亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        酸性硫酸鹽土的形成、 特性及其生態(tài)環(huán)境效應(yīng)

        2014-04-09 02:33:00黃巧義唐拴虎張發(fā)寶楊少海
        關(guān)鍵詞:紅樹林影響

        黃巧義, 唐拴虎, 盧 瑛, 張發(fā)寶, 楊少海

        (1 廣東省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,農(nóng)業(yè)部南方植物營養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室,廣東省養(yǎng)分資源循環(huán)利用與耕地保育重點(diǎn)實(shí)驗(yàn)室,廣州 510640; 2 華南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院,廣州 510642)

        1 ASS的形成條件和過程

        ASS形成過程中的鐵(Fe)、 硫(S)生物地球化學(xué)循環(huán),在全球物質(zhì)循環(huán)過程中具有重要地位,一直是人們關(guān)注的熱點(diǎn)[17]。ASS的成土母質(zhì)為富含還原性硫化物的沉淀物,當(dāng)硫化物被氧化后形成硫酸及一系列次生鐵礦物。ASS成土過程中包含 還原性硫化物(硫化鐵為主)沉淀物成土母質(zhì)的形成,以及成土母質(zhì)的氧化兩個(gè)關(guān)鍵階段[1, 18]。發(fā)育完全的ASS土壤剖面上,常呈現(xiàn)兩種性質(zhì)截然不同的土層, 下層富含黃鐵礦的中性土壤(還原環(huán)境),也稱潛在酸性硫酸鹽土(Potential Acid Sulfate Soils, PASS),上層富含黃鐵礦氧化產(chǎn)物的酸性土壤(氧化環(huán)境),也稱實(shí)際酸性硫酸鹽土(Actual Acid Sulfate Soils, AASS)[18-19]。

        1.1 ASS成土母質(zhì)的形成條件與過程

        Fe2++H2S→FeS+2H+

        [1]

        Fe2++2HS→Fe(HS)2→FeS+H2S

        [2]

        FeS1.1(代表亞穩(wěn)定態(tài)硫化亞鐵礦物)+H2S→FeS2+H2(完全厭氧條件)

        [3]

        [4]

        1.2 ASS成土母質(zhì)的氧化

        形成于還原條件的ASS成土母質(zhì),因自然條件變化或者人為干擾等影響,使其環(huán)境氧化還原電位提高,ASS成土母質(zhì)被氧化而形成ASS[1, 33]。例如,北歐地區(qū)因均衡性地殼上升及農(nóng)用埋管排水的綜合作用使全新世形成的富含還原態(tài)Fe-S礦物的成土母質(zhì)被氧化形成了ASS[34];泰國曼谷平原則因海岸線的變遷而形成帶狀A(yù)SS[6]。而干旱是導(dǎo)致塞爾維亞、 幾內(nèi)亞(比紹)等非洲國家ASS發(fā)育形成的主要因素[6]。

        ASS成土母質(zhì)接觸氧氣后,還原態(tài)硫化鐵類礦物[亞穩(wěn)定態(tài)硫化亞鐵礦物(FeS1.1)和黃鐵礦(FeS2)]發(fā)生氧化反應(yīng),其反應(yīng)式為5和6[32, 34]。FeS1.1的反應(yīng)動(dòng)力學(xué)較快,而黃鐵礦慢[34]。溶解態(tài)O2和Fe3+是該反應(yīng)主要的氧化劑,最初氧化產(chǎn)物為元素硫(S0)[32, 35-36]。FeS1.1和FeS2被氧化的過程中,形成多種形態(tài)硫、 鐵礦物,并產(chǎn)生硫酸、 H+,最終形成酸性極強(qiáng)、 生長障礙因素多及生態(tài)危害大的ASS[18, 34, 37]。

        10FeS1.1(代表亞穩(wěn)定態(tài)硫化亞鐵礦物)+24O2+26H2O→10Fe(OH)3+11H2SO4

        [5]

        4FeS2+15O2+14H2O→4Fe(OH)3+8H2SO4

        [6]

        1.3 紅樹林與ASS

        2 ASS中硫的演變

        2.1 ASS中硫礦物的動(dòng)態(tài)變化

        4FeS+3O2+6H2O→4Fe(OH)3+4S0

        [7](PAS)

        FeS+S0→FeS2

        [8](PAS)

        [9](PASTZ)

        [10](ASTZ)

        [11](AS)

        [12](AS)

        CaCO3+H2SO4+H2O→CaSO4·2H2O+CO2

        [13](AS)

        PASS的氧化還原電位低,只有熱力學(xué)穩(wěn)定性較差的FeS1.1能被氧化,生成氫氧化鐵和元素硫S0,尚無酸形成,土壤pH仍較高,反應(yīng)式為7[46]。在該pH條件下,元素硫S0又能與土壤中殘余的FeS1.1反應(yīng),形成黃鐵礦(反應(yīng)式8)[29, 47]。接近PASS的TZ區(qū)域,氧化還原電位仍較低,只有少量黃鐵礦被完全氧化(反應(yīng)式9),生成硫酸根及氫氧化鐵,但該反應(yīng)速度緩慢,不能使土體酸化[48-50]。而接近上層AASS的TZ區(qū)域,土壤pH下降到4.5以下,F(xiàn)e3+溶解度提高,成為黃鐵礦氧化反應(yīng)的主要氧化劑,進(jìn)一步加快黃鐵礦氧化(反應(yīng)式10)[32, 50]。同時(shí),在該pH條件下,嗜酸氧化亞鐵硫桿菌催化Fe2+氧化形成Fe3+,加快催化該氧化反應(yīng);但當(dāng)pH下降到3.5以下時(shí),大部分釋放出的Fe3+被水結(jié)合,形成氫氧化鐵沉淀[3, 51]。AASS中黃鐵礦氧化產(chǎn)生大量硫酸,但大部分被淋溶出土體,當(dāng)土壤進(jìn)一步酸化(pH低于4.0),硫酸根與Fe、 K、 Na等元素形成黃鉀鐵礬[KFe3(SO4)2(OH)6][52]和施氏礦物[Fe8O8(OH)6SO4][53],尤以黃鉀鐵礬最普遍,其形成過程為反應(yīng)式11[52]。黃鉀鐵礬和施氏礦物最終被水化形成針鐵礦(FeOOH),同時(shí)釋放出硫酸和酸(反應(yīng)式12)[53-55]。開墾耕種的ASS土壤上,常表施石灰,能中和土壤部分酸并生成石膏(反應(yīng)式13)[32]。

        2.2 ASS中各種硫形態(tài)含量

        3 ASS中鐵(Fe)的地球化學(xué)動(dòng)態(tài)

        3.1 ASS中鐵礦物的轉(zhuǎn)化

        [14]

        FeS1.1(s)+H2S(aq)→FeS2(s)+H2(g)

        [15]

        FeS1.1(s)+Sn+1(aq)2-→FeS2(s)+Sn(aq)2-

        [16]

        [17]

        Fe8O8(OH)6SO4+2.5H2O→8FeOOH+

        [18]

        [19]

        圖1 黃鐵礦氧化途徑及可能產(chǎn)物Fig.1 Steps in pyrite oxidation and possible secondary Fe minerals that may form as weathering products

        3.2 ASS中各種鐵礦物含量

        4 ASS的酸特性

        5 ASS的生態(tài)環(huán)境效應(yīng)

        淹水還原環(huán)境下,由于存在硫化物、 有機(jī)物質(zhì),有利于ASS形成金屬硫化物和金屬含量較高的有機(jī)復(fù)合物,將游離的金屬固定下來,實(shí)現(xiàn)海水凈化[86-87]。在氧化環(huán)境下,ASS嚴(yán)重酸化,Al、 Cd、 Mn、 Ni、 As等有毒金屬及類金屬大量活化[88-93],另一方面,P、 Ca、 Mg、 Zn、 Cu、 K、 B等生物生長必需營養(yǎng)元素被固定或流失[58, 94-96],嚴(yán)重毒害實(shí)地植物、 動(dòng)物生長。同時(shí),酸根離子和有毒金屬及類金屬隨水經(jīng)滲漏、 側(cè)流等途徑進(jìn)入周邊水系,酸化污染周邊水體環(huán)境[15, 97-99],及水系周邊生態(tài)系統(tǒng)[73, 100]。另外,淹水環(huán)境中因潮汐、 作物根系作用以及生物擾動(dòng)等影響,也會(huì)發(fā)生氧化反應(yīng),使還原性硫化物發(fā)生氧化,釋放出酸根離子和金屬或類金屬,進(jìn)而污染海水環(huán)境、 危害濱海生物[101-104]。因此,ASS生態(tài)系統(tǒng)在不同環(huán)境條件扮演著環(huán)境金屬和類金屬凈化者和污染者的雙重角色,而從土壤學(xué)家的角度出發(fā),ASS主要是環(huán)境污染源。

        5.1 ASS中有毒金屬和類金屬的活性及流失風(fēng)險(xiǎn)

        ASS產(chǎn)生的酸性離子以及活化的有毒金屬和類金屬隨地表徑流、 側(cè)滲、 淋溶等途徑進(jìn)入地下水、 周邊河流,污染水體質(zhì)量[11, 51, 94, 97, 100, 108-109]。ASS影響周邊水體生態(tài),一方面因水體本身受污染,導(dǎo)致水生生物生長受害,影響水產(chǎn)養(yǎng)殖[13, 78, 97],且以受污染水灌溉、 飲用等用途的農(nóng)戶,其身體健康也將受到威脅[6, 7, 110];另一方面,污染水的流動(dòng)、 利用,進(jìn)一步將污染擴(kuò)大到周邊環(huán)境,加上金屬的移動(dòng)性及生物累積效應(yīng),致使ASS的污染區(qū)域不斷擴(kuò)大。因此,ASS作為一個(gè)潛在或現(xiàn)有的環(huán)境隱患,若開發(fā)不當(dāng)將引發(fā)嚴(yán)重的生態(tài)環(huán)境問題[6]。

        ASS導(dǎo)致的Fe、 Al、 Mn、 Cd等重金屬的污染已有目共睹[13, 89, 90, 111-112],而且有些改良措施雖然中和了土壤酸性且固定Al、 Mn、 Ni和Zn等潛在的有毒金屬,但卻導(dǎo)致As和Fe的活化[13, 113]。同時(shí),F(xiàn)e-S礦物對痕量元素的生物有效性影響顯著,已有研究表明,ASS中Fe礦物的轉(zhuǎn)化影響土壤中稀土元素的含量及分布[114],同時(shí),受ASS影響的江河沉淀物中,痕量元素的含量及活性明顯較高[115-116]。

        5.2 ASS對實(shí)地及周邊生物的影響

        ASS對植物生長的毒害不僅因低pH的直接影響,還與Al、 Fe等金屬離子活化的毒害作用有關(guān)[117],同時(shí),P、 Ca、 Mg、 Zn、 Cu、 K、 B等營養(yǎng)元素有效性低、 土壤結(jié)構(gòu)差等因素均限制了植物的生長[6, 118]。我國受ASS影響的水稻產(chǎn)量遠(yuǎn)低于全國平均水平,印度尼西亞、 泰國、 幾內(nèi)亞比紹、 斯里蘭卡等國家ASS稻區(qū)的產(chǎn)量也較低[6]。更有甚者,因長期酸害影響,植被無法生存,土表裸露[119]。據(jù)調(diào)查,ASS上牧草、 橡樹的Co、 Ni、 Mn含量均較常規(guī)值高[97, 120]。但F?ltmarsch等發(fā)現(xiàn)ASS中重金屬淋溶流失的比例較大,僅少量被土壤上生長的包菜吸收,因此,重金屬對實(shí)地植物的影響相對較小[121]。有研究表明,受ASS影響的奶牛的牛奶中Al含量明顯偏高,但動(dòng)物體內(nèi)金屬含量與ASS的關(guān)系尚不清晰[97]。

        受ASS影響的水域中水生苔蘚體內(nèi)Al、 Cu、 Fe含量顯著高于常規(guī)值[97]。澳大利亞東部受ASS影響的流域常發(fā)生大規(guī)模魚類死亡事件,其原因主要?dú)w結(jié)于強(qiáng)酸和金屬離子含量高[122]。另一方面,魚類蛋黃、 卵子形成和產(chǎn)卵的過程受到該惡劣環(huán)境干擾而導(dǎo)致繁殖失敗,使部分魚類絕種滅亡[122],同時(shí),離子調(diào)節(jié)系統(tǒng)和器官呼吸作用受到破壞使魚類行為失常[97]。Faltmarsch 等[97]認(rèn)為ASS可能還影響區(qū)域的老人癡呆癥、 帕金森等神經(jīng)性疾病和心血管疾病的發(fā)生率。有學(xué)者對澳大利亞ASS土地上的房地產(chǎn)開發(fā)后的表土、 粉塵及水樣調(diào)查表明,其金屬含量及活性均在生態(tài)臨界值以內(nèi)[7]。Hinwood 等[110]調(diào)查ASS區(qū)域居民尿液、 腳趾甲及頭發(fā)中重金屬累積情況,結(jié)果表明Al、 As、 Cd、 Pb、 Cu及Zn的含量并不高。ASS對人類身體健康的影響已逐漸引起學(xué)者的關(guān)注,但目前相關(guān)證據(jù)尚不確鑿。

        6 展望

        1) ASS中Fe-S演變、 循環(huán)一直是人們關(guān)注的熱點(diǎn)。因沉積微環(huán)境下各種條件的不同,黃鐵礦形成途徑、 形態(tài)不一致,不同來源、 形態(tài)的黃鐵礦發(fā)育的過程也有所差異。我國前期學(xué)者對發(fā)育于紅樹林景觀的ASS研究較多,忽視了非紅樹林海濱沼澤地帶Fe-S礦物的形成和累積,亟需加強(qiáng)該方面探討,以更好規(guī)劃該問題土壤。該方面應(yīng)進(jìn)一步探討ASS發(fā)育過程中不同來源、 形態(tài)的黃鐵礦對土壤各種理化性狀的影響。

        2) ASS的形成及發(fā)育過程中,F(xiàn)e-S礦物的轉(zhuǎn)化顯著影響著其他金屬元素的固定、 活化、 溶解等一系列地球化學(xué)過程。其中黃鐵礦形成過程中重金屬的富集、 黃鐵礦氧化過程中重金屬的活化是國內(nèi)外研究熱點(diǎn)。近些年,國外有學(xué)者開始關(guān)注ASS對稀土元素、 痕量元素的影響,但國內(nèi)尚無相關(guān)報(bào)道。

        3) 盡管我國ASS的面積高達(dá)0.11 M hm2,但是從學(xué)術(shù)界到社會(huì)上,對其了解、 認(rèn)識仍處于表面的危害性。曾有部分學(xué)者進(jìn)行過探討,但均沒有深入到機(jī)理層面上,而社會(huì)上對該類土壤概念模糊,只注重其生產(chǎn)應(yīng)用,忽視了其潛在的環(huán)境危害、 及產(chǎn)品安全性的考量。在我國大量的ASS被改造成水稻田,采用適當(dāng)?shù)母牧肌?排水措施能保證相當(dāng)?shù)漠a(chǎn)量收成,被認(rèn)為是ASS利用的有效途徑。然而,ASS開墾種稻后,相應(yīng)的農(nóng)藝措施對土壤酸、 重金屬的影響如何,其對周邊河流、 環(huán)境、 居民的影響如何,甚至稻谷的安全性均有待進(jìn)一步評估。

        參考文獻(xiàn):

        [1] Dent D L, Pons L J. A world perspective on acid sulphate soils[J]. Geoderma, 1995, 67:263-276.

        [2] IUSS Working Group WRB. World reference base for soil resources 2006[M]. Rome, Italy:World Soil Resources Reports No. 103. FAO, 2006.

        [3] ?sterholm P, ?str?m M. Spatial trends and losses of major and trace elements in agricultural acid sulphate soils distributed in the artificially drained Rintala area, W. Finland[J]. Applied Geochemistry, 2002, 17(9):1209-1218.

        [4] 章家恩. 酸性硫酸鹽土的景觀診斷及時(shí)空分布與演替模式[J]. 土壤與環(huán)境, 1999, 8(2):144-147.

        Zhang J E. The landscape diagnosis and their spatial and temporal patterns of distribution and succession of acid sulphate soils[J]. Soil and Environmental Sciences,1999, 8(2):144-147

        [5] Andriesse W, van Mensvoort M E F. Acid sulfate soils:distribution and extent[A]. Lal R. Encyclopedia of Soil Science[M]:Boca Raton:CRC Press, 2006. 14-19.

        [6] Ljung K, Maley F, Cook Aetal. Acid sulfate soils and human health—a millennium ecosystem assessment[J]. Environment International, 2009, 35:1234-1242.

        [7] Ljung K, Maley F, Cooka A. Canal estate development in an acid sulfate soil implications for human metal exposure[J]. Landscape and Urban Planning, 2010, 97:123-131.

        [8] 章家恩. 酸性硫酸鹽土的酸害暴發(fā)機(jī)制及其環(huán)境影響[J]. 熱帶地理, 1999, 19(2):137-141.

        Zhang J E. The process of acid hazards in acid sulfate soils and its environmental effects[J]. Tropical Geography,1999, 19(2):137-141

        [9] Gr?ger J, Proske U, Hanebuth T J Jetal. Cycling of trace metals and rare earth elements (REE) in acid sulfate soils in the plain of reeds, vietnam[J]. Chemical Geology, 2011, 288:162-177.

        [10] Lin C. Acid sulfate soils in Australia:characteristics, problem and management[J]. Pedosphere, 1999, 9:289-298.

        [11] Nyberg M E, ?sterholm P, Nystrand M I. Impact of acid sulfate soils on the geochemistry of rivers in south-western Finland[J]. Environment Earth Science, 2012, 66:157-168.

        [12] Smith J, van Oploo P, Marston Hetal. Spatial distribution and management of total actual acidity in an acid sulfate soil environment, McLeods Creek, northeastern NSW, Australia[J]. Catena, 2003, 51:61-79.

        [13] Toivonen J, ?sterholm P. Characterization of acid sulfate soils and assessing their impact on a humic boreal lake[J]. Journal of Geochemical Exploration, 2011, 110:107-117.

        [14] Lin C. Could acid sulfate soils be a potential environmental threat to estuarine ecosystems on the south China coast?[J]. Pedosphere, 1999, 9(1):53-59.

        [15] Lin C. Analytical methods for environmental risk assessment of acid sulfate soils:A review[J]. Pedosphere, 2001, 11(4):301-310.

        [16] 章家恩, 駱世明, 王建武. 酸性硫酸土研究現(xiàn)狀與發(fā)展趨向[J]. 熱帶亞熱帶土壤科學(xué), 1998, 7(4):309-313.

        Zhang J E, Luo S M, Wang J W. The present situation and trends in the research of acid sulphate soils[J]. Tropical and Subtropical Soil Sciencs, 1998, 7(4):309-313

        [17] Zopfi J, Bottcher M E, Jφrgensen B B. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area of central Chile[J]. Geochimica et Cosmochimica Acta, 2008, 72(3):827-843.

        [18] Fanning D S, Rabenhorst M C, Balduff D Metal. An acid sulfate perspective on landscape seascape soil mineralogy in the U.S. Mid-Atlantic region[J]. Geoderma, 2010, 154:457-464.

        [19] Wilson B P. Elevations of sulfurous layers in acid sulfate soils:What do they indicate about sea levels during the Holocene in eastern Australia?[J]. Gatena, 2005, 62:45-46.

        [20] Keene A F, Johnston S G, Bush R Tetal. Effects of hyper-enriched reactive Fe on sulfidisation in a tidally inundated acid sulfate soil wetland[J]. Biogeochemistry, 2011, 103:263-279.

        [21] Berner R A. Sedimentary pyrite formation[J]. American Journal of Science, 1970, 268:1-23.

        [22] Wolthers M, Van Der Gaast S J, Rickard D. The structure of disordered mackinawite[J]. American Mineralogist, 2003, 88:2007-2015.

        [23] Rickard D, Griffith A, Oldroyd Aetal. The composition of nanoparticulate mackinawite, tetragonal iron(II) monosulfide[J]. Chemical Geology, 2006, 235(3-4):286-298.

        [24] Rickard D. Kinetics of Fe-S precipitation:Part 1. Competing reaction mechanisms[J]. Geochimica et Cosmochimica Acta, 1995, 59(21):4367-4379.

        [25] Richard D, Luther G W. Chemistry of iron sulfides[J]. Chemical Reviews, 2007, 107(2):514-562.

        [26] Rickard D, Morse J W. Acid volatile sulfide (AVS)[J]. Marine Chemistry, 2005, 97(3-4):141-197.

        [27] Morse J W, Rickard D. Chemical dynamics of sedimentary acid volatile sulfide[J]. Environmental Science & Technology, 2004, 38:131A-136A.

        [28] Morse J W, Cornwell J C. Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments[J]. Marine Chemistry, 1987, 22:55-69.

        [29] Butle I B, B?ttcher M E, Rickard Detal. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways:implications for the interpretation of sedimentary and hydrothermal pyrite isotope records[J]. Earth and Planetary Science Letters, 2004, 228(3-4):495-509.

        [30] Rickard D. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125℃:the rate equation[J]. Geochimica et Cosmochimica Acta, 1997, 61(1):115-134.

        [31] Rickard D, Luther G W. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125℃:the mechanism[J]. Geochimica et Cosmochimica Acta, 1997, 61(1):135-147.

        [32] Boman A, ?str?m M, Frojdo S. Sulfur dynamics in boreal acid sulfate soils rich in metastable iron sulfide-The role of artificial drainage[J]. Chemical Geology, 2008, 255:68-77.

        [33] Nelson V G. Formation of acid sulfate soil and its implications to brackishwater ponds[J]. Aquacultural Engineering, 1995, 44(4):297-316.

        [34] Boman A, Frojdo S, Backlund Ketal. Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfidemain[J]. Geochimica et Cosmochimica Acta, 2010, 74:1268-1281.

        [35] Silverman M P. Mechanism of bacterial pyrite oxidation[J]. Journal of Bacteriology, 1967, 94(4):1046-1051.

        [36] Ward N J, Sullivan L A, Fyfe D Metal. The process of sulfide oxidation in some acid sulfate soil materials[J]. Australian Journal of Soil Research, 2004, 42(4):449-458.

        [37] Le T M H, Collins R N, Waite T D. Influence of metal ions and pH on the hydraulic properties of potential acid sulfate soils[J]. Journal of Hydrology, 2008, 356:261-270.

        [38] 楊萍如, 何金海, 劉騰輝. 紅樹林及其土壤[J]. 自然資源學(xué)報(bào), 1987, 2(1):32-37.

        Yang P R, He J H, Liu T H. Mangrove and its soil[J]. Journal of Natural Resources, 1987, 2(1):32-37.

        [39] Lin C, Melville M D. Mangrove soil:a potential contamination source to estuarine ecosystems of Australia[J]. Wetlands, 1992, 11:68-75.

        [40] 林慧娜, 傅嬌艷, 吳浩, 等. 中國主要紅樹林濕地沉積物中硫的分布特征及影響因素[J]. 海洋科學(xué), 2009, 33(12):79-82.

        Lin H N, Fu J Y, Wu Hetal. Distribution and influential factors of sulfur in mangrove wet-lands in China[J]. Marine Sciences, 2009, 33(12):79-82.

        [41] 龔子同, 張效樸. 中國的紅樹林與酸性硫酸鹽土[J]. 土壤學(xué)報(bào), 1994, 31(1):86-93.

        Gong Z T, Zhang X P. Mangroves and acid sulfate soils in China[J]. Acta Pedologica Sinica, 1994, 31(1):86-93.

        [42] 黃宇年, 陸發(fā)憙. 廣東咸酸田土壤硫化學(xué)研究[J]. 土壤學(xué)報(bào), 1988, 25(2):101-109.

        Huang Y N, Lu F X. A study on the sulfur chemistry of acid sulfate paddy soils of Guangdong Province[J]. Acta Pedologica Sinica, 1988, 25(2):101-109.

        [43] 廖家隆, 姚素平, 丁海. 濱海紅樹林泥炭沉積物中硫的賦存特點(diǎn)及其控制因素[J]. 高校地質(zhì)學(xué)報(bào), 2008, 14(4):620-630.

        Liao J L, Yao S P, Ding H. The characteristics and controlling factors of sulfur in the sediments of coastal Mangrove peat[J]. Geological Journal of China Universities, 2008, 14(4):620-630.

        [44] 張汝國. 珠江口紅樹林硫的累積和循環(huán)研究[J]. 熱帶亞熱帶土壤科學(xué), 1996, 5(2):67-73.

        Zhang R G. Study on sulphur accumulation and cycling in mangrove forest in Pear River mouth[J]. Tropical and Subtropical Soil Science, 1996, 5(2):67-73

        [45] 桑樹勛, 劉煥杰, 施健. 海南島紅樹林泥炭中硫及其成因研究[J]. 煤田地質(zhì)與勘探, 1993, 21(1):12-17.

        Sang S X, Liu H J, Shi J. Study of sulphur and its genesis in mangrove peats of Hainan Island[J].Coal Geology & Exploration, 1993, 21(1):12-17.

        [46] Burton E D, Bush R T, Sullivan L A. Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes[J]. Environmental Science & Technology, 2006, 40(3):888-893.

        [47] Bush R T. Micromorphology and mineralogy of iron sulfides in acid sulphate soils:Their formation and behaviour[D]. New South Wales:PhD dissertation University of New South Wales, 2001.

        [48] Bloomfield C. Acidification and Ochre formation in Pyritic soil [A]. Dost H. Proceedings of the international symposium on acid sulphate soil[C]:Wageningen, The Netherlands:ILRI Publication, 1973, 2:40-51.

        [49] Evangelou V P, Zhang Y L. A review:Pyrite oxidation mechanisms and acid mine drainage prevention[J]. Critical Reviews in Environmental Science and Technology, 1995, 25(2):141-199.

        [50] Nordstrom D L. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals[A]. Kittrick J A, Fanning D S, Hosner L R. Acid sulfate weathering[M]. Madison:Soil Science Society of America Special Publication, 1982. 37-56.

        [51] Sohlenius G, ?born I. Geochemistry and partitioning of trace metals in acid sulphate soils in Sweden and Finland before and after sulphide oxidation[J]. Geoderma, 2004, 122(2-4):167-175.

        [52] Breemen N V. Genesis, morphology, and classification of acid sulfate soils in coastal plains[A]. Kittrick J A, Fanning D S, Hosner L R. Acid sulfate weathering[M]. Madison:Soil Science Society of America Special Publication, 1982, 95-108.

        [53] Sullivan L A, Bush R T. Iron precipitate accumulations associated with waterways in drained coastal acid sulfate landscapes of eastern Australia[J]. Marine and Freshwater Research, 2004, 55(7):727-736.

        [54] Burton E D, Bush R T, Sullivan L A. Sedimentary iron geochemistry in acidic waterways associated with coastal lowland acid sulfate soils[J]. Geochimica et Cosmochimica Acta, 2006, 70:5455-5468.

        [55] Burton E D, Bush R T, Sullivan L Aetal. Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands[J]. Geochimica et Cosmochimica Acta, 2007, 71:4456-4473.

        [56] Backlund K, Boman A, Fr?jd? S. An analytical procedure determination of sulphur species and isotopes in boreal acid sulphate soils sediments[J]. Agricultural and Food Science, 2005, 14:70-82.

        [57] Breemen N V. Soil forming processes in acid sulphate soils [A]. Drost H. Acid sulphate soil[M]. Wageningen, The Netherlands:International Institute for land Reclamation and Improvement, 1973, 18:66-130.

        [58] Hartikainen H, Yli-Halla M. Oxidation-induced leaching of sulphate and cation from acid sulphate soils[J]. Water, Air, and Soil Pollution, 1986, 27:1-3.

        [59] 劉振乾, 王建武, 駱世明, 等. 酸性硫酸鹽土中硫形態(tài)轉(zhuǎn)化過程的水分制約作用[J]. 生態(tài)科學(xué), 2002, 21(1):68-71.

        Liu Z Q, Wang J W, Luo S Metal. Effects of moisture on the transformation of sulfur forms in acid sulfate sois[J]. Ecology Science, 2002, 21(1):68-71.

        [60] 王建武, 駱世明. 酸性硫酸鹽土中硫的形態(tài)含量分布和酸化特征[J]. 應(yīng)用生態(tài)學(xué)報(bào), 1999, 10(5):583-588.

        Wang J W, Luo S M. Characteristics of sulfur forms content distribution and its acidification of acid sulfate soils[J]. Chinese Journal of Applied Ecology, 1999, 10(5):583-588.

        [61] 鐘繼洪. 酸性硫酸鹽土中的硫及其形態(tài)演變探討[J]. 生態(tài)學(xué)雜志, 2003, 22(5):98-101.

        Zhong J H. Succession of sulfur forms in acid sulfate soils[J]. Chinese Journal of Ecology, 2003, 22(5):98-101.

        [62] Claff S R, Sullivan L A, Burton E Detal. Partitioning of metals in a degraded acid sulfate soil landscape, influence of tidal[J]. Chemosphere, 2011, 85:1220-1226.

        [63] Claff S R, Burton E D, Sullivan L Aetal. Metal partitioning dynamics during the oxidation and acidification of sulfidic soil[J]. Chemical Geology, 2011, 286:146-157.

        [64] Bush R T, Mcgrath R, Sullivan L A. Occurrence of marcasite in an organic-rich Holocene estuarine mud[J]. Soil Research, 2003, 42(6):617-621.

        [65] Smith J, Melville M D. Iron monosulfide formation and oxidation in drain-bottom sediments of an acid sulfate soil environment[J]. Applied Geochemistry, 2004, 19:1837-1853.

        [66] Luther G W. Pyrite synthesis via polysulfide compounds[J]. Geochimica et Cosmochimica Acta, 1991, 55(10):2839-2849.

        [67] Bigham J M, Nordstrom D K. Iron and aluminum hydroxysulfates from acid sulfate waters[J]. Reviews in Mineralogy and Geochemistry, 2000, 40:351-403.

        [68] Johnston S G, Keene A F, Bush R Tetal. Iron geochemical zonation in a tidally inundated acid sulfate soil wetland[J]. Chemical Geology, 2011, 280:257-270.

        [69] Acero P, Ayora C, Torrento Cetal. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite[J]. Geochimica et Cosmochimica Acta, 2006, 70:4130-4139.

        [70] Madden M E E, Madden A S, Rimstidt J Detal. Jarosite dissolution rates and nanoscale mineralogy[J]. Geochimica et Cosmochimica Acta, 2012, 91:306-321.

        [71] Claff S R, Sullivan L A, Burton E Detal. A sequential extraction procedure for acid sulfate soils, partitioning of iron[J]. Geoderma, 2010, 155:224-230.

        [72] Smith A M L, Hudson-Edwards K A, Dubbin W Eetal. Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8:Insights from batch experiments and computational modelling[J]. Geochimica et Cosmochimica Acta, 2006, 3(70):608-621.

        [73] Lin C, Islam M M, Bush R Tetal. Acid release from an acid sulfate soil sample under successive extractions with different extractants[J]. Pedosphere, 2000, 10(3):221-228.

        [74] Joukainen S, Yli-Halla M. Environmental impacts and acid loads from deep sulfidic layer of two well-drained acid sulfate soils in western Finland[J]. Agriculture, Ecosystems & Environment, 2003, 95:297-309.

        [75] 劉兆輝, 王遵親. 我國濱海酸性硫酸鹽土壤中幾種不同形態(tài)的酸[J]. 土壤學(xué)報(bào), 1992, 29(4):401-407.

        Liu Z H, Wang Z Q. Some acid forms in acid sulfate soils in coastal region of China[J]. Acta Pedologica Sinica, 1992, 29(4):401-407.

        [76] 劉振乾, 王建武, 駱世明, 等. 酸性硫酸鹽土酸消長的水動(dòng)力機(jī)制研究[J]. 土壤學(xué)報(bào), 2002, 39(5):726-734.

        Liu Z Q, Wang J W, Luo S Metal. Hydrodynamic mechanism on the change of different forms of acid in acid sulfate soil[J]. Acta Pedologica Sinica, 2002, 39(5):726-734.

        [77] Hicks W, Bowman G R F. Environmental impacts of acid sulfate soils near Cairns, QLD[J]. CSIRO Land Water, 1999, 8.

        [78] Powell B, Martens M. A review of acid sulfate soil impacts, actions and policies that impact on water quality in the Great Barrier Reef catchments, including a case study on remediation at East Trinity[J]. Marine Pollution Bulletin, 2005, 51:149-164.

        [79] Lin C, Lancaster G, Sullivan L Aetal. Actual acidity and its assessment in acid sulfate soils [A]. Slavich P. Proceedings of workshop on assessment and remediation of acid sulfate soils[C]. Lismore, Australia:Acid Sulfate Soil Management Advisory Committee, 2000.

        [80] Lin C, Melville M D, Valetine N. Characteristics of soluble and exchangeable acidity in an extremely acidified acid sulfate soil[J]. Pedosphere, 1999, 9(4):323-330.

        [81] Lin C, O'Brien K, Lancaster Getal. An improved analytical procedure for determination of total actual acidity in acid sulfate soils[J]. Science of The Total Environment, 2000, 252:57-61.

        [82] 林初夏, 吳志峰. 酸性硫酸鹽土的酸度類型及其測定方法[J]. 生態(tài)環(huán)境, 2003, 12(4):505-507.

        Lin C X, Wu Z F. Forms of acidity in acid sulfate soils and their determinations[J]. Ecology and Environment, 2003, 12(4):505-507.

        [83] Sherman R E, Fahey T J, Battles J J. Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest[J]. Journal of Ecology, 2000, 88(1):165-178.

        [84] Dittmar T, Hertkorn N, Kattner Getal. Mangroves, a major source of dissolved organic carbon to the oceans[J]. Global Biogeochemical Cycles, 2006, 20(1):B1012.

        [85] 林鵬. 中國紅樹林研究進(jìn)展[J]. 廈門大學(xué)學(xué)報(bào), 2001, 40(2):592-603.

        Lin P. A review on the mangrove research in China[J]. Journal of Xiamen University, 2001, 40(2):592-603.

        [86] Zhou Y W, Zhao B, Peng Y Setal. Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments[J]. Marine Pollution Bulletin, 2010, 60:1319-1324.

        [87] Nath B, Birch G, Chaudhuri P. Trace metal biogeochemistry in mangrove ecosystems:A comparative assessment of acidified (by acid sulfate soils) and non-acidified sites[J]. Science of The Total Environment, 2013:463-464, 667-674.

        [88] Minh L Q, Tuong T P, van Mensvoort M E Fetal. Contamination of surface water as affected by land use in acid sulfate soils in the Mekong River Delta, Vietnam[J]. Agriculture, Ecosystems & Environment, 1997, 61:19-27.

        [89] Minh L Q, Tuong T P, van Mensvoort M E Fetal. Aluminum contaminant transport by surface runoff and bypass flow from an acid sulphate soil[J]. Agricultural Water Management, 2002, 56:179-191.

        [90] Johnston S G, Keene A F, Burton E Detal. Arsenic mobilization in a seawater inundated acid sulfate soil[J]. Environmental Science and Technology, 2010, 44(6):1968-1976.

        [91] 李金培. 有機(jī)無機(jī)改良劑對酸性硫酸鹽土化學(xué)動(dòng)力學(xué)與水稻生長的影響[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 1993, 14(1):16-23.

        Li J P. The effect of organic matter and inorganic amendnents on the chemical kinetics and the growth of rice in an acid sulphate soil[J]. Journal of South China Agricultural University, 1993, 14(1):16-23.

        [92] 劉兆輝, 王遵親. 我國酸性硫酸鹽土壤中鐵錳形態(tài)轉(zhuǎn)化及遷移[J]. 土壤學(xué)報(bào), 1994, 31(4):376-384.

        Liu Z H, Wang Z Q. Transformation and movement of iron and manganese in acid sulfate soils of China[J]. Acta Pedologica Sinica, 1994, 31(4):376-384.

        [93] 王建武, 駱世明, 馮遠(yuǎn)嬌. 酸性硫酸鹽土中鋁的形態(tài)[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2000, 11(5):735-740.

        Wang J W, Luo S M, Feng Y J. Aluminum forms in acid sulfate soils[J]. Chinese Journal of Applied Ecology, 2000, 11(5):735-740.

        [94] ?str?m M. Mobility of Al P and alkali and alkaline earth metals in acid sulphate soils in Finland[J]. Science of the Total Environment, 1998, 215:19-30.

        [95] Golez N V, Kyuma K. Influence of pyrite oxidation and soil acidification on some essential nutrient elements[J]. Aquacultural Engineering, 1997, 16:107-124.

        [96] Moore P A, Patrick W H. Aluminium, boron and molybdenum availability and uptake by rice in acid sulfate soils[J]. Plant and Soil, 1991, 136:171-181.

        [97] Faltmarsch R M, ?str?m M E, Vuori K M. Environmental risks of metals mobilised from acid sulphate soils in Finland:a literature review[J]. Boreal Environment Research, 2008, 13:444-456.

        [98] Russell D J, Helmke S A. Impacts of acid leachate on water quality and fisheries resources of a coastal creek in northern Australia[J]. Marine and Freshwater Research, 2002, 53:19-33.

        [99] Stephens F J, Ingram M. Two cases of fish mortality in low pH, aluminium rich water[J]. Journal of Fish Diseases, 2006, 29:765-770.

        [100] Hinwood A L, Horwitz P, Appleyard Setal. Acid sulphate soil disturbance and metals in groundwater:Implications for human exposure through home grown produce[J]. Environmental Pollution, 2006, 143:100-105.

        [101] Ferreira T, Otero X, Vidal-Torrado Petal. Redox processes in mangrove soils under in relation to different environmental conditions[J]. Soil Science Society of America, 2007, 71(2):484-491.

        [102] Marchand C, Allenbach M, Lallier-Vergès E. Relationships between heavy metals distribution and organic matter cycling in mangrove sediments (Conception Bay, New Caledonia)[J]. Geoderma, 2011, 160(3-4):444-456.

        [103] Amaral V, Cabral H N, Bishop M J. Resistance among wild invertebrate populations to recurrent estuarine acidification[J]. Estuarine, Coastal and Shelf Science, 2011, 93(4):460-467.

        [104] Amaral V, Cabral H N, Bishop M J. Prior exposure influences the behavioural avoidance by an intertidal gastropod,Bembiciumauratum, of acidified waters[J]. Estuarine, Coastal and Shelf Science, 2013, 136(1):82-90.

        [105] ?str?m M. Partitioning of transition metals in oxidized and reduced zones of sulphide-bearing fine-grained sediments[J]. Applied Geochemistry, 1998, 13(5):607-617.

        [106] ?str?m M. Effect of widespread severely acidic soils on spatial features and abundance of trace elements in streams[J]. Journal of Geochemical Exploration, 2001, 73:181-191.

        [107] Roos M, ?str?m M. Hydrogeochemistry of rivers in an acid sulphate soil hotspot area in western Finland[J]. Agricultural and Food Science, 2005, 14:24-33.

        [108] ?str?m M, Nystrand M, Gustafsson J Petal. Lanthanoid behaviour in an acidic landscape[J]. Geochimica et Cosmochimica Acta, 2010, 74:829-845.

        [109] Macdonald B C T, White I, ?str?m M Eetal. Discharge of weathering products from acid sulfate soils after a rainfall event, Tweed River, eastern Australia[J]. Applied Geochemistry, 2007, 22:2695-2705.

        [110] Hinwood A, Horwitz P, Rogan R. Human exposure to metals in groundwater affected by acid sulfate soil disturbance[J]. Arch Environ Contam Toxicol, 2008, 55:538-545.

        [111] Lin C, Mcconchie D, Bush R Tetal. Characteristics of some heavy metals in acid sulfate topsoils, Eastern Australia[J]. Pedosphere, 2001, 11(1):31-37.

        [112] Lin C, Melville M D. Controls of soluble Al in experimental acid sulfate conditions and acid sulfate soils[J]. Pedosphere,1997, 7(2):97-102.

        [113] Burton E D, Bush R T, Sullivan L Aetal. Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil[J]. Chemical Geology, 2008, 253:64-73.

        [114] Welch S A, Christy A G, Isaacson Letal. Mineralogical control of rare earth elements in acid sulfate soils[J]. Geochimica et Cosmochimica Acta, 2009, 73:44-64.

        [115] Morgan B, Rate A W, Burton E D. Trace element reactivity in FeS-rich estuarine sediments:Influence of formation environment and acid sulfate soil drainage[J]. Science of the Total Environment, 2012, 438:463-476.

        [116] Morgan B, Rate A W, Burton E Detal. Enrichment and fractionation of rare earth elements in FeS- and organic-rich estuarine sediments receiving acid sulfate soil drainage[J]. Chemical Geology, 2012, 308-309:60-73.

        [117] Kang D, Seo Y, Lee Betal. Identification and crop performance of acid sulfate soil-tolerant rice varieties[J]. The Korean Society of Crop Science, 2010, 13(2):75-81.

        [118] 臧小平, 張承林, 孫光明,等. 酸性硫酸鹽土壤上施用磷礦粉對水稻養(yǎng)分有效性的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2003, 9(2):203-207.

        Zang X P, Zhang C L, Sun G Metal. Effect of phosphate rocks on nutrient availability of rice in acid sulphate soils[J]. Plant Nutrition and Fertilizer Science, 2003, 9(2):203-207.

        [119] Rosicky M, Sullivan L, Slavich Petal. Factors contributing to the acid sulfate soil scalding process in the coastal flood plains of New South Wales, Australia[J]. Soil Research, 2004, 42:587-594.

        [120] Faltmarsch R, ?sterholm P, Greger Metal. Metal concentrations in oats (AvenasativaL.) grown on acid sulphate soils[J]. Agricultural and Food Science, 2009, 18:45-56.

        [121] F?ltmarsch R, ?sterholm P, Gunnar J. Chemical composition of cabbage (BrassicaOleraceaL. var. capitata) grown on acid sulfate soils[J]. Journal of Plant Nutrition and Soil Science, 2010, 173:423-433.

        [122] Russell D J, Preston K M, Mayer R J. Recovery of fish and crustacean communities during remediation of tidal wetlands affected by leachate from acid sulfate soils in north-eastern Australia[J]. Wetlands Ecology and Management, 2011, 19:89-108.

        猜你喜歡
        紅樹林影響
        走過紅樹林
        歌海(2024年6期)2024-03-18 00:00:00
        藏著寶藏的紅樹林
        是什么影響了滑動(dòng)摩擦力的大小
        海岸衛(wèi)士——紅樹林
        幼兒園(2021年4期)2021-07-28 07:38:04
        哪些顧慮影響擔(dān)當(dāng)?
        神奇的紅樹林
        走過紅樹林
        歌海(2018年4期)2018-05-14 12:46:15
        沒錯(cuò),痛經(jīng)有時(shí)也會(huì)影響懷孕
        媽媽寶寶(2017年3期)2017-02-21 01:22:28
        擴(kuò)鏈劑聯(lián)用對PETG擴(kuò)鏈反應(yīng)與流變性能的影響
        中國塑料(2016年3期)2016-06-15 20:30:00
        基于Simulink的跟蹤干擾對跳頻通信的影響
        国产97色在线 | 亚洲| 国产黄色一区二区三区av| 亚洲国产精品成人av网| 国模雨珍浓密毛大尺度150p| 精品国产v无码大片在线观看| 国产精品黑色丝袜在线播放| 一区二区亚洲熟女偷拍| 大地资源网在线观看免费官网 | 99久久人人爽亚洲精品美女| 91性视频| 亚洲国产一区二区,毛片| 亚洲一区二区三区小说| 欧美老熟妇欲乱高清视频| 亚洲嫩草影院久久精品| 极品少妇高潮在线观看| 老子影院午夜伦不卡| 久久精品国产亚洲av忘忧草18| 成人国产精品免费网站| 一区二区三区精品免费| 18国产精品白浆在线观看免费 | 一级毛片不卡在线播放免费| 中文字幕丰满人妻有码专区| 巨爆中文字幕巨爆区爆乳| 日韩成人大屁股内射喷水| 麻豆密入视频在线观看| 亚洲av熟女少妇一区二区三区| 欧美激情在线播放| 精品人体无码一区二区三区| 日韩精品首页在线观看| 亚洲日本精品国产一区二区三区| 国偷自产一区二区免费视频| 一本色道久久综合亚洲精品小说| 亚洲综合色视频在线免费观看| 国产精品亚洲а∨无码播放| 国产大学生粉嫩无套流白浆 | av无码精品一区二区三区四区| 亚洲每天色在线观看视频| 偷拍一区二区三区四区| 一性一交一口添一摸视频| 青青青伊人色综合久久亚洲综合| 午夜免费观看一区二区三区|