亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        柴達木地塊北緣牛鼻子梁鎂鐵質-超鎂鐵質巖體巖石成因與成礦條件*

        2014-04-10 01:23:02凌錦蘭趙彥鋒康珍姜常義宋忠寶趙雙喜王永剛
        巖石學報 2014年6期

        凌錦蘭 趙彥鋒 康珍 姜常義 宋忠寶 趙雙喜 王永剛

        1. 長安大學地球科學與資源學院,西安 7100542. 西部礦產資源與地質工程教育部重點實驗室,西安 7100543. 西安地質礦產研究所,西安 7100544. 青海省核工業(yè)地質局,西寧 8100081.

        牛鼻子梁巖體位于柴達木地塊西北緣。巖體出露面積約8km2,平面形態(tài)呈長條狀,長軸方向近東西向。鋯石LA-ICP-MS U-Pb年齡為367.0±2.0Ma。巖體中堆晶結構、堆晶韻律和旋回發(fā)育,屬典型的層狀巖體。巖漿分異充分,巖石類型豐富。主要巖石類型有斜長二輝橄欖巖、斜長單輝橄欖巖、角閃二輝橄欖巖、角閃橄欖巖、角閃橄欖二輝巖、角閃二輝巖、橄欖二輝角閃石巖、角閃橄欖輝長巖、細粒輝長巖、似斑狀輝長巖、暗色輝長巖、輝長巖、淡色輝長巖、石英閃長巖、英云閃長巖。巖漿源區(qū)為高鎂拉斑玄武質巖漿(MgO=10.8%),主體巖漿結晶溫度為1100~1178℃。巖漿演化過程中主要發(fā)生了橄欖石的分離結晶作用,此外還有少量斜長石的分離結晶/堆晶作用。野外地質觀察、巖石薄片觀察及巖石地球化學特征表明巖體與圍巖之間發(fā)生了較強的同化混染作用,并且同化混染強度伴隨著巖漿演化過程而逐漸增大。大量的同化混染導致巖石化學系列從拉斑玄武質系列轉化為鈣堿性系列。巖漿源區(qū)屬虧損型地幔源區(qū)。巖體形成的構造環(huán)境為大陸邊緣裂解環(huán)境。從構造環(huán)境、原生巖漿、巖體類型、巖漿分異程度、巖漿含水量、同化混染和橄欖石鎳含量七個方面來看牛鼻子梁巖體形成鎳銅硫化物礦床的潛力很大。

        層狀巖體;巖石成因;成礦條件;牛鼻子梁巖體;柴北緣

        柴北緣屬于青藏高原東北緣,區(qū)內出露地層齊全,巖漿活動頻繁,礦床資源豐富,是地學研究的熱點地區(qū)之一(Xiaoetal., 2004; Songetal., 2005; 賴少聰等, 1996; 于勝堯等, 2009; 宋術光等, 2011; 張貴賓和張立飛, 2011)。但前人研究內容多圍繞蛇綠巖、榴輝巖、環(huán)斑花崗巖和金伯利巖,而對幔源巖漿形成的鎂鐵質-超鎂鐵質侵入巖則鮮見報導。牛鼻子梁巖體既是由青海省核工業(yè)地質局在柴達木地塊周緣發(fā)現的第一個賦含鎳銅硫化物的巖體,也是由本文作者在同一區(qū)域首次確認的鎂鐵質-超鎂鐵質層狀雜巖體。本文擬通過詳細的野外地質觀察、巖相學及全面的巖石地球化學研究,探討牛鼻子梁巖體的巖石成因并約束其成礦條件及過程。

        1 區(qū)域地質背景

        青海省茫崖牛鼻子梁巖體位于柴達木地塊西北緣,北距阿爾金南緣斷裂的直線距離約30km(青海省地質礦產局,1991)。巖體產出地區(qū)屬鄂博梁古元古宙古陸。構造位置處于柴北緣巖漿巖帶中的阿爾金亞帶。區(qū)內出露的地層主要是古元古代金水口巖群和第四系。金水口巖群廣泛分布于柴北緣和柴南緣,主要巖石類型包括條帶狀和眼球狀混合巖、黑云母變粒巖、各種片麻巖、斜長角閃巖、鎂質大理巖、二輝麻粒巖等,普遍經歷了角閃巖相-麻粒巖相的區(qū)域變質作用。受阿爾金和柴北緣陸緣活動帶的影響,該區(qū)自元古代以來歷經多次構造-巖漿活動,遭受了多次強烈改造,構造形跡復雜,斷裂以北東東向、近東西向和北西向為主。

        2 巖體地質特征

        牛鼻子梁巖體的出露面積約8km2,巖體平面形態(tài)呈長條狀,長軸方向近東西向,與區(qū)域構造線方向一致(圖1)。根據巖性的不同和斷裂對巖體的切割情況,我們將巖體分成Ⅰ、Ⅱ、Ⅲ三個區(qū)塊。巖體的直接圍巖為古元古代金水口巖群片麻巖和大理巖。二者為侵入接觸關系,在巖體中多處發(fā)現有圍巖捕虜體及殘留頂蓋。圍巖捕虜體多為透鏡狀,長軸方向可達50~100cm;此外,在薄片中經常見到毫米到厘米級的捕虜體,巖性為金水口巖群片麻巖、變粒巖、片巖及大理巖等。后期的石英閃長巖、花崗巖巖枝和巖脈沿北側和南側的局部部位侵入到牛鼻子梁巖體和金水口巖群中。這些中酸性侵入巖和斷裂構造對牛鼻子梁巖體造成了很大的破壞作用。

        牛鼻子梁巖體普遍具有層狀和紋層狀構造(圖2a-c),紋層即為堆晶巖中能識別的最小單元層;層理是以均勻漸變性質為特征的連續(xù)似席狀堆晶巖。根據Wylline(1967)對層理的進一步劃分,我們又可以將牛鼻子梁巖體的層理分為同成分層、漸變層、粒序層、化學層等。與上述層理相對應,牛鼻子梁巖體的層理面可分為相界面、比率界面和結構界面三種。相界面是指以某種堆晶礦物的出現或消失為特點的一種界面(圖2d, e);比率界面是指以兩種堆晶礦物的比率發(fā)生改變?yōu)樘攸c的一種界面(圖2f);結構界面是指以某種堆晶礦物的物理性質(如大小、形態(tài)等)突然變化為特點的一種界面(圖2g)。相界面主要出現在鎂鐵質巖石與超鎂鐵質巖石接觸面上,比率界面和結構界面主要出現在不同的鎂鐵質巖層之間。

        大量的實測地質剖面和鉆孔資料表明,牛鼻子梁巖體具有清晰的垂直分帶(圖3)。在現有鉆孔控制的深度范圍內,可以將該巖體的堆晶層理劃分為下部、中部和上部層序。Ⅰ號區(qū)塊(四號剖面和ZK0401)代表下部層序,常見的堆晶韻律是角閃二輝橄欖巖-角閃橄欖二輝巖-角閃橄欖輝長巖,以橄欖巖相和輝石巖相為主。Ⅱ號區(qū)塊(五號剖面)代表中部層序,常見的堆晶韻律是角閃二輝橄欖巖-角閃橄欖輝長巖-輝長巖-淡色輝長巖,超鎂鐵質巖石與鎂鐵質巖石并存,后者多于前者。Ⅲ號區(qū)塊(六號剖面和ZK100-1)代表上部層序,堆晶韻律表現為橄欖二輝角閃石巖/二輝巖-暗色輝長巖-輝長巖-石英閃長巖/英云閃長巖,以輝長巖為主。從下部層序向上部層序,超鎂鐵質巖石所占比例逐漸減少,而鎂鐵質巖石逐漸增多。而且,在上部層序中不但出現了石英閃長巖和英云閃長巖,還有相當數量的角閃石巖,既證明巖漿經歷了充分的分異演化過程,還證明在巖漿演化的晚期階段巖漿富水。根據下、中、上部堆晶層序的總體特征,我們判斷,它們代表了同一堆晶旋回。

        圖1 牛鼻子梁巖體大地構造位置及地質略圖Fig.1 Tectonic location and sketch geological map of the Niubiziliang intrusion

        圖2 層狀和紋層狀構造及層理面(a)-輝長巖與暗色輝長巖互層;(b)-淡色輝長巖與輝長巖紋層;(c)-橄欖巖中輝石單礦物紋層;(d)-輝長巖與橄欖巖的相界面,以橄欖石的消失為特點;(e)-輝長巖與輝石巖的相界面,以斜長石的出現為特點;(f)-輝長巖與暗色輝長巖的比率界面,以輝石與斜長石的比率發(fā)生改變?yōu)樘攸c;(g)-似斑狀輝長巖與輝長巖的結構界面Fig.2 Layers, laminas and horizons in cumulates(a)-layers of gabbro and melagabbro; (b)-laminas of leucogabbro and gabbro; (c)-laminas of peridotite and pyroxenite; (d)-phase contact of gabbro and peridotite marked by the disappearance of olive; (e)-phase contact of gabbro and pyroxentie marked by the appearance of plagioclase; (f)-ratio contact of gabbro and melagabbro marked by a sharp change in the proportions of pyroxene and plagioclase; (g)-form contact of porphyaceous gabbro and gabbro

        圖3 野外剖面與鉆孔巖芯柱狀圖Fig.3 Columnar section of outcrops and drills

        3 巖相學特征

        本文超鎂鐵質巖石采用IUGS火成巖分類學分委會推薦的分類方案(1991)。由此確定的橄欖巖相巖石類型有:斜長二輝橄欖巖、斜長單輝橄欖巖、角閃二輝橄欖巖、角閃橄欖巖。這些巖石最主要的結構類型是正堆晶結構和包含結構。橄欖石全部為堆晶相;斜長石部分為堆晶相,部分為填隙相;單斜輝石、斜方輝石及褐色角閃石全部為填隙相。最常見的包含結構是包橄結構和含長結構,其次是角閃石包裹輝石。包橄結構主要是橄欖石包裹于單斜輝石、斜方輝石和褐色角閃石中,也有少量包裹于斜長石中;含長結構表現為斜長石包裹于單斜輝石、斜方輝石和褐色角閃石中。橄欖石呈渾圓狀;堆晶相的斜長石呈板條狀,填隙相的斜長石多呈他形;單斜輝石、斜方輝石和褐色角閃石均呈他形,局部結晶粗大,包裹多個細小的橄欖石或斜長石。副礦物有尖晶石和磁鐵礦。

        輝石巖相包括角閃橄欖二輝巖、角閃二輝巖。角閃橄欖二輝巖的結構類型有正堆晶結構和包含結構,橄欖石為堆晶相,單斜輝石、斜方輝石、褐色角閃石和斜長石為填隙相。包含結構主要是包橄結構,其次為褐色角閃石包裹輝石和斜長石。橄欖石呈渾圓狀,輝石半自形短柱狀-他形,褐色角閃石和斜長石呈他形。角閃二輝巖為中粒結構,主要由單斜輝石、斜方輝石、褐色角閃石和石英組成。輝石自形短柱狀,角閃石長柱狀或他形;石英呈他形,局部含量較高,是巖漿晚期熱液交代的產物。

        橄欖二輝角閃石巖的結構類型有正堆晶結構、包含結構、粗粒結構。褐色角閃石含量60%~75%。堆晶相主要為橄欖石,也有少量的斜方輝石;填隙相為斜方輝石、單斜輝石和角閃石。包含結構主要是褐色角閃石包裹橄欖石、斜方輝石。橄欖石呈渾圓狀;褐色角閃石呈他形,粒度粗大,包裹多個橄欖石顆粒;輝石呈半自形短柱狀-他形粒狀。

        在超鎂鐵質巖石中,主要蝕變類型有:橄欖石蛇紋石化、滑石化,并析出塵狀磁鐵礦;斜方輝石蛇紋石化、滑石化;單斜輝石次閃石化、綠泥石化;褐色角閃石陽起石化、黑云母化和綠泥石化;斜長石鈉黝簾石化。

        輝長巖類中除細粒輝長巖和似斑狀輝長巖外,其他均具有正堆晶結構。暗色輝長巖中堆晶相為單斜輝石,斜長石和石英為填隙相;輝長巖中斜長石為堆晶相,單斜輝石、褐色角閃石和石英為填隙相。淡色輝長巖中的堆晶相既可以是單斜輝石也可以是斜長石,填隙相包括斜長石或單斜輝石、褐色角閃石和石英。細粒輝長巖具有輝長結構;似斑狀輝長巖具有斑狀結構,斑晶主要為單斜輝石,也有少量斜長石,基質主要是細粒單斜輝石、斜長石及石英。除角閃橄欖輝長巖外,所有的鎂鐵質巖石中均含有石英。副礦物有鈦鐵礦、磷灰石和磁鐵礦。

        石英閃長巖為半自形粒狀結構,巖石主要由斜長石(70%~83%)、石英(10%~14%)和角閃石(7%~15%)組成。斜長石,半自形,粒徑0.2~4mm,聚片雙晶發(fā)育,可見環(huán)帶,強烈鈉黝簾石化、絹云母化;角閃石,半自形,已完全被陽起石、黑云母和綠泥石交代;石英呈他形填隙狀。

        英云閃長巖中主要為花崗結構及石英和斜長石組成的蠕蟲結構。巖石主要由斜長石 (60%~72%)、石英(25%~30%)及少量的鉀長石(0%~7%)和黑云母(約3%)組成。黑云母,自形,粒徑0.2~1.2mm,部分被綠泥石交代;斜長石,呈自形板狀,粒徑0.2~1.5m,雙晶發(fā)育,絹云母化強;石英呈他形充填狀。

        圖4 牛鼻子梁巖體輝長巖的LA-ICP-MS鋯石206Pb/238U加權平均年齡及206Pb/238U-207Pb/235U諧和年齡圖Fig.4 206Pb/238U weighted average ages and 206Pb/238U-207Pb/235U concordia age of LA-ICP-MS zircon U-Pb dating of gabbro from Niubiziliang intrusion

        4 分析方法

        鋯石LA-ICP-MS U-Pb年齡分析在北京大學造山帶與地殼演化教育部重點實驗室采用Agilent 7500a型四級桿等離子體質譜儀測定。主要造巖礦物化學組成在長安大學西部礦產資源與地質工程教育部重點實驗室采用JXI-8100型電子探針分析,加速電壓15kV,束電流1.0×10-8A,束斑直徑1μm。主量元素分析在西北大學大陸動力學實驗室采用3080E型X-射線熒光光譜儀分析,XRF熔片法按國家標準GB/T 14506.28—1993。微量元素在長安大學西部礦產資源與地質工程教育部重點實驗室采用美國X7型ICP-MS測定。Nd、Sr和Pb同位素比值測試在中國科學院廣州地球化學研究所完成。Nd、Sr同位素分析儀器為Micromass Isoprobe型多接收器等離子體質譜儀。Pb同位素所用儀器為VG354熱電離質譜儀。

        5 分析結果

        5.1 鋯石LA-ICP-MS U-Pb年齡

        本文作者采集了Ⅲ區(qū)輝長巖樣品進行測試。所選鋯石振蕩環(huán)帶發(fā)育,均為巖漿成因鋯石。對該樣品共做15個鋯石分析點,其U含量為51×10-6~259×10-6,Th含量為15×10-6~246×10-6,Th/U比值為0.29~0.95,平均為0.66,為典型巖漿成因鋯石Th/U比(Belousovaetal., 2002)。206Pb/238U加權平均年齡(367.2±2.2Ma)與諧和線年齡(367.0±2.0Ma)一致 (表1、 圖4),代表了牛鼻子梁巖體的侵位結晶年齡,證明該巖體形成于晚泥盆世。

        表1牛鼻子梁輝長巖LA-ICP-MS鋯石U-Pb數據

        Table 1Zircon LA-ICP-MS U-Pb data of gabbro in Niubiziliang

        測點號Th(×10-6)U(×10-6)ThU207Pb206Pb207Pb235U206Pb238U208Pb232Th207Pb206Pb(Ma)±1σ207Pb235U(Ma)±1σ206Pb238U(Ma)±1σ208Pb232Th(Ma)±1σ157.44117.310.490.05460.43750.05810.019539744.43696.23644.23916.9285.21118.510.720.05480.44300.05870.017840245.73726.43684.23565.8366.86105.670.630.05220.42650.05930.0181295115.436115.53716.836315.14142.09192.890.740.05400.43080.05790.017737267.13649.13634.93558.35106.15145.150.730.05350.42610.05780.0182349148.436020.23628.336518.76174.97192.20.910.05150.42490.05990.018226169.73609.23755.03658.07246.61259.350.950.05400.43670.05870.017737280.336811.03685.43568.9856.69101.780.560.05430.43100.05760.0180383132.736418.23617.536018.9915.1551.480.750.04930.40710.06000.0131160433.234760.637621.626388.61030.4669.110.290.05500.44110.05820.0190411115.137116.13656.738019.41151.2488.730.440.05580.44930.05850.016744365.43779.23664.93349.01266.07111.190.580.05390.44020.05920.017636856.03707.73714.63537.713114.43156.320.590.05370.43030.05820.018035742.03635.73654.13605.314162.16218.150.730.05530.45160.05920.017942651.23787.33714.53586.615110.18147.040.740.05560.44270.05780.0189438155.237221.93628.837820.1

        表2各類巖石中橄欖石電子探針數據(wt%)

        Table 2EPMA results (wt%) of olivine from the Niubiziliang intrusion

        樣品號巖性SiO2FeOMnOAl2O3CaOTiO2MgOCr2O3NiONa2OP2O5K2OTotal組成種屬401-G1-1斜長二輝橄欖巖39.3316.960.300.030.010.0643.450.020.140.05--100.34Fo82Fa18401-G1-2斜長二輝橄欖巖39.5616.590.23-0.010.0643.550.040.100.010.030.01100.19Fo82Fa18401G1-4斜長二輝橄欖巖39.2615.090.30---44.810.040.13-0.040.0099.65Fo84Fa16401-G4-1角閃二輝橄欖巖39.3016.430.290.050.03-44.22-0.06---100.38Fo83Fa17401-G4-2角閃二輝橄欖巖39.3616.110.16--0.0243.950.030.140.000.06-99.84Fo83Fa17401-G4-3角閃二輝橄欖巖39.9515.460.310.060.040.0145.20-0.170.030.000.01101.23Fo84Fa16401-G4-4角閃二輝橄欖巖40.6615.080.320.272.04-42.300.050.120.00-0.00100.85Fo83Fa17II4-7-4橄欖二輝巖38.9617.390.210.060.020.0142.490.100.11-0.01-99.35Fo81Fa19II4-7-6橄欖二輝巖39.2817.180.23--0.0143.640.120.090.02--100.57Fo82Fa18II5-16-8角閃橄欖輝長巖39.5316.400.27--0.0444.06-0.17--0.00100.47Fo83Fa17II5-18-3角閃橄欖輝長巖39.4117.410.28-0.020.0543.440.010.190.01--100.80Fo82Fa18II5-18-7角閃橄欖輝長巖39.7815.790.260.040.020.0144.870.050.160.000.020.00101.01Fo84Fa16II5-4-1角閃橄欖巖39.8516.590.320.00--44.860.040.200.040.01-101.91Fo83Fa17II5-5-5角閃橄欖輝長巖38.8619.020.24-0.030.0242.470.080.140.03--100.88Fo80Fa20II5-5-6角閃橄欖輝長巖39.0118.350.280.000.01-42.590.010.17---100.42Fo81Fa19II5-6-3角閃橄欖輝長巖39.0419.360.30--0.0542.470.030.140.040.02-101.45Fo80Fa20II5-6-5角閃橄欖輝長巖39.2019.210.260.04--41.480.020.130.01-0.01100.35Fo79Fa21II5-9-1角閃橄欖輝長巖39.1318.350.28-0.00-42.21-0.23-0.04-100.24Fo80Fa20II5-9-13角閃橄欖輝長巖39.0417.770.32---41.590.020.180.02-0.0198.95Fo81Fa19II6-7-7橄欖輝石角閃石巖38.7619.870.33---40.810.030.150.04-0.0299.99Fo79Fa21II6-7-8橄欖輝石角閃石巖39.4818.240.19-0.020.0242.560.010.160.06--100.73Fo81Fa19貴橄欖石

        5.2 礦物晶體化學

        斜長二輝橄欖巖、角閃二輝橄欖巖和角閃橄欖巖中橄欖石的Fo分子為82~84,平均值為83.0。橄欖二輝巖中橄欖石的Fo分子為81~82,平均值為81.5。橄欖輝長巖中橄欖石的Fo分子為79~84,平均值為81.2。橄欖二輝角閃石巖中橄欖石的Fo分子為79~81,平均值為80.0(表2)。各種巖相中的橄欖石均為貴橄欖石,Fo分子介于79~84之間,變化范圍很小。盡管如此,還是顯示了從橄欖巖相→橄欖二輝巖→橄欖輝長巖→橄欖二輝角閃石巖,隨著巖漿的演化,Fo分子總體上呈現緩慢而逐漸降低的趨勢。

        圖5 巖石化學系列分類圖Fig.5 Classification of rock chemical series

        斜方輝石En=80~84,均為古銅輝石,在不同的巖石類型之間En端元組分沒有明顯的變化規(guī)律(表3)。在橄欖巖相、橄欖二輝巖和橄欖輝長巖中單斜輝石主要是透輝石和頑透輝石,而在輝長巖相中主要是普通輝石。

        斜長石的An牌號變化范圍較大(17~77),從更長石到倍長石均有(表4)。斜長二輝橄欖巖中主要為倍長石和拉長石,橄欖二輝巖中為拉長石,角閃橄欖輝長巖中主要為拉長石,輝長巖中主要為拉長石,此外有少量的中長石,淡色輝長巖中主要為拉長石和中長石。英云閃長巖中主要為中長石和更長石,有少量的拉長石。其中部分斜長石環(huán)帶明顯,從邊緣-中心-邊緣依次為:更長石-中長石-拉長石-更長石,屬于正環(huán)帶;另一個環(huán)帶邊緣-中心-邊緣為:中長石-拉長石-更長石-拉長石-更長石,屬韻律性環(huán)帶。英云閃長巖中含有拉長石和中長石,從礦物學角度反映了該巖石是鎂鐵質巖漿分異演化的產物。

        探針分析的原生角閃石在單偏光鏡下均呈褐色。采用O=23的陰離子法計算其晶體化學式,主要屬鈣質閃石組的鈦角閃石、鈣鎂閃石普通角閃石、韭閃石、韭閃普通角閃石(表5)。所有Si/(Si+Al+Ti)均小于0.765,Al2O3含量均大于10%,均是幔源巖漿中結晶的角閃石(姜常義和安三元,1984)。

        5.3 巖石地球化學

        5.3.1主量元素

        所有樣品的SiO2含量介于36.17%~72.37%;其中3件樣品的SiO2含量為62.48%~72.37%,屬于中酸性巖類;其余樣品的SiO2含量為36.17%~53.01%,屬于基性-超基性巖類(表6)。所有超基性巖類樣品的m/f值(3.84~4.90)都小于6.5而大于2.5,屬于鐵質超基性巖類。所有樣品的Mg#值為55~83,變化范圍較大。在單斜輝石的SiO2-Al2O3圖解(圖5a)中,幾乎所有的單斜輝石都位于亞堿性巖區(qū),表明其原生巖漿屬于亞堿性系列(Le Bas, 1962)。在單斜輝石AlⅣ-Si圖(圖5b)上,所有樣品均位于拉斑玄武巖區(qū)(Kushiro, 1960)。需要說明的是,這里的拉斑玄武巖系列是有別于無似長石堿性巖和有似長石堿性巖的化學系列,應該將其理解為亞堿性玄武巖系列。在Miyashiro(1974)針對火山巖所做的FeOT/MgO-SiO2、FeOT/MgO-FeO圖解(圖5c,d)中,大部分超鎂鐵質巖石樣品位于拉斑玄武巖系列及拉斑玄武巖與鈣堿性系列的過渡帶,而鎂鐵質巖石樣品均投影于鈣堿性系列區(qū),屬跨越型趨勢。

        5.3.2稀土與微量元素

        橄欖巖的∑REE=16.02×10-6~42.50×10-6,另有1件樣品(Ⅱ5-4)的∑REE=51.35×10-6,該件樣品的Mg#(0.79)和m/f值(3.84)低于其他樣品,而SiO2(44.47%)高于其他樣品,說明該件樣品與其他樣品稀土元素總量的差異應該是含堆晶相橄欖石較少所致。其余巖石的∑REE=17.30×10-6~83.77×10-6,另有輝長巖的稀土元素總量較高(111.4×10-6),該件輝長巖的Mg#(0.55)和m/f值(1.24)均明顯低于同類巖石的相應數值,說明他們之間稀土元素總量的差異應該與其巖漿演化程度有關。所有樣品的(La/Yb)N=2.65~9.85,(La/Sm)N=1.47~4.01,(Gd/Yb)N=1.61~2.57。輕重稀土元素之間及輕、重稀土元素內部分餾均較強,配分曲線屬輕稀土元素富集型。除英云閃長巖外,所有的樣品δEu=0.79~1.35,未顯示銪異?;蜾B異常不明顯。2件英云閃長巖1件表現為明顯的正銪異常(δEu=2.43),另1件表現為明顯的負銪異常(δEu=0.59)。

        表6牛鼻子梁巖體各類巖石主量元素(wt%)和微量元素(×10-6)分析數據

        Table 6Major (wt%) and trace element (×10-6) compositions of the Niubiziliang intrusion

        樣品號401-G1-4401-G5401-G1-7401-G3401-G4-2401-G4-4II5-4II5-7II4-7II5-6II5-9II5-8巖性斜長二輝橄欖巖角閃橄欖巖角閃二輝橄欖巖橄欖二輝巖角閃橄欖輝長巖細粒輝長巖SiO240.0440.2541.3536.1740.9440.2044.4739.4640.6939.9142.3951.14TiO20.550.50.770.370.340.470.720.400.420.440.540.89Al2O36.196.008.015.494.845.4412.335.606.525.838.4015.55Fe2O313.6413.3911.9111.8513.2813.6210.4612.4213.1812.6412.888.29MnO0.160.170.130.160.160.170.140.150.160.140.160.13MgO28.9329.1724.1527.5831.7931.0020.0930.4327.8529.8825.888.84CaO3.383.274.972.872.833.027.012.833.923.124.868.31Na2O0.750.900.690.330.720.811.740.770.890.431.524.13K2O0.260.250.330.250.360.260.360.250.260.270.230.53P2O50.110.090.160.070.060.090.170.070.060.070.090.14LOI5.595.547.0614.414.384.462.467.335.826.882.662.02TOTAL99.6099.5399.5399.5599.7099.5499.9599.7199.7799.6199.6199.97Mg#0.810.810.80.820.830.820.790.830.810.830.80.68m/f4.244.364.064.654.794.553.844.94.234.734.022.13Sc17.4619.220.3718.4218.8416.0215.8617.4516.0718.3515.8227.15V71.4667.786.2356.3358.5967.2283.1655.3871.5160.9568.01131.4Cr1894179813651869224121879181457182613991500378Co130.7120.7105.7123.5125.613790.05133.5126.8130.9116.447.58Ni395.4793304.2320735.1361273.1495.3354.2513.6396.968.45Cu229.8171.570.0871.6683.02160.573.0360.18127.195.5496.7656.97Zn83.8976.5375.7876.0578.2380.8473.0575.8879.9579.3380.0564.48Ga6.676.328.355.595.466.1910.435.866.545.957.6514.67Rb10.136.8314.249.517.689.312.578.658.088.37.3816.47Sr141.8127.9206.611786.89113.3220.165.76115.9107.1153.5302.2Y5.16.599.344.84.686.148.965.715.765.856.9415.36Zr38.9550.6450.2934.6431.1942.4479.1740.233.7337.9545.95106.7Nb5.482.015.261.421.261.997.721.011.451.363.214.04Cd0.140.160.150.110.080.150.150.10.140.190.140.25In0.030.020.030.020.020.020.030.020.020.020.020.04Ba49.6629.7835.5644.0845.0432.4239.4118.8229.8327.7725.15106.7La5.73.086.922.282.213.039.4922.362.33.678.89Ce11.777.2815.245.295.057.0419.714.885.575.418.3119.8Pr1.410.971.960.710.690.952.370.70.770.761.112.51Nd5.994.468.693.33.274.3310.073.333.63.545.1411.32Sm1.221.111.970.780.821.032.10.880.920.921.192.59Eu0.460.40.740.270.290.370.740.330.370.350.450.97Gd1.391.312.240.971.011.252.321.131.141.151.53.15Tb0.190.210.320.150.150.180.310.180.170.180.230.48Dy1.071.271.880.910.911.241.821.081.11.071.343.04Ho0.210.260.370.190.180.230.350.210.220.220.270.6Er0.560.741.040.540.540.691.010.630.640.620.781.71Tm0.070.10.140.080.070.10.140.090.090.10.110.24Yb0.450.550.860.480.410.550.80.540.560.590.671.42Lu0.070.110.130.080.080.10.130.090.090.10.110.25Hf0.8711.130.690.740.871.610.840.730.760.982.3Ta0.320.160.30.10.110.140.450.070.10.090.180.26Pb2.682.822.541.61.441.521.871.082.931.551.456.41Bi0.10.080.060.050.10.060.070.030.10.270.060.06Th0.810.6310.450.620.51.170.440.340.420.622.79U0.210.20.290.120.230.140.350.110.130.130.180.61∑REE30.5621.8442.5016.0215.6721.0951.3516.0717.6117.3024.8556.98δEu1.071.031.080.940.991.001.021.021.101.051.031.04(La/Sm)N3.011.792.271.891.751.892.921.471.651.612.02.21(La/Yb)N9.174.045.83.43.873.958.552.653.02.83.934.49(Gd/Yb)N2.571.982.161.662.031.882.411.721.671.611.851.83Nb/U25.8310.117.9512.035.5813.8122.369.0711.3410.6918.146.58

        續(xù)表6

        Continued Table 6

        樣品號II6-5II6-7II6-9II5-1II5-15II6-10II6-3II5-14II6-1II6-2II6-4II6-8巖性橄欖二輝角閃石巖輝長巖似斑狀輝長巖淡色輝長巖石英閃長巖英云閃長巖SiO245.5546.9247.4749.9750.6048.8852.0652.0453.0162.4870.9572.37TiO20.380.470.450.811.290.430.660.760.760.660.180.19Al2O37.027.087.3317.3116.9215.8611.5315.8115.7216.3414.5514.22Fe2O39.689.769.848.49.756.448.088.77.824.911.781.7MnO0.130.130.130.130.150.100.130.150.140.090.050.04MgO24.4722.1721.518.216.0311.2512.78.037.263.181.441.48CaO5.828.178.159.499.7211.288.39.089.584.242.573.48Na2O1.041.111.232.953.491.512.293.022.874.595.344.53K2O0.440.420.50.40.541.281.120.280.820.921.160.92P2O50.080.080.080.110.280.080.130.090.130.160.050.06LOI4.913.252.832.211.172.422.842.011.852.391.470.86TOTAL99.5299.5699.5299.9999.9499.5399.8499.9799.9699.9699.5499.85Mg#0.830.820.810.660.550.780.760.650.650.560.620.64m/f5.064.544.371.951.243.493.141.851.861.31.621.74Sc21.731.5532.3425.9526.7629.2127.6832.8129.0414.8911.3711.09V92.79128.8121.6127.7205.4120.6149.1205.2147.875.4214.9516.41Cr24251933163737110464510199960804344Co76.1179.8782.0643.7127.9142.848.4639.4135.3819.518.88.79Ni619263.6251.643.7823.9981.51117.254.3121.0326.5915.1517.3Cu19.2838.7741.6648.6321.7947.7236.2639.0731.7131.8313.4513.66Zn64.7263.3769.7961.295.7946.7366.7261.866.9563.1820.4123.61Ga7.197.87.9414.3619.0812.7313.8914.8816.5315.8811.510.99Rb9.7211.3515.2913.0215.4363.3835.868.9622.8219.9833.8936.52Sr165.4166179.6337501.8424.5277.1321.5634.7411.5346.5409.7Y5.817.787.8613.6824.528.3716.2811.2813.7411.6811.163.7Zr38.6140.8344.3581.2386.0448.3378.0156.0353.79177.8147.978.59Nb1.351.521.623.219.811.584.414.243.423.935.724.27Cd0.110.110.130.20.270.110.210.210.150.280.210.13In0.030.030.030.040.070.030.040.040.040.030.020.01Ba61.9459.3380.878.02124.7134.2229.472.31187.6205.3348.5227.6La3.993.534.235.9516.954.0210.216.5311.58.5615.874.18Ce8.478.79.4413.9340.459.3725.214.0127.923.5138.198.19Pr1.111.181.231.875.381.313.431.793.572.613.750.8Nd5.025.695.728.4923.546.1115.67.9415.7111.4614.633.12Sm1.221.421.452.115.131.543.421.913.382.522.610.67Eu0.390.470.510.871.550.620.910.931.090.810.520.59Gd1.371.641.632.655.591.83.562.343.472.772.770.82Tb0.190.240.240.420.810.260.520.370.480.380.350.11Dy1.161.421.472.664.751.572.932.282.712.211.910.62Ho0.240.290.290.531.010.330.590.480.540.450.390.13Er0.660.830.861.542.950.911.711.351.531.281.220.39Tm0.090.120.120.220.40.130.250.190.220.180.180.06Yb0.540.710.711.362.510.721.431.091.261.031.160.35Lu0.090.110.110.220.390.120.250.180.210.170.220.07Hf0.941.011.071.882.521.12.221.371.573.753.971.88Ta0.090.090.110.230.580.10.260.270.250.340.810.27Pb2.251.822.543.656.42.296.212.826.789.715.3513.51Bi0.070.050.050.120.060.030.070.050.080.070.050.02Th1.40.842.381.461.610.681.481.382.982.9612.851.24U0.60.470.910.340.780.280.470.420.880.951.30.55∑REE24.5426.3528.0042.81111.428.869.9941.3873.5757.9383.7720.10δEu0.910.941.011.130.881.130.791.350.960.940.592.43(La/Sm)N2.121.61.881.822.131.681.932.212.22.193.924.01(La/Yb)N5.323.564.253.144.854.015.144.286.575.989.858.52(Gd/Yb)N2.111.911.881.611.842.072.061.772.292.231.981.92Nb/U2.243.211.779.4912.655.769.3310.143.884.124.427.82

        注:Mg#與m/f值由主量元素百分化后計算所得:Mg#=(MgO/40)/(MgO/40+0.8998×Fe2O3T/72),m/f=(MgO/40)/(0.8998×Fe2O3T/72);計算(La/Sm)N、(La/Yb)N、(Gd/Yb)N、δEu的球粒隕石標準化值據Sun and McDonough (1989)

        圖6 球粒隕石標準化稀土元素配分圖和原始地幔標準化蛛網圖(標準化值據Sun and McDonough, 1989)Fig.6 Chondrite-normalized REE patterns and PM-normalized trace elements spider diagrams (normalization values after Sun and McDonough, 1989)

        各種巖石的原始地幔標準化微量元素配分曲線(圖6)具有相同或相近的特征。配分曲線總體平滑且低緩,沒有特別富集的元素。稀土元素和大多數高場強元素的原始地幔標準化值多低于10,而大離子親石元素的標準化值多大于10。與稀土元素總量的差異一樣,同類巖石微量元素配分曲線的一些細微差異也應該與巖漿演化程度有關。大多數樣品有弱到明顯的負Nb異常,Ta也有同樣的趨勢,但不如Nb明顯。總體趨勢是,以橄欖巖相到淡色輝長巖、石英閃長巖和英云閃長巖,Nb(Ta)的負異常逐漸顯著。這種變化趨勢應該與巖漿被金水口巖群混染有關(詳見后述)。部分輝長巖相巖石和石英閃長巖、英云閃長巖有不同程度的P、Ti負異常,而其它巖石則無此特征。也就是說,P、Ti負異常只出現在巖漿演化的晚期階段,而非巖漿的固有特征。這種情況應當與磷灰石和尖晶石的結晶作用有關,這兩種礦物的分離結晶導致演化的巖漿虧損P和Ti。

        5.3.3同位素

        Nd-Sr-Pb同位素分析數據見表7。采用巖體中輝長巖相的鋯石LA-ICP-MS U-Pb諧和年齡367Ma,得到εNd(t)=+5.02~-1.52, (87Sr/86Sr)i=0.7035~0.7062。斜長二輝橄欖巖樣品的Nd、Sr同位素組成屬虧損型,在εNd(t)-(87Sr/86Sr)i相關圖上(圖7),投影在第二象限,位于OIB范圍內。一件輝長巖樣品的同位素組成表現為Nd略虧損,Sr富集的特征,在εNd(t)-(87Sr/86Sr)i相關圖上位于第一象限。另外兩件樣品表現了富集型地幔特征,在εNd(t)-(87Sr/86Sr)i相關圖上位于第四象限。

        表7牛鼻子梁巖體各類巖石Nd-Sr-Pb同位素分析數據

        Table 7Nd, Sr and Pb isotopes for rocks of the Niubiziliang intrusion

        Sample巖性Rb(×10-6)Sr(×10-6)87Rb/86Sr87Sr/86Sr±2σ(87Sr/86Sr)iεSr(t)401-G5斜長二輝橄欖巖6.83127.90.1546510.7042740.0000100.7035-8.55Ⅱ5-14淡色輝長巖8.96321.50.0807160.7054560.0000110.705013.64Ⅱ5-15輝長巖15.43501.80.0890380.7066860.0000120.706230.50Ⅱ6-5橄欖二輝角閃石巖9.72165.40.1701120.7063790.0000130.705520.22Sample巖性Sm(×10-6)Nd(×10-6)147Sm/144Nd143Nd/144Nd±2σ(143Nd/144Nd)iεNd(t)401-G5斜長二輝橄欖巖1.114.460.15120.5127880.0000090.5124305.02Ⅱ5-14淡色輝長巖1.917.940.14640.5125600.0000070.5122140.81Ⅱ5-15輝長巖5.1323.540.13250.5124090.0000070.512095-1.52Ⅱ6-5橄欖二輝角閃石巖1.225.020.14770.5125210.0000080.512172-0.02Sample206Pb/204PbSE(%)207Pb/204PbSE(%)208Pb/204PbSE(%)(206Pb/204Pb)i(207Pb/204Pb)i(208Pb/204Pb)i401-G4-218.54570.000615.60020.000538.49710.001617.90615.56637.946401-G518.18590.000415.57310.000438.26590.001117.89815.55837.980Ⅱ5-1418.62190.000515.64810.000438.72670.001518.01615.61538.095Ⅱ5-1518.53560.000315.62200.000338.37810.001318.04115.59538.054Ⅱ6-518.92410.000715.63190.000639.00340.001817.82915.57338.204

        圖7 εNd(t)-(87Sr/86Sr)i相關圖Fig.7 εNd(t) vs. inital 87Sr/86Sr of the intrusion

        (206Pb/204Pb)i=17.829~18.041,(207Pb/204Pb)i=15.558~15.615,(208Pb/204Pb)i=37.980~38.204,在初始Pb同位素相關圖中,數據點都落在了地球等時線右側,表明富含放射成因的鉛同位素(圖8)。在初始Pb同位素的相關圖中,這些數據點都位于虧損地幔與富集地幔EMⅡ之間。

        6 討論

        6.1 原生巖漿

        利用橄欖石-熔體平衡原理可以估算原生巖漿的MgO含量。Mg-Fe在橄欖石-熔體之間的分配系數為一相對穩(wěn)定的值,即KdOl-Melt=(FeO/MgO)Ol/(FeO/MgO)magma=0.30±0.03,Kd隨壓力的增大而增大,一般低壓時取0.30,高壓時取0.33(Roeder and Emslie, 1970)。由于Fo值最高的橄欖石可能更接近于液相線橄欖石的組成,我們取斜長二輝橄欖巖中Fo為84的橄欖石作為液相線橄欖石的代表,該巖石中的FeO含量為12.27%,由此可以估算出與之處于平衡狀態(tài)的巖漿中MgO的含量:WMgO=0.56095KdFo/(1-Fo)WFeO(Kd=0.30),結果為10.8%,屬高鎂拉斑玄武質巖漿范疇。

        6.2 巖漿結晶溫度

        根據伍德-坂野二輝石地質溫度計計算得到二輝橄欖巖和橄欖輝長巖中二輝石共結溫度為1100~1178℃(Wood and Banno, 1973)。二輝石溫度計是經常使用的經典型地質溫度計,其結果合理。本文中獲取的二輝石平衡溫度應該可以代表主體巖漿結晶溫度。

        圖8 (207Pb/204Pb)i-(206Pb/204Pb)i和(208Pb/204Pb) i-(206Pb/204Pb)i相關圖(據Allegre et al., 1988; Zindler and Hart, 1986)Fig.8 Initial 207Pb/204Pb and 208Pb/204Pb versus initial 206Pb/204Pb of the intrusion (after Allegre et al., 1988; Zindler and Hart, 1986)

        6.3 分離結晶

        牛鼻子梁巖體中所有的超鎂鐵質巖石和部分鎂鐵質巖石具有正堆晶結構,此外還有輝長結構、反應邊結構,似斑狀結構,嵌晶結構和幾種包含結構。充分反映了非平衡的分離結晶作用主導了巖漿房結晶的過程。由巖相學可知,在含橄欖石的各類巖相中,橄欖石是主要的堆晶相,其次是斜長石,所以巖漿結晶的早期階段橄欖石是最主要的分離結晶相,其次為少量的斜長石。在輝長巖相中,堆晶相有單斜輝石也有斜長石,所以隨著巖漿結晶過程的進行,既有單斜輝石的分離結晶/堆晶,也有斜長石的分離結晶/堆晶。

        在Harker變異圖中,各主量元素含量與MgO具有明顯的相關性。在圖9中,超鎂鐵質巖石主要位于Ol、Opx趨勢線方向演化,而鎂鐵質巖石主要位于Cpx、Pl方向演化。從超基性巖到基性巖,Al2O3、CaO含量隨SiO2的升高而升高,說明了巖漿中發(fā)生了橄欖石的分離結晶或發(fā)生了斜長石和單斜輝石的堆集;從基性巖到中酸性巖,Al2O3、CaO含量隨SiO2升高而降低,說明巖漿中的長石逐漸由基性斜長石演化到酸性斜長石,與英云閃長巖中主要為中長石和更長石這一事實是相吻合的。另外,樣品Ⅱ6-8除了中長石和更長石外還有少量的拉長石,這應該是造成該樣品正銪異常的原因。樣品Ⅱ6-8比樣品Ⅱ6-4的SiO2含量高,這與巖相中石英含量高(30%)是對應的。因為石英中稀土元素總量低(小于1),所以導致樣品Ⅱ6-8稀土元素總量較低(∑REE=20.10)。

        圖9 Harker變異圖Fig.9 Harker variation diagram of Niubiziliang intrusion

        理論上,玄武質巖漿分離結晶作用所產生的巖石系列的化學組分應當具有從鎂鐵質到中性再到長英質的連續(xù)演化特征。然而,由于低壓下過渡組分的殘余巖漿的分離結晶作用是非常快的,所以鎂鐵質端元和長英質端元之間的中間過渡成分并不常見,常常出現組分上的跳躍(即Daly間隔)(Yoder, 1973; Clagus, 1978; Peccerilloetal., 2003)。在Harker圖解中可以看到,鎂鐵質-超鎂鐵質巖石樣品與石英閃長巖和英云閃長巖數據點之間也存在一個不連續(xù)的間隔,即Daly間隔。

        6.4 同化混染作用

        如前所述,牛鼻子梁巖體野外和鏡下多見圍巖捕虜體,這些現象直接說明了同化混染作用的存在。另外,一些地球化學證據也佐證了這一觀點。如果將沒有受到同化混染或受同化混染很弱的斜長二輝橄欖巖(εNd(t)為+5.03、εSr(t)為-8.55)樣品來代表源區(qū)特征,那么源區(qū)表現為LREE富集,Nb、Ta弱虧損等特征。牛鼻子梁巖體所有的超鎂鐵質巖石(除角閃石巖)樣品均表現了LREE富集,Nb、Ta虧損或弱虧損的特征,說明該類巖石未遭受同化混染或同化混染較弱。而角閃石巖和鎂鐵質巖石除具有LREE富集和明顯的Nb、Ta負異常外,還具有不同程度的P、Ti負異常;特別是石英閃長巖和英云閃長巖還具有Zr、Hf的正異常,這說明鎂鐵質巖石均遭受了不同程度的同化混染作用,而閃長巖類巖石同化混染程度最強(Taylor and Mclennan, 1985)。

        由Nd、Sr、Pb同位素組成可以看出,樣品整體分布于虧損地幔與EMⅡ之間,也說明牛鼻子梁巖體遭受了同化混染作用。上地殼和下地殼的(La/Nb)PM和(Th/Ta)PM值有很大的區(qū)別,因此可以用來區(qū)分混染物質的來源(Nealetal., 2002),圖10中所有數據點均位于平均上地殼范圍附近,說明了混染物主要是上地殼物質。牛鼻子梁巖體中的捕擄體普遍來自于金水口巖群的黑云母片巖、石英巖、片麻巖、大理巖,這些巖石的原巖應該是陸源碎屑巖和碳酸鹽巖,雖然經歷了角閃巖相的區(qū)域變質作用,但仍然保留了表殼巖系的Nd、Sr、Pb同位素和元素地球化學特征。

        圖10 (Th/Ta)PM-(La/Nb)PM圖解估計地殼同化混染Fig.10 PM-normalized Th/Ta vs. La/Nb estimating crusal contamination

        6.5 AFC過程

        綜合前述的同化混染作用和分離結晶作用可知,Ⅰ區(qū)巖漿結晶時,分離結晶/堆晶作用最強,由大量的堆晶相組成(Mg#=0.80~0.83),Nd、Sr同位素組成屬虧損型,Nb/U值最大(平均為13.8),同化混染作用較弱;Ⅱ區(qū)巖漿結晶時,分離結晶/堆晶作用較強,大部分由堆晶相組成(Mg#=0.55~0.83),εNd(t)在零附近,Sr同位素表現為富集型,Nb/U值降低(平均為12.4),同化混染作用增強;在Ⅲ區(qū)巖漿結晶時,分離結晶/堆晶作用較弱,Nd、Sr同位素均表現為富集型,Nb/U值最小(平均為4.7),特別是到石英閃長巖和英云閃長巖結晶時,分離結晶作用最弱,并出現Zr、Hf正異常,同化混染強度最大。這些證據說明,同化混染作用的強度伴隨著巖漿結晶過程而逐漸加大。大量的同化混染作用會促使巖漿由拉斑玄武質系列轉化為鈣堿性系列,導致巖漿演化方向由Fenner趨勢(鐵富集)轉化為Bowen趨勢(硅堿富集)。

        6.6 巖漿源區(qū)與大地構造環(huán)境

        如前所述,牛鼻子梁巖體所有巖石樣品均表現出LREE富集型特征,包括Nd、Sr同位素虧損的樣品也是如此,所以很可能是源區(qū)使然。虧損型地幔源區(qū)可能經歷過一次地幔交代作用,使得LREE富集,而交代作用的時間與巖漿形成的時間間隔較短,同位素還沒有達到均一化,所以Sr還是虧損的。另外,牛鼻子梁巖體中主要形成于巖漿結晶早期階段的橄欖巖相均含有褐色普通角閃石,且數量最多可達15%。此外,還有相當數量的橄欖二輝角閃石巖,其中的角閃石含量為60%~75%,這些現象充分反映了巖漿富水,說明原始巖漿是富水的巖漿,這也可以用地幔交代作用來解釋。同時因為富水,降低了液相線溫度,正常溫度下(1178℃)部分熔融程度增加,導致原生巖漿MgO含量(10.8%)較高。

        根據李榮社等(2011)研究,在早古生代晚期階段,祁漫塔格、祁連等洋盆相繼閉合,從而導致在泥盆紀期間昆侖山及其以北的柴達木地塊、祁連褶皺帶、阿拉善地塊連為一體,并整體抬升為陸。根據張雪亭等人(2007)的研究,晚泥盆世-石炭紀中期古亞洲洋南向消減,引發(fā)現今塔里木-華北或西域-中朝(北中國板塊)與現北羌塘-揚子等陸塊(南中國板塊)間分裂。綜上所述,盡管柴達木地塊北緣在泥盆紀期間的構造格局尚不十分明瞭,但處于總體穩(wěn)定、邊緣拉張裂解環(huán)境應該還是比較可信的。世界上大多數堆晶結構、堆晶層理特別發(fā)育的層狀巖體都生成于克拉通區(qū)的拉張裂解環(huán)境,也可以視為對牛鼻子梁巖體構造環(huán)境的佐證。

        6.7 對成礦的約束

        從全球范圍來看,含鎳銅鉑礦的巖體可以在多種構造環(huán)境中產出,但最有利的構造背景主要有四種類型,克拉通內部和邊緣裂谷或伸展環(huán)境即為其中一類。牛鼻子梁巖體位于柴達木地塊邊緣,巖體形成時的構造環(huán)境屬于拉張裂解環(huán)境,可以將其歸為大陸邊緣裂解環(huán)境,是形成鎳銅鉑硫化物礦床的有利構造背景。

        根據現有資料,含鎳銅鉑礦巖體(及火山巖)的原生巖漿均為高鎂拉斑玄武巖、苦橄巖和科馬提巖,換句話說也就是MgO含量要大于10%。牛鼻子梁巖體的原生巖漿的MgO含量為10.8%,位于該范圍內。

        世界上大多數賦含鎳銅鉑硫化物礦床的巖體都屬層狀巖體,例如Bushveld、Great Dyke、Stillwater、坡一、坡十等。所以層狀巖體是形成鎳銅鉑硫化物礦床的主要巖體類型。牛鼻子梁巖體即為該類巖體。

        對于所有的巖漿礦床而言,巖漿分異程度都是至關重要的成礦因素。這是因為分離結晶是幔源巖漿演化的主要機制,橄欖石、輝石、鐵鈦氧化物等富含Fe2+礦物分離結晶會顯著降低巖漿中Fe2+的活度,從而降低達到硫化物飽和點的硫溶解度(SCSS),并增加演化巖漿中硫的豐度,斜長石的大量分離結晶也會增加演化巖漿中硫的豐度,這些效應累計到一定程度,就會使巖漿中的硫化物達到過飽和并熔離(Naldrett, 2009; Lightfoot and Hawkesworth, 1997; Irvine, 1975)。牛鼻子梁巖體巖石類型豐富,從斜長二輝橄欖巖到英云閃長巖均有出現,且分離結晶在巖漿演化過程中占主導地位,說明巖漿分異充分,有利于成礦物質的富集。

        富水的巖漿在生成時往往部分熔融程度較高,有利于更多的硫化物進入巖漿。巖漿富水有利于成礦物質的運移與聚集,是成礦過程的重要媒介。所以巖漿含水量是評價巖體含礦性的重要指標。巖漿富水,會促使含水礦物在巖漿結晶的較早階段就開始大量結晶。牛鼻子梁巖體下部和中部層序的橄欖巖相、輝石巖相和輝長巖相普遍含有較多的褐色普通角閃石;在上部層序中含有較多的角閃石巖。這些現象說明,由于形成牛鼻子梁巖體的巖漿普遍富水,在巖漿結晶的較早階段,就開始結晶出實質性數量的角閃石;而且,在巖漿演化的較晚階段,由于巖漿含水量進一步增大,結晶出大量角閃石,形成角閃石巖。這種現象在同類巖體中是不多見的。

        牛鼻子梁巖體的野外地質觀察、巖相學與巖石地球化學都證明巖漿經歷了較強的同化混染作用。地殼混染作用會導致巖漿中SiO2濃度的增加、溫度的降低以及氧逸度的升高,這些都會降低巖漿中硫化物達到飽和點的硫溶解度(SCSS);另外,如果有外來S的加入還會顯著增加巖漿中S的豐度,從而促使硫化物達到過飽和并成礦。

        橄欖巖相、橄欖二輝巖、橄欖輝長巖和橄欖二輝角閃石巖中橄欖石的NiO含量分別是0.06%~0.17%、0.09%~0.11%、0.13%~0.23%、0.15%~0.18%。相應的平均值分別是0.12%、0.10%、0.17%、0.16%。橄欖石中Ni豐度變化于448×10-6~1935×10-6。Naldrett(1999)認為未分異的飽和硫化物的巖漿中橄欖石正常Ni含量為2500×10-6,此值意味著該巖體不易成礦。只有當橄欖石中Ni虧損到2200×10-6以下時,才顯示出該巖體發(fā)生過不同程度的硫化物熔離。一般而言,橄欖石中Ni含量越低越有利于成礦。牛鼻子梁巖體各種巖相中橄欖石的Ni含量均低于2200×10-6,表明巖漿中曾發(fā)生過硫化物熔離。但在各種巖相中硫化物熔離的程度是不相同的。橄欖巖相和橄欖輝石巖中橄欖石的Ni含量明顯低于橄欖輝長巖和橄欖二輝角閃石巖中的相應值,表明形成前兩類巖石的巖漿經歷了比較充分的硫化物熔離作用,有利于成礦。在圖11上,Ⅰ區(qū)的樣品(主要是橄欖巖和橄欖輝石巖)均位于2線和3線之間,而Ⅱ區(qū)和Ⅲ區(qū)的樣品(主要是橄欖輝長巖和橄欖二輝角閃石巖)主要位于1線和2線之間,進一步證明了上述認識。

        圖11 牛鼻子梁巖體中橄欖石鎳含量與鎂橄欖石分子含量(Fo)的關系(分區(qū)據Simpkin et al., 1970;秦克章等, 2007)Fig.11 Relation between the Ni content of olivine and the forsterite content (Fo) of Niubiziliang intrusion (after Simpkin and Simth, 1970; Qin et al., 2007)

        7 結論

        (1)牛鼻子梁巖體中輝長巖的鋯石U-Pb年齡為367.0±2.0Ma,形成于晚泥盆世。

        (2)巖石類型包括斜長二輝橄欖巖、斜長單輝橄欖巖、角閃二輝橄欖巖、角閃橄欖巖、橄欖二輝巖、角閃二輝巖、橄欖二輝角閃石巖、角閃橄欖輝長巖、細粒輝長巖、似斑狀輝長巖、暗色輝長巖、輝長巖、淡色輝長巖、石英閃長巖和英云閃長巖。巖漿分異充分,巖石類型豐富。巖體層狀和紋層狀構造發(fā)育,堆晶層理清晰,垂向分帶明顯,屬層狀雜巖體。

        (3)巖漿演化過程中主要發(fā)生了橄欖石的分離結晶作用,此外還有少量的斜長石分離結晶/堆晶作用。

        (4)巖體與圍巖之間發(fā)生了較強的的同化混染作用,混染物主要是金水口巖群。同化混染強度伴隨著巖漿演化過程而逐漸增大。

        (5)巖體形成的構造環(huán)境為大陸邊緣裂解環(huán)境。虧損型地幔源區(qū)經過地幔交代作用,部分熔融形成高鎂拉斑玄武質巖漿(MgO=10.8%),主體巖漿結晶溫度為1100~1178℃。

        (6)牛鼻子梁巖體具有適合形成鎳銅硫化物礦床的構造環(huán)境、巖體類型、原始巖漿、巖漿含水量、巖漿分異、同化混染程度和橄欖石鎳含量,具有很大的成礦潛力。

        致謝在論文修改過程中,得到了李楚思教授細致耐心的指導;匿名審稿人對本文進行了認真的審閱,提出了寶貴的修改意見,使我們獲益良多;在此一并深致謝意。

        Allegre CJ, Lewin E and Dupre B. 1988. A coherent crust-mantle model for the uranium-thorium-lead isotopic system. Chem. Geol., 70(3): 211-234

        Belousova EA, Griffin WL, O’Reilly SY and Fisher NI. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineral and Petrology, 143(5): 602-622

        Bureau of Geology and Mineral Resources of Qinghai Province. 1991. Regional Geology and Mineral Resources of Qinghai Province. Beijing: Geological Publishing House, 1-661 (in Chinese)

        Clague DA. 1978. The oceanic basalt-trachyte association: An explanation of the Daly Gap. Journal of Geology, 86(6): 739-743

        Irvine TN. 1975. Crystallization sequences in the Muskox intrusion and other layered intrusion-II: Origin of chromitite layers and similar deposits of other magmatic ores. Geochimica et Cosmochimica Acta, 36(6-7): 991-1008

        Jiang CY and An SY. 1984. On chemical characteristics of calcic amphiboles from igneous rocks and their petrogenesis significance. Journal of Mineralogy and Petrology, 4(3): 10-15 (in Chinese with English abstract)

        Kushiro I. 1960. Si-Al relation in clinopyroxenes from igneous rocks. American Journal of Science, 258: 518-551

        Lai SC, Deng JF and Zhao HL. 1996. Paleozoic ophicolites and its tectonic significance on north margin of Qaidam Basin. Geoscience, 10(1): 18-28 (in Chinese with English abstract)

        Le Bas MJ. 1962. The rock of aluminium in igneous cliopyroxenes with relation to their parentage. American Journal of Science, 260: 267-288

        Lightfoot PC and Hawkesworth CJ. 1997. Flood basalts and magmatic Ni, Cu and PGE sulphide mineralization: Comparative geochemistry of the Noril’sk (Siberian Trap) and West Greenland sequences. In: Mahoney JJ and Coffin MF (eds.). Large Igneous Province. Washington DC: American Geophysical Union, 357-380

        Li RS, Ji WH, Chen SJ and Wang XL. 2011. Paleogeographic Maps of Palaeozoic Tectonic and Lithofacies in the Qinghai-Tibet Plateau and Its Adjacent Area. Beijing: Geological Publishing House, 1-306 (in Chinese)

        Miyashiro A. 1974. Classification, characteristics, and origin of ophiolites. Journal of Geology, 83(2): 249-281

        Naldrett AJ. 1999. World class Ni-Cu-PGE deposits: Key factors in their genesis. Mineralium Deposita, 34(3): 227-240

        Naldrett AJ. 2009. Fundamentals of magmatic sulfide deposits. In: Li CS and Ripley EM (eds.). New Developments in Magmatic Ni-Cu and PGE Deposits. Beijing: Geological Publishing House, 1-26

        Neal CR, Mahoney JJ and Chazey WJ. 2002. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. Journal of Petrology, 43(7): 1177-1205

        Peccerillo A, Barberio MR, Yirgu G, Auaew D, Maraieri M and Wu TW. 2003. Relationships between mafic and peralkaline silicic magmatism in continental rift settings: A petrological, geochemical and isotopic study of the Gedemsa volcano, Central Ethiopian Rift. Journal of Petrology, 44(11): 2003-2032

        Qin KZ, Ding KS, Xu YX, Sun H, Xu XW, Tang DM and Mao Q. 2007. Ore potential of protoliths and modes of Co-Ni occurrence in Tulargen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang. Mineral Deposits, 26(1): 1-14 (in Chinese with English abstract)

        Roeder PL and Emslie RF. 1970. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29(4): 275-289

        Simpkin T and Simth JV. 1970. Minor-element distribution in olivine. Journal of Geology, 78(3): 304-325

        Song SG, Zhang LF, Niu YL, Su L, Jian P and Liu DY. 2005. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters, 234(1-2): 99-118

        Song SG, Zhang C, Li XH and Zhang LF. 2011. HP/UHP metamorphic time of eclogite in the Xitieshan terrane, North Qaidam UHPM belt, NW China. Acta Petrologica Sinica, 27(4): 1191-1197 (in Chinese with English abstract)

        Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes. In: Saunder AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geol. Soc. Spec. Publ., 42: 313-315

        Taylor SR and Mclennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1-312

        Wood BJ and Banno S. 1973. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationship in simple and complex systems. Contributions to Mineralogy and Petrology, 42(2): 109-124

        Wylline PJ. 1967. Ultramafic and Related Rocks. New York: Wiley, 1-464

        Xiao QH, Lu XX, Wang F, Sun YG, Wei XD and Xing ZY. 2004. Age of Yingfeng rapakivi granite pluton on the north flank of Qaidam and its geological significance. Science in China (Series D), 47(4): 357-365

        Yoder HS. 1973. Contemporaneous basaltic and rhyolitic magmas. American Mineralogist, 58: 153-171

        Yu SY, Zhang JX and Li JP. 2009. Metamorphism history and dynamics of high-pressure granulites in the Dulan area of the North Qaidam Mountains, Northwest China. Acta Petrologica Sinica, 25(9): 2224-2234 (in Chinese with English abstract)

        Zhang GB and Zhang LF. 2011. Rodingite from oceanic lithology of Shaliuhe terrane in North Qaidam UHPM belt and its geological implication. Earth Science Frontiers, 18(2): 151-157 (in Chinese with English abstract)

        Zhang XT, Yang SD and Yang ZJ. 2007. The Plate Tectonics of Qinghai Province: A Guide to the Geotectonic Map of Qinghai Province. Beijing: Geological Publishing House, 1-221 (in Chinese)

        Zindler A and Hart SR. 1986. Chemical geodynamics. Annual Rev. Earth Planet. Sci., 14(1): 493-571

        附中文參考文獻

        姜常義, 安三元. 1984. 論火成巖中鈣質角閃石的化學組成特征及其巖石學意義. 礦物巖石, 4(3): 10-15

        賴少聰, 鄧晉福, 趙海玲. 1996. 柴達木北緣古生代蛇綠巖及其構造意義. 現代地質, 10(1): 18-28

        李榮社, 計文化, 陳守建, 王訓練. 2011. 青藏高原及鄰區(qū)古生代構造-巖相古地理圖(1/300萬). 北京:地質出版社, 1-306?

        秦克章, 丁奎首, 許英霞, 孫赫, 徐興旺, 唐冬梅, 毛騫. 2007. 東天山圖拉爾根、白石泉銅鎳鈷礦床鈷、鎳賦存狀態(tài)及原巖含礦性研究. 礦床地質, 26(1): 1-14

        青海省地質礦產局. 1991. 青海省區(qū)域地質志. 北京: 地質出版社, 1-661

        宋術光, 張聰, 李獻華, 張立飛. 2011. 柴北緣超高壓帶中錫鐵山榴輝巖的變質時代. 巖石學報, 27(4): 1191-1197

        于勝堯, 張建新, 李金平. 2009. 柴北緣都蘭高壓麻粒巖的變質演化及形成的動力學背景. 巖石學報, 25(9): 2224-2234

        張貴賓, 張立飛. 2011. 柴北緣沙柳河地區(qū)洋殼超高壓變質單元中異剝鈣榴巖的發(fā)現及其地質意義. 地學前緣, 18(2): 151-157

        張雪亭, 楊生德, 楊站君. 2007. 青海省板塊構造研究——1︰100萬青海省大地構造圖說明書. 北京: 地質出版社, 1-221

        精品国产迪丽热巴在线| 国产97色在线 | 日韩| 四虎成人精品无码永久在线| 国产精品反差婊在线观看| 亚洲美女一区二区三区三州| 亚洲狠狠婷婷综合久久久久| 久青草久青草视频在线观看| 日本精品一区二区三本中文| 中文片内射在线视频播放| 成人欧美一区二区三区黑人 | 国产精品久久这里只有精品| 成人自拍三级在线观看| 中文字幕人乱码中文字幕| 大地资源在线播放观看mv| 亚州AV成人无码久久精品| 亚洲综合久久精品少妇av| 蜜臀亚洲av无码精品国产午夜.| 亚洲色偷拍区另类无码专区| 欧美交换配乱吟粗大25p| 国产爆乳乱码女大生Av| 亚洲av自偷自拍亚洲一区| 国产 一二三四五六| 久久婷婷成人综合色| 亚洲国产成人精品激情| 日韩av一区二区不卡在线| 亚洲乳大丰满中文字幕| 极品粉嫩嫩模大尺度无码| 久久国产高潮流白浆免费观看| 黄片视频大全在线免费播放| 国产精品无码一区二区在线看| 精品无码AV无码免费专区| 亚洲中文字幕高清在线视频一区| 日韩人妻不卡一区二区三区| 精品无码人妻一区二区三区品| 四虎影视国产884a精品亚洲| 少妇人妻精品久久888| 久久精品中文字幕大胸| 青青在线精品2022国产| 日本小视频一区二区三区| 色多多性虎精品无码av| 漂亮人妻被黑人久久精品|