摘要:為了對RL型截面冷彎薄壁型鋼的畸變屈曲作進(jìn)一步研究,以既有研究成果為基礎(chǔ),根據(jù)廣義梁理論推導(dǎo)了兩端簡支和固支邊界條件下RL型截面冷彎薄壁型鋼的畸變屈曲荷載計算式。通過求解矩陣的廣義特征值,利用推導(dǎo)的算式計算RL型截面型鋼構(gòu)件在軸壓、繞弱軸和強(qiáng)軸彎曲下的畸變屈曲荷載和屈曲半波長,并與有限條軟件CUFSM分析結(jié)果和既有理論公式的解相比,結(jié)果表明所得算式具有較高的精度。公式推導(dǎo)過程和結(jié)論可以為工程設(shè)計和進(jìn)一步研究中計算畸變屈曲荷載提供參考。
關(guān)鍵詞:冷彎薄壁型鋼;RL型截面;廣義梁理論;荷載
中圖分類號:TU318
文獻(xiàn)標(biāo)志碼:A
文章編號:16744764(2014)02000608
Abstract:According to the generalised beam theory based on the exist studies, the aim of this paper is to derive the distortional buckling formulae of pined or fixed coldformed thinwalled rack members upright with rear flanges and additional lip stiffeners. The formulae is adopted to calculate the distortional buckling load and the buckling halfwave length of the member subjected to axial compression or minor and major axis bending. Meanwhile, the results are compared to those of finite strip program CUFSM and other analytical formulae. The derived formulae is proved to be accurate enough. As a result, it may be directly used in practical design as well as further study.
Key words:coldformed thinwalled section; rack section upright with rear flange and additional lip stiffener; generalised beam theory; loads
畸變屈曲作為控制冷彎薄壁型鋼設(shè)計的一種重要屈曲模式,得到了研究人員的高度關(guān)注和廣泛研究。迄今為止,研究最多的發(fā)生畸變屈曲的典型截面有以下3種:普通卷邊槽型或卷邊Z型(以下簡稱C或Z型)、帶后翼緣的槽型(以下簡稱RA型[1])和帶后翼緣與后卷邊的槽型(以下簡稱RL型[1])。對于筆者研究的RL型截面(見圖1),文獻(xiàn)[2]基于穩(wěn)定理論,給出了軸心壓力作用下兩端簡支構(gòu)件的畸變屈曲荷載計算式;文獻(xiàn)[3]采用與文獻(xiàn)[2]相同的模型,對腹板提供給翼緣的轉(zhuǎn)動約束剛度進(jìn)行深入的研究,給出了兩端簡支的RL型截面構(gòu)件在軸心壓力和繞弱軸彎矩作用下的畸變屈曲荷載簡化計算式。已有的對C或Z型、RA型截面的研究中[411],廣義梁理論(Generalized Beam Theory,以下簡稱GBT)給出的計算結(jié)果??梢宰鳛槠渌芯康木_解,文獻(xiàn)[4]、[1215]給出了C或Z型、RA型截面在多種邊界和荷載情況下的畸變屈曲荷載計算公式,但對于RL型截面目前仍沒有相應(yīng)的計算式。筆者根據(jù)GBT的基本原理,推導(dǎo)了兩端簡支和固支的RL型截面構(gòu)件,在軸心壓力、繞弱軸和強(qiáng)軸彎矩作用下的計算式。需要說明的是,筆者基于GBT給出的RL截面構(gòu)件的計算式與文獻(xiàn)[14]給出的RA型截面計算式一樣,其中包括一個求解10×10階廣義特征值的過程,通常需借助軟件(如Matlab)完成,因此也屬于準(zhǔn)解析的計算式。
3計算式驗證
為了驗證得到的計算式的正確性,把計算式得到的結(jié)果與有限條軟件CUFSM的分析結(jié)果進(jìn)行比較。CUFSM軟件是用于兩端簡支的冷彎薄壁構(gòu)件的計算程序[1718],通過把構(gòu)件長度劃分得足夠精細(xì),可以準(zhǔn)確地分析具有各種形式截面(開口或閉口)構(gòu)件的屈曲行為,所以把其計算結(jié)果作為精確解,與計算式的計算結(jié)果以及文獻(xiàn)[2]和[3]給出算式的計算結(jié)果比較。由于CUFSM無法計算兩端固支的構(gòu)件,以下主要比較兩端簡支構(gòu)件的計算結(jié)果。所有算例的截面如表2所示,截面厚度均為1.0 mm。
4結(jié)論
根據(jù)廣義梁理論的基本原理,推導(dǎo)了帶后翼緣與后卷邊的槽型(RL型)截面冷彎薄壁型鋼構(gòu)件在軸心受壓、繞弱軸彎曲或強(qiáng)軸彎曲時發(fā)生彈性畸變屈曲的臨界荷載計算式。算式包括了兩端簡支和固支2種邊界條件。通過與有限條結(jié)果以及既有理論公式的計算結(jié)果比較分析,表明筆者推導(dǎo)提出的計算式具有較高的精度,且算式形式較為簡單。
參考文獻(xiàn):
[1]Kesti J, Davies J M. Local and distortional buckling of thinwalled short columns [J]. ThinWall Structures, 1999, 34: 115134.
[2]Lau S C W, Hancock G J. Distortional buckling formulae for channel columns [J]. Journal of Structural Engineering, ASCE, 1987, 113(5): 10631078.
[3]姚諫, 滕錦光. 冷彎薄壁卷邊槽鋼的彈性畸變屈曲荷載簡化計算公式[J]. 浙江大學(xué)學(xué)報:工學(xué)版,2008, 42(9): 14941501.
[4]Camotim D, Silvestre N, Goncalves R, et al. GBTbased structural analysis of thinwalled members: overview, recent progress and future developments [J]. Advances in Engineering Structures Mechanics Construction, 2006: 187204.
[5]程婕, 姚諫. 彎曲應(yīng)力作用下的腹板轉(zhuǎn)動約束剛度研究[J]. 工程力學(xué), 2010, 27(11): 9498, 105.
[6]姚諫, 程婕, 邢麗. 冷彎薄壁卷邊槽鋼梁的彈性畸變屈曲荷載簡化計算公式[J]. 工程力學(xué), 2011, 28(10): 2126.
[7]姚諫, 程婕, 盧哲剛. 冷彎薄壁卷邊形鋼梁的彈性畸變屈曲荷載[J]. 工程力學(xué),2013, 30(1): 8186.
[8]羅洪光. 冷彎薄壁斜卷邊槽鋼彈性畸變屈曲計算研究[D]. 武漢:武漢大學(xué),2011.
[9]Natario P, Silvestre N, Camotim D. Localized web buckling analysis of beams subjected to concentrated loads using GBT [J]. ThinWall Structures, 2012,61:2741.
[10]Silvestre N, Camotim D, Dinis P B. Postbuckling behavior and direct strength design of lipped channel columns experiencing local/distortional interaction [J]. Journal of Constructional Steel Research, 2012, 73: 1230.
[11]Andreassen M J, Jonsson J. Distortional buckling modes of semidiscretized thinwalled columns [J]. ThinWalled Structures, 2012, 51: 5363.
[12]Silvestre N, Camotim D. Distortional buckling formulae for coldformed steel C and Zsection members Part Iderivation [J]. ThinWalled Structures, 2004, 42:15671597.
[13]Silvestre N, Camotim D. Distortional buckling formulae for coldformed steel Cand Zsection members Part IIValidation and application [J]. ThinWall Structures, 2004, 42:15991629.
[14]Silvestre N, Nagahama K, Camotim D, et al. GBTbased distortional buckling formulae for thinwalled racksection columns and beams [J]. Advances in Steel Structures, 2002, 1:341350.
[15]Silvestre N, Camotim D. Distortional buckling formulae for coldformed steel racksection members [J]. Steel and Composite Structures, 2004, 4(1): 4975.
[16]Schardt R. Verallgemeinerte technische biegetheorie [M]. Berlin: Springer Verlag, 1989.
[17]Adany S, Schafer B W. Buckling mode decomposition of singlebranched open crosssection members via finite strip method: Derivation [J]. ThinWalled Structures, 2006, 44: 563584.
[18]Adany S, Schafer B W. Buckling mode decomposition of singlebranched open crosssection members via finite strip method: Application and examples [J]. ThinWalled Structures, 2006, 44: 585600.
[19]程捷.冷彎薄壁卷邊截面受彎構(gòu)件的畸變屈曲[D].杭州:浙江大學(xué),2010.