李海斌
(西安石油大學(xué) 機(jī)械工程學(xué)院,陜西 西安 710065)
柴油機(jī)缸蓋振動(dòng)信號(hào)中包含著豐富的工作狀態(tài)信息,在對(duì)其現(xiàn)代診斷技術(shù)中,基于振動(dòng)信號(hào)分析的診斷方法顯示出了其優(yōu)越性,利用缸蓋振動(dòng)信號(hào)診斷柴油機(jī)故障是一種有效方法。故障特征的提取和故障類型的識(shí)別是利用振動(dòng)信號(hào)分析法在對(duì)柴油機(jī)進(jìn)行故障診斷過程中兩個(gè)最為重要的過程。根據(jù)提取的故障特征識(shí)別柴油機(jī)的故障類型是一個(gè)典型的模式識(shí)別問題,對(duì)柴油機(jī)故障類型識(shí)別采用恰當(dāng)?shù)哪J阶R(shí)別方法就尤為重要。神經(jīng)網(wǎng)絡(luò)作為一種自適應(yīng)的模式識(shí)別技術(shù),其通過自身的學(xué)習(xí)機(jī)制自動(dòng)形成所要求的決策區(qū)域,而不需要預(yù)先給出有關(guān)模式的經(jīng)驗(yàn)知識(shí)和判斷函數(shù);它可以充分利用狀態(tài)信息,對(duì)來自于不同狀態(tài)的信息逐一進(jìn)行訓(xùn)練而獲得某種映射關(guān)系。鑒于其自身特性,在故障模式識(shí)別領(lǐng)域中有著越來越廣泛的應(yīng)用。而據(jù)統(tǒng)計(jì),有80%~90%的神經(jīng)網(wǎng)絡(luò)模型都是采用了BP網(wǎng)絡(luò)或者是它的變形。BP網(wǎng)絡(luò)是前向網(wǎng)絡(luò)的核心部分,是神經(jīng)網(wǎng)絡(luò)中最精華、最完美的部分。但是它也存在一些缺陷,例如學(xué)習(xí)收斂速度、不能保證收斂到全局最小點(diǎn)、網(wǎng)絡(luò)結(jié)構(gòu)不易確定。遺傳算法是一種基于生物自然選擇與遺傳機(jī)理的隨機(jī)搜索算法。其基本操作是選擇、交叉和變異,核心內(nèi)容是參數(shù)編碼、初始群體的設(shè)定、適應(yīng)度函數(shù)的設(shè)計(jì)、遺傳操作設(shè)計(jì)和控制參數(shù)的設(shè)定。遺傳算法通過種群隨機(jī)搜索,對(duì)數(shù)據(jù)進(jìn)行并行處理,將結(jié)果收斂到全局最優(yōu)解。因此,將遺傳算法與BP神經(jīng)網(wǎng)絡(luò)結(jié)合應(yīng)用于柴油機(jī)故障診斷中,可以提高網(wǎng)絡(luò)的性能,避免網(wǎng)絡(luò)陷入局部極小解,進(jìn)而實(shí)現(xiàn)對(duì)設(shè)備故障的識(shí)別。
BP神經(jīng)網(wǎng)絡(luò)是一種多層前饋型神經(jīng)網(wǎng)絡(luò),其神經(jīng)元的傳遞是S型函數(shù),輸出量為0至1之間的連續(xù)量,它可以實(shí)現(xiàn)從輸入到輸出的任意非線性映射。由于權(quán)值的調(diào)整采用反向傳播學(xué)習(xí)算法,因此也稱為其為BP網(wǎng)絡(luò)。
圖1 BP神經(jīng)元模型
上圖給出一個(gè)基本的BP神經(jīng)元模型,它具有R個(gè)輸入,每個(gè)輸入都通過一個(gè)適當(dāng)?shù)臋?quán)值和ω下一層相連,網(wǎng)絡(luò)輸入可表示為:
a=f(wp+b)
f就是表示輸入/輸出關(guān)系的傳遞函數(shù)。
BP神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與所有影響齒輪故障的特征因素有關(guān)。柴油機(jī)運(yùn)動(dòng)部件多而復(fù)雜,激勵(lì)源眾多且其頻率范圍寬廣,加之噪聲的融入,使得柴油機(jī)表面振動(dòng)信號(hào)極為復(fù)雜。基于這種特點(diǎn),可以確定用于柴油機(jī)故障診斷的BP神經(jīng)網(wǎng)絡(luò)的輸入層、輸出層隱含層以及節(jié)點(diǎn)數(shù)等。由小波包提取各柴油機(jī)故障的特征值作為輸入節(jié)點(diǎn),輸出節(jié)點(diǎn)數(shù)目與柴油機(jī)故障類別的數(shù)目有關(guān)。
BP神經(jīng)網(wǎng)絡(luò)又稱為反向傳播算法,其算法數(shù)學(xué)意義明確、步驟分明,是神經(jīng)網(wǎng)絡(luò)中最為常用、最有效、最活躍的一種網(wǎng)絡(luò)模型。常用方法梯度下降法和動(dòng)量法,但是梯度下降法訓(xùn)練速度較慢,效率比較低,訓(xùn)練易陷入癱瘓,而且其實(shí)質(zhì)是單點(diǎn)搜索算法,不具有全局搜索能力;動(dòng)量法因?yàn)閷W(xué)習(xí)率的提高通常比單純的梯度下降法要快一些,但在實(shí)際應(yīng)用中速度還是不夠;BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)訓(xùn)練開始時(shí)網(wǎng)絡(luò)的結(jié)構(gòu)參數(shù)是隨機(jī)給定的,因此結(jié)果存在一定的隨機(jī)性。
遺傳算法(Genetic Algorithm,GA)是模擬達(dá)爾文的遺傳選擇和自然淘汰的生物進(jìn)化過程的計(jì)算模型,它是由美國(guó)密歇根大學(xué)的J.Holland教授于1975年首先提出來的,遺傳算法具有很強(qiáng)的宏觀搜索能力和良好的全局優(yōu)化性能,因此將遺傳算法與BP神經(jīng)網(wǎng)絡(luò)結(jié)合,訓(xùn)練時(shí)先用遺傳算法對(duì)神經(jīng)網(wǎng)絡(luò)的權(quán)值進(jìn)行尋找,將搜索范圍縮小后,再利用BP網(wǎng)絡(luò)來進(jìn)行精確求解,可以達(dá)到全局尋找和快速高效的目的,并且可以避免局部極小點(diǎn)問題。該算法不僅具有全局搜索能力,而且提高了局部搜索能力,從而增強(qiáng)了在搜索過程中自動(dòng)獲取和積累搜索空間知識(shí)及自應(yīng)用地控制搜索的能力,從而使結(jié)果的性質(zhì)得以極大的改善。
遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)主要分為:BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)確定、遺傳算法優(yōu)化權(quán)值和閥值、BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練及預(yù)測(cè)。其中,BP神經(jīng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)是根據(jù)樣本的輸入/輸出個(gè)數(shù)確定的,這樣就可以確定遺傳算法優(yōu)化參數(shù)的個(gè)數(shù),從而確定種群個(gè)體的編碼長(zhǎng)度。因?yàn)檫z傳算法優(yōu)化參數(shù)是BP神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閥值,只要網(wǎng)絡(luò)結(jié)構(gòu)已知,權(quán)值和閥值的個(gè)數(shù)就已知了。神經(jīng)網(wǎng)絡(luò)的權(quán)值和閥值一般是通過隨機(jī)初始化為[-0.5,0.5]區(qū)間的隨機(jī)數(shù),這個(gè)初始化參數(shù)對(duì)網(wǎng)絡(luò)訓(xùn)練的影響很大,但是又無法準(zhǔn)確獲得,對(duì)于相同的初始權(quán)重值和閥值,網(wǎng)絡(luò)的訓(xùn)練結(jié)果是一樣的,引入遺傳算法就是為了優(yōu)化出最佳的初始權(quán)值和閥值。
通過基于遺傳算法的BP神經(jīng)網(wǎng)絡(luò)建立小波包特征量與故障之間的對(duì)應(yīng)關(guān)系。表1為柴油機(jī)常見故障在不同頻段的能量分布,構(gòu)成了人工神經(jīng)網(wǎng)絡(luò)的訓(xùn)練樣本。表2為網(wǎng)絡(luò)輸出樣本,“0”代表沒有故障,“1”代表發(fā)生故障。利用表1中的訓(xùn)練樣本對(duì)基于遺傳算法的BP神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,經(jīng)1000次訓(xùn)練達(dá)到了理想訓(xùn)練效果。
表1 訓(xùn)練樣本
表2 網(wǎng)絡(luò)理想輸出
表3 待診斷的故障樣本
表4 診斷結(jié)果
將表3中的待診斷的故障樣本輸入到已經(jīng)訓(xùn)練好的BP神經(jīng)網(wǎng)絡(luò),得到診斷結(jié)果如表4所示。第1組待診斷的信號(hào)第1個(gè)輸出節(jié)點(diǎn)接近1,可以根據(jù)訓(xùn)練樣本結(jié)果判斷該組數(shù)據(jù)故障為供油提前角晚;第2組待診斷的信號(hào)第4個(gè)輸出節(jié)點(diǎn)接近1,根據(jù)訓(xùn)練樣本結(jié)果可以判斷該組數(shù)據(jù)故障類型為供油提前角早;第3組待診斷的信號(hào)第7個(gè)數(shù)據(jù)節(jié)點(diǎn)接近1,可以判斷故障類型為針閥卡死,其診斷結(jié)果和現(xiàn)場(chǎng)勘查結(jié)果一致。
遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的目的是通過遺傳算法得到更好的網(wǎng)絡(luò)初始值和閥值。通過以上研究可以看出,遺傳算法和BP算法有機(jī)的融合,可以有效地彌補(bǔ)BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)、權(quán)值和閥值選擇上的隨機(jī)性缺陷,充分利用了遺傳算法的全局搜索能力和BP神經(jīng)網(wǎng)絡(luò)的局部搜索能力,克服了傳統(tǒng)的BP神經(jīng)網(wǎng)絡(luò)柴油機(jī)故障診斷的缺點(diǎn),提高了柴油機(jī)故障診斷的精度。
[1]史峰,王輝.智能算法 30個(gè)案例分析[M].北京:北京航空航天大學(xué)出版社,2011.
[2]張德豐.MATLAB神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)[M].北京:機(jī)械工業(yè)出版社,2008.