of animal manure lignocellulosics for reducing sugar production [J]. Bioresource Technology, 2004,91(1):31-39.
[22] Vavilin V A, Fernandez B, Palatsi J, et al. Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview [J]. Waste Manage, 2008,28(6):939-951.
[23] Vavilin V A, Lokshina L Y, Flotats X, et al. Anaerobic digestion of solid material: Multidimensional modeling of continuous-flow reactor with non-uniform influent concentration distributions [J]. Biotechnology and Bioengineering, 2007,97(2):354-366.
[24] Jeyaseelan S. A simple mathematical model for anaerobic digestion process [J]. Water Sci Technol, 1997,35(8):185-191.
[25] Mata-alvarez J, Mace S, Llabres P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives [J]. Bioresource Technology, 2000,74(1):3-16.
[26] 何品晶,潘修疆,呂 凡,等.pH值對(duì)有機(jī)垃圾厭氧水解和酸化效率的影響 [J]. 中國(guó)環(huán)境科學(xué), 2006,26(1):57-61.
[27] Okutman D, Ovez S, Orhon D. Hydrolysis of settleable substrate in domestic sewage [J]. Biotechnology Letters, 2001,23(23): 1907-1914.
[28] Zhu M, Lü F, Hao L P, He P J, et al. Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation [J]. Waste Management, 2009,29(7):2042–2050.
[29] Lü F, He P J, Hao L P, et al. Impact of recycled effluent on the hydrolysis during anaerobic digestion of vegetable and flower waste [J]. Water Science and Technology, 2008,58(8):1637-1643.
[30] 劉 曉,王 偉,胡 頌.厭氧消化過(guò)程中顆粒有機(jī)物水解動(dòng)力學(xué)研究進(jìn)展 [J]. 環(huán)境衛(wèi)生工程, 2009,17(6):23-26.
[31] Mairet F, Bernard O, Ras M, et al. Modeling anaerobic digestion of microalgae using ADM1 [J]. Bioresource Technology, 2011, 102(13):6823-6829.
[32] Alqahtani R T, Nelson M I, Worthy A L. A fundamental analysis of continuous flow bioreactor models governed by Contois kinetics. IV. Recycle around the whole reactor cascade [J]. Chemical Engineering Journal, 2013,218:99-107.
[33] Vavilin V A, Rytov S V, Lokshina L Y. A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter [J]. Bioresource Technology, 1996,56(2/3):229-237.
[34] Vavilin V A. Anaerobic degradation of organic waste: An experience in mathematical modeling [J]. Microbiology, 2010, 79(3):334-341.
[35] Valentini A, Garuti G, Rozzi A, et al. Anaerobic degradation kinetics of particulate organic matter: A new approach [J]. Water Sci. Technol., 1997,36(6/7):239-246.
Particle hydrolysis during the two-phase anaerobic digestion of vegetable waste.
Lü Fan1,2, CAI Tao1, ZHU Min1, HE Pin-jing1,2*
(1.Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China;2.Centre for the Technology Research and Training on Household Waste in Small Towns and Rural Area, Ministry of Housing and Urban-Rural Development, Shanghai 200092, China), China Environmental Science, 2014,34(10):2610~2616
During the two-phase anaerobic digestion process of vegetable waste, changes of hydrolytic acidification liquid’s physical-chemical properties were investigated. The relationship among dissolution of total organic carbon (TOC), dissolved organic carbon (DOC) and particulate degradation was discussed. The mechanism of particle hydrolysis acidification was assessed by combining the trend of TOC, DOC, particle size distribution and molecular weight evolution. The experiment results showed that, the hydrolysis process of vegetable waste could be divided into two stages. In the first five days, particulates with high degree of hydrolysis began to hydrolyze quickly. The TOC value rose rapidly, reaching the maximum of 4920mg/L in the fifth day. The quadratic mean diameter of particulates generated from hydrolysis dropped from 58.38 μm in the first day to 4.64 μm in the fifth day. Furthermore, organic matter dissolved rapidly, with a maximum of 85% DOC/TOC ratio. This process could be simulated by Contois hydrolysis model. After the fifth day, the slow hydrolysis of difficult recalcitrantly-hydrolyzed particulate played a dominant role. The quadratic mean diameter of particulates began to increase gradually then stabilized in the range of 8.97~10.68 μm. The dissolution rate of TOC and DOC gradually decreased. DOC dissolution rate was less than the TOC dissolution rate. The distribution diagram of dissolved organic matter (DOM) showed that the degradation of macromolecule DOM mainly concentrated in the first 5days. All of the macromolecule DOM with molecular weight between 1.6×109~1.9×109Da degraded to DOM between 5×104~4×106Da. The distribution of DOM changed a little after the 5th day. It was recommended that hydrolysis time could be shortened to 5 days during a two-phase anaerobic digestion of vegetable waste.
t:vegetable waste;two-phase anaerobic digestion;molecular weight;particulate;degradation
X705
:A
:1000-6923(2014)10-2610-07
呂 凡(1979-),女,福建漳州人,副研究員,博士,主要從事固體廢物處理處置與資源化研究.發(fā)表論文100篇.
2013-12-01
國(guó)家“973”項(xiàng)目(2012CB719801);國(guó)家自然科學(xué)基金資助項(xiàng)目(21177096;51178327)
* 責(zé)任作者, 教授, solidwaste@# edu.cn