亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        對初、高等數(shù)學(xué)教與學(xué)銜接的探討

        2014-04-02 11:03:06張慧慧周小媚
        上饒師范學(xué)院學(xué)報 2014年6期
        關(guān)鍵詞:內(nèi)容數(shù)學(xué)課堂

        張慧慧 ,周小媚,余 芳

        (1.上饒師范學(xué)院,江西 上饒 334001;2.上饒市上饒縣田墩鎮(zhèn)黃市棗山小學(xué),江西 上饒 334125;3.上饒市信州區(qū)茅家?guī)X中心小學(xué),江西 上饒 334116)

        引言

        眾所周知,人類社會的進步,與數(shù)學(xué)特別是高等數(shù)學(xué)的廣泛應(yīng)用是分不開的。高等數(shù)學(xué)已深入地滲透到了社會科學(xué)領(lǐng)域,成為許多學(xué)科門類中必不可少的工具。因此高等數(shù)學(xué)在各高校的基礎(chǔ)地位也越來越受到重視,高等數(shù)學(xué)已經(jīng)成為國內(nèi)外大多數(shù)高校理工科的必修課。然而近年來,筆者通過教學(xué)實踐以及和其他教師進行交流,發(fā)現(xiàn)高校中非數(shù)學(xué)專業(yè)的學(xué)生高等數(shù)學(xué)的學(xué)習(xí)效果并不理想,大多數(shù)學(xué)生反映高等數(shù)學(xué)難度太大,難以理解,從而難以下手。這必然會影響他們在專業(yè)課程中的學(xué)習(xí)。

        在課堂及課后調(diào)研中,學(xué)生們普遍認(rèn)為從初等數(shù)學(xué)的學(xué)習(xí)過渡到高等數(shù)學(xué)的學(xué)習(xí)時,學(xué)習(xí)方式和內(nèi)容的不同都讓他們覺得“不適應(yīng)”,即初、高等數(shù)學(xué)的教育銜接出了問題。固然高等數(shù)學(xué)有其自身“難度較大"的特征,但是如能從初、高等數(shù)學(xué)的銜接問題上入手,對學(xué)生學(xué)習(xí)高等數(shù)學(xué)作一鋪墊,將對他們順利從初等數(shù)學(xué)的學(xué)習(xí)過渡到高等數(shù)學(xué)的學(xué)習(xí),進而學(xué)好高等數(shù)學(xué)大有裨益。

        作者查閱相關(guān)研究資料,通過調(diào)研學(xué)生及課堂觀察等方法,結(jié)合日常教學(xué)實踐,對初、高等數(shù)學(xué)教與學(xué)的銜接問題進行初步探討,總結(jié)出以下三個不銜接和兩個不適應(yīng)。

        1 初、高等數(shù)學(xué)不銜接的表現(xiàn)

        初、高等數(shù)學(xué)的教學(xué)銜接問題已經(jīng)受到了數(shù)學(xué)教育工作者的高度重視。2003年3月,教育部頒發(fā)了《普通高等中學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)》,新教材中加入了大學(xué)課程中的一些基本概念、基礎(chǔ)知識和思維方法。這對于學(xué)生順利從初等數(shù)學(xué)的學(xué)習(xí)過渡到高等數(shù)學(xué)的學(xué)習(xí)是非常有益的。然而,初等數(shù)學(xué)與高等數(shù)學(xué)的銜接中還存在不少問題。學(xué)生之所以覺得高等數(shù)學(xué)難學(xué),首先是由于初、高等數(shù)學(xué)的部分內(nèi)容不銜接。這種不銜接主要表現(xiàn)以下三點:

        1.1 有些內(nèi)容是高等數(shù)學(xué)學(xué)習(xí)需要具備的基礎(chǔ)內(nèi)容,但初等數(shù)學(xué)卻未涉及。

        1.2 有些內(nèi)容初、高等數(shù)學(xué)中都有涉及,但內(nèi)容表述有較大區(qū)別。

        在高等數(shù)學(xué)教學(xué)工作中還發(fā)現(xiàn)一個問題: 初等數(shù)學(xué)中某些概念和定義比較模糊,有時甚至同一個概念在初、高等數(shù)學(xué)中定義不一致。 比如曲線的切線,在高等數(shù)學(xué)中將曲線切線定義為曲線割線的極限位置,而初等數(shù)學(xué)中將曲線切線的定義則是與曲線存在且僅存在一個交點的直線。再比如對數(shù)列極限的表述,初等數(shù)學(xué)只是粗略給出了其描述性的定義,即“如果當(dāng)項數(shù)n無限增大時,無窮數(shù)列{xn}的一般項xn無限地趨近于某一個常數(shù)a,那么就說a是數(shù)列{xn}的極限”。而高等數(shù)學(xué)中對數(shù)列極限的定義則是“設(shè){xn}為一數(shù)列,若存在常數(shù)a,使得對任意給定的正數(shù)ε(無論多么小),總存在正整數(shù)N,當(dāng)n>N時,總有|xn-a|<ε,則稱a是數(shù)列{xn}當(dāng)n→∞時的極限”。在這些不同的表述中,顯然高等數(shù)學(xué)中的表述更為嚴(yán)謹(jǐn),但對非數(shù)學(xué)專業(yè)的初學(xué)者來說也更加難以理解和接受。這容易給學(xué)生認(rèn)識上造成誤區(qū),以為高等數(shù)學(xué)中這些內(nèi)容刻板而無聊,是在“鉆牛角尖”,從而心理主觀上對這些內(nèi)容的學(xué)習(xí)產(chǎn)生抗拒。這些問題就需要我們在初等數(shù)學(xué)教育中適當(dāng)引入高等數(shù)學(xué)教育背景,尤其是注意這些表述“不一致”的概念,提前告知學(xué)生初等數(shù)學(xué)中的描述性定義是為了更易理解,但事實上真正的定義在以后的高等數(shù)學(xué)學(xué)習(xí)中會給出。 以更加準(zhǔn)確、系統(tǒng)的數(shù)學(xué)知識結(jié)構(gòu)規(guī)范初等數(shù)學(xué)教育工作。

        1.3 有些內(nèi)容在初、高等數(shù)學(xué)中表述內(nèi)容一致,但這恰好也是它們不銜接的表現(xiàn)。

        這些內(nèi)容乍一看在初等數(shù)學(xué)和高等數(shù)學(xué)中都有涉及且表述一致,好像是銜接的一種表現(xiàn)。但這種重復(fù)其實反映了初、高等數(shù)學(xué)體系的另一種“不銜接”。比如關(guān)于一元函數(shù)求解極值和最值問題。 利用一元函數(shù)的導(dǎo)數(shù)及其增減性列表來研究極值和最值問題這種方法在初等數(shù)學(xué)中十分常見,而高等數(shù)學(xué)中也有相當(dāng)?shù)钠v述同樣的內(nèi)容,事實上,正是這種“重復(fù)”,使得一些學(xué)生在學(xué)習(xí)高等數(shù)學(xué)的時候?qū)Α爸貜?fù)部分”覺得太容易,而其他在初等數(shù)學(xué)中并未涉及的內(nèi)容又讓他們覺得太難,這樣反而讓他們掌握不了學(xué)習(xí)的“度”,徒增不必要的思維障礙。因此初、高等數(shù)學(xué)應(yīng)該對各自的內(nèi)容體系進行細(xì)致地、系統(tǒng)地研究,爭取建立兩者的有機統(tǒng)一完整的體系。

        2 師生在高等數(shù)學(xué)教與學(xué)中的不適應(yīng)

        除卻以上初、高等數(shù)學(xué)不內(nèi)容的不銜接外,以下兩個方面的不適應(yīng)也使高等數(shù)學(xué)的教與學(xué)變得尤其困難。

        2.1 學(xué)生對老師教學(xué)方式的不適應(yīng)。

        初等數(shù)學(xué)的學(xué)習(xí)中,教師講述某個內(nèi)容后,一般都要求學(xué)生反復(fù)練習(xí),不斷鞏同,直到掌握。而高等數(shù)學(xué)特別是非數(shù)學(xué)專業(yè)的高等數(shù)學(xué)內(nèi)容多,課堂時間有限,這使得大部分高等數(shù)學(xué)老師只能抓住主線,提綱挈領(lǐng)地講述,接受學(xué)生反饋的時間少,從而不能有針對性地反復(fù)強調(diào)。這使得不少學(xué)生不適應(yīng)這種教學(xué)方式的轉(zhuǎn)變;另一方面,非數(shù)學(xué)專業(yè)學(xué)生高等數(shù)學(xué)的授課老師一般都出身于數(shù)學(xué)專業(yè),對所教學(xué)生所在的學(xué)科了解較少。這樣就教學(xué)就沒有針對性,所教學(xué)生不能認(rèn)同高等數(shù)學(xué)在其專業(yè)中的用途,從而潛意識中覺得學(xué)而無用;再加上高等數(shù)學(xué)課程起點高,難度大,特別是文科出身的學(xué)生,數(shù)學(xué)基礎(chǔ)不好,他們更加覺得花這么多精力去學(xué)這么難的高等數(shù)學(xué),還不如多花點時間在專業(yè)課上面,因此讓專業(yè)課擠占了原本屬于高等數(shù)學(xué)教與學(xué)的時

        間。另外,老師如能多了解一些高等數(shù)學(xué)在其他專業(yè)應(yīng)用中的實例,或結(jié)合社會熱點問題給出高等數(shù)學(xué)方面的解釋和應(yīng)用,或在講解某些知識時首先介紹相關(guān)研究背景,那將大大提升學(xué)生學(xué)習(xí)高等數(shù)學(xué)的樂趣,從而通過興趣這一最好的老師引導(dǎo)學(xué)生投入高等數(shù)學(xué)的學(xué)習(xí)中。老師善于調(diào)動學(xué)生的學(xué)習(xí)興趣必將使初、高等數(shù)學(xué)的銜接更加容易。比如在講解“n維向量空間Rn”這一概念時,在概念講解結(jié)束后,可以舉例指出n=1時就是初等數(shù)學(xué)所學(xué)習(xí)的實數(shù)集合R,n=2時即為初等數(shù)學(xué)中所學(xué)習(xí)的可以用二維直角坐標(biāo)系來度量的二維平面R2,n=3時即為初等數(shù)學(xué)中所學(xué)習(xí)的可以用三維直角坐標(biāo)系來度量的三維空間R3。這將消除學(xué)生的“畏難”情緒。再比如在介紹無窮級數(shù)時,傳統(tǒng)意義上講述時都是列舉一些具體數(shù)列說明無窮級數(shù)的和可能存在、不存在來引入。此時如果能引入些測度論的知識,讓學(xué)生注意線段是由無窮多個點組成的,點的“長度”當(dāng)然是0,但是這無窮多個“0”加起來的長度卻可以是任意線段的長度,即可以是任意實數(shù)。利用這一看起來“匪夷所思”的生活實例來引起他們對學(xué)習(xí)無窮級數(shù)的和的問題的關(guān)注,這樣一來學(xué)生對無窮級數(shù)的和的興趣將大增,學(xué)習(xí)效果也將有所提升;另一方面也告知他們教材上沒有指明的事實——即要求學(xué)生學(xué)習(xí)的無窮級數(shù)事實上是“可數(shù)的”無窮多項相加。

        2.2 學(xué)生對學(xué)習(xí)思維和方式的轉(zhuǎn)化不適應(yīng)。

        初等數(shù)學(xué)的教學(xué)方式以灌輸為主,進度慢、理論深度不高,學(xué)生在教師講述某個內(nèi)容后,一般都有機會反復(fù)練習(xí)鞏同,直到掌握。這種習(xí)慣使得經(jīng)歷漫長中學(xué)學(xué)習(xí)生涯的學(xué)生對老師產(chǎn)生依賴,缺乏必要的獨立自學(xué)精神。而高等數(shù)學(xué)課程起點高,抽象性強,講授速度快,難度大,教師只是提綱挈領(lǐng)地講述,課后交流輔導(dǎo)也沒有中學(xué)那么多。學(xué)生不能適應(yīng)這種學(xué)習(xí)方式從被動轉(zhuǎn)換為主動的過程,也因此覺得高等數(shù)學(xué)難度太大。但是學(xué)習(xí)不是簡單地由教師把知識傳遞給學(xué)生,而是由學(xué)生自己建構(gòu)知識的過程.學(xué)生不是簡單被動地接受信息,而是主動地建構(gòu)知識。因此有必要針對性地提示和幫助學(xué)生把學(xué)習(xí)思維和方式轉(zhuǎn)化過來。

        3 初、高等數(shù)學(xué)不銜接的解決辦法

        針對上述現(xiàn)象,結(jié)合教學(xué)實踐,作者初步探索了其解決辦法。

        3.1 對教師提出了更高的要求。

        教師必須具備足夠的能力和教學(xué)技巧。要掌握具體的教學(xué)技巧(如講解、討論、引導(dǎo)學(xué)生自主學(xué)習(xí)、合作學(xué)習(xí)等),并有足夠的能力來組織課堂體系,調(diào)動學(xué)生的積極性,解決課堂問題。重點在于教師應(yīng)該學(xué)會如何運用技巧去引導(dǎo)和激發(fā),而不是支配學(xué)生的思維。這就要去深入研究高等數(shù)學(xué)教材,并熟悉初等數(shù)學(xué)教材,理清其中最基本的思想和方法,融入自己的思考努力尋求初等數(shù)學(xué)和高等數(shù)學(xué)的合理結(jié)合點。

        1.財務(wù)人員審核發(fā)票必須嚴(yán)格把關(guān),發(fā)現(xiàn)任何可疑發(fā)票一定要在網(wǎng)上查詢真?zhèn)危绻l(fā)票時間不對、內(nèi)容不符合報銷范圍,單程車票等等都不予報銷,杜絕虛假發(fā)票報銷科研經(jīng)費。

        老師要對每一個知識點都有深刻的認(rèn)識,熟悉其數(shù)學(xué)背景知識,熟悉相關(guān)的經(jīng)典例題和練習(xí)題,最好能熟悉生活實例。講解內(nèi)容要前后融會貫通,構(gòu)建合理的知識結(jié)構(gòu),幫助學(xué)生建立良好的數(shù)學(xué)認(rèn)知結(jié)構(gòu)。比如高等數(shù)學(xué)中的微分法是初等數(shù)學(xué)中沒有的,老師在講解這一全新內(nèi)容時如果能結(jié)合其背景知識,學(xué)生在學(xué)習(xí)過程中就不會有“突如其來”的感覺。比如講解微分法時,可以先講述其研究背景。微分方法的提出源于速度、切線和極值的研究。意大利數(shù)學(xué)家托里切利( E.Torricelli) 根據(jù)他的導(dǎo)師伽利略對做斜拋運動的物體運動軌跡的切線(即合速度)的分解,對切線作了進一步的研究,得出了適用于力學(xué)的微分方法。費馬則把這一方法推廣到普遍情形。在《求最大值和最小值的方法》一文中,他做出了求切線的方法,他的方法是在現(xiàn)代有著廣泛應(yīng)用的微分法的鼻祖,只是還沒有提煉出極限概念。

        3.2 引導(dǎo)學(xué)生主動學(xué)習(xí)可以從以下幾個方面入手。

        3.2.1有計劃地設(shè)置學(xué)生預(yù)習(xí)自學(xué)環(huán)節(jié)。老師針對教學(xué)內(nèi)容,選取合適的部分制定計劃,要求學(xué)生獨立或組成小組針對該內(nèi)容進行準(zhǔn)備和展示。準(zhǔn)備環(huán)節(jié)可以參考教材或查閱資料等,展示環(huán)節(jié)可以是傳統(tǒng)的課堂講解,也可以制成課件利用多媒體資源進行。并要求至少兩組同學(xué)展示成果(時間允許可以多組)。最后老師針對不同組的優(yōu)缺點進行總結(jié),并把學(xué)生展示內(nèi)容中不正確或不完善的部分進行糾正。最大限度調(diào)動學(xué)生積極性。

        3.2.2適當(dāng)?shù)匕颜n堂交給學(xué)生。很多問題特別是較難理解的問題, 其答案和思路不只是老師講出來的,更

        加是學(xué)生自己領(lǐng)悟出來的。因此老師有責(zé)任創(chuàng)造一個良好的課堂氛圍,給學(xué)生一個展示自我才能的舞臺,啟發(fā)學(xué)生與學(xué)生之間或?qū)W生與老師之間進行討論交流學(xué)習(xí)。這樣不僅點燃了學(xué)生學(xué)習(xí)的熱情,更加深了學(xué)生對高等數(shù)學(xué)的理解,提升了學(xué)生學(xué)習(xí)高等數(shù)學(xué)的效率。

        3.2.3課后給學(xué)生布置一些應(yīng)用性強的,具有挑戰(zhàn)性的研究性作業(yè),激發(fā)學(xué)生對高數(shù)的學(xué)習(xí)興趣。比如讓學(xué)生利用微積分以及函數(shù)的知識做有關(guān)股市或金融市場的一些調(diào)查研究,或者完成一個預(yù)測人口增長的模型。這些貼近生活的作業(yè),會使學(xué)生體會到高數(shù)與生活息息相關(guān),從而更愿意去學(xué)高數(shù)。

        3.3 教材的選取也是關(guān)系到能否順利銜接的要點之一。

        不同專業(yè)的學(xué)生對高等數(shù)學(xué)有著不同的要求. 教師應(yīng)該根據(jù)高等數(shù)學(xué)教學(xué)大綱要求,選取合適教材,適當(dāng)安排教學(xué)內(nèi)容,把握教學(xué)大綱,同濟大學(xué)的《高等數(shù)學(xué)》內(nèi)容豐富,嚴(yán)謹(jǐn),體系完整. 但是,它也有內(nèi)容多、知識難、題量大等特點,學(xué)生自學(xué)比較困難,對于經(jīng)濟、農(nóng)業(yè)、管理等專業(yè)的學(xué)生不太適合。因此教師要選擇根據(jù)所教專業(yè)的高等數(shù)學(xué)教學(xué)要求選取適當(dāng)?shù)慕滩淖鳛檩o助,并選擇合適的例題和習(xí)題。

        3.4 要重視新的教學(xué)方式和手段在學(xué)習(xí)中的應(yīng)用。

        4 結(jié)束語

        初、高等數(shù)學(xué)的銜接問題是高中新課標(biāo)實施后學(xué)生學(xué)習(xí)高等數(shù)學(xué)不可避免要面臨的問題,近年來不乏數(shù)學(xué)工作者對此進進行研究。作者僅就自己親身教學(xué)及學(xué)習(xí)體會,淺陋地做出探索,希望能夠?qū)Ψ菙?shù)學(xué)專業(yè)的學(xué)生學(xué)習(xí)高等數(shù)學(xué)有所幫助。

        參考文獻:

        [1] 中華人民共和國教育部制訂.普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗)[M].北京:人民教育出版社,2003.

        [2] 張林泉.淺談高中與大學(xué)數(shù)學(xué)教學(xué)的銜接[J].黑龍江農(nóng)墾師專學(xué)報,2001,4:31~39.

        [3] 張曉東,等.淺談高等數(shù)學(xué)與中學(xué)數(shù)學(xué)教學(xué)的銜接[J].河南廣播電視大學(xué)學(xué)報,2002,5:51~54.

        [4] 同濟大學(xué)應(yīng)用數(shù)學(xué)系. 高等數(shù)學(xué)[M] . 北京: 高等教育出版社,2009.

        [5] 加涅. 學(xué)習(xí)的條件和教學(xué)論[M] . 上海: 華東師范大學(xué)出版社,1999.

        [6] 邱華,江雪萍. 從初等數(shù)學(xué)到高等數(shù)學(xué)銜接的教學(xué)探究[J].淮北師范大學(xué)學(xué)報,2012,33(1):90~93.

        猜你喜歡
        內(nèi)容數(shù)學(xué)課堂
        內(nèi)容回顧溫故知新
        甜蜜的烘焙課堂
        美食(2022年2期)2022-04-19 12:56:24
        美在課堂花開
        翻轉(zhuǎn)課堂的作用及實踐應(yīng)用
        甘肅教育(2020年12期)2020-04-13 06:24:48
        最好的課堂在路上
        主要內(nèi)容
        臺聲(2016年2期)2016-09-16 01:06:53
        我為什么怕數(shù)學(xué)
        新民周刊(2016年15期)2016-04-19 18:12:04
        數(shù)學(xué)到底有什么用?
        新民周刊(2016年15期)2016-04-19 15:47:52
        錯在哪里
        日韩AVAV天堂AV在线| 亚洲熟妇无码八av在线播放| 国产熟妇搡bbbb搡bb七区| 亚洲一区二区三区在线观看播放| 91桃色在线播放国产| 麻豆精品国产专区在线观看| 国产亚洲2021成人乱码| 久久免费视频国产| 大肥婆老熟女一区二区精品| 人妻有码av中文幕久久| 亚洲国产美女精品久久久久∴| av蓝导航精品导航| 亚洲中文无码精品久久不卡| 懂色av一区二区三区网久久| 人妻中文字幕乱人伦在线| 热re99久久精品国产99热| 日本少妇按摩高潮玩弄| 激情五月开心五月av| 亚洲精品国精品久久99热| 国产成人av 综合 亚洲| 高清一级淫片a级中文字幕| 日韩精品一区二区亚洲观看av| 国产v片在线播放免费无码| 99亚洲精品久久久99| 久久久婷婷综合五月天| 久久精品国产69国产精品亚洲| 日韩精品久久无码中文字幕| 亚洲国产综合人成综合网站| 亚洲av综合色区久久精品天堂| 性av一区二区三区免费| 日产无人区一线二线三线乱码蘑菇| 久久免费大片| 日本在线观看一区二区三区视频| 久久婷婷五月综合色奶水99啪| 好男人日本社区www| 人妻无码ΑV中文字幕久久琪琪布| 精品私密av一区二区三区| 国产女主播白浆在线观看| 九九视频免费| 人妻中出中文字幕在线| 亚洲爆乳无码精品aaa片蜜桃|