亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        環(huán)境污染物對(duì)硬骨魚腎間應(yīng)激軸影響的研究進(jìn)展

        2014-03-25 00:46:26鐘艷汝少國(guó)
        生態(tài)毒理學(xué)報(bào) 2014年3期
        關(guān)鍵詞:虹鱒魚類固醇皮質(zhì)醇

        鐘艷,汝少國(guó)

        中國(guó)海洋大學(xué)海洋生命學(xué)院,青島 266003

        在自然水環(huán)境中,魚類常常會(huì)遭受各種各樣的環(huán)境脅迫,如捕食者的威脅、溫度的驟變等,為了應(yīng)對(duì)外環(huán)境的脅迫,魚體通過(guò)激活腎間應(yīng)激軸(即下丘腦-垂體-腎間腺軸,hypothalamic-pituitary-interrenal, 簡(jiǎn)稱HPI軸)合成并分泌應(yīng)激激素皮質(zhì)醇,啟動(dòng)應(yīng)激反應(yīng)(stress response),調(diào)節(jié)機(jī)體的能量分配從而維持體內(nèi)平衡。應(yīng)激反應(yīng)在動(dòng)物界中是一種普遍的、高度保守的適應(yīng)性反應(yīng)[1-2]。然而,有大量文獻(xiàn)報(bào)道了多種環(huán)境污染物的慢性或亞慢性暴露會(huì)導(dǎo)致魚類的腎間應(yīng)激軸損壞或腎間組織損傷,致使機(jī)體無(wú)法正常啟動(dòng)應(yīng)激反應(yīng)。Mishra和Mohanty[3]研究發(fā)現(xiàn)2 mg·L-1或4 mg·L-1六價(jià)鉻鹽慢性暴露一個(gè)月,可導(dǎo)致淡水鯰魚(Channapunctatus)血漿皮質(zhì)醇水平較對(duì)照組顯著降低,腎間細(xì)胞萎縮,在二次急性脅迫下HPI軸調(diào)節(jié)皮質(zhì)醇水平升高的能力缺失,表明六價(jià)鉻鹽慢性暴露損壞了鯰魚HPI軸應(yīng)激功能。環(huán)境污染物包括金屬的長(zhǎng)期暴露導(dǎo)致魚類無(wú)法正常啟動(dòng)適應(yīng)性應(yīng)激反應(yīng),可能帶來(lái)嚴(yán)重的后果[4],如導(dǎo)致魚類在嚴(yán)寒冬季條件下存活能力降低[5];面對(duì)捕食者時(shí)的反應(yīng)和應(yīng)對(duì)能力減弱[6]。應(yīng)激功能的異常是污染物脅迫條件下魚體的一種早期生理反應(yīng),腎間應(yīng)激軸的損壞還可能進(jìn)一步危害生物體的生長(zhǎng)、生殖、代謝、免疫、行為等功能,使魚類的健康水平降低。因此,利用魚類應(yīng)激功能的變化可檢測(cè)、評(píng)估和預(yù)警污染物的毒性效應(yīng)。Pankhurst[7]甚至認(rèn)為,動(dòng)物應(yīng)激功能的變化在評(píng)估環(huán)境質(zhì)量以及預(yù)測(cè)極端環(huán)境(如洪澇、暴風(fēng)雨)來(lái)臨方面也會(huì)有廣闊的應(yīng)用前景。然而在魚類應(yīng)激功能異常研究方面,以往只是利用血漿皮質(zhì)醇水平作為單一指示指標(biāo),忽略了皮質(zhì)醇水平受到腎間應(yīng)激軸的嚴(yán)格調(diào)控。本文通過(guò)對(duì)腎間應(yīng)激軸結(jié)構(gòu)及調(diào)控機(jī)制的簡(jiǎn)要介紹,系統(tǒng)的綜述了多種環(huán)境污染物對(duì)應(yīng)激軸線的干擾效應(yīng),初步探討污染物干擾硬骨魚應(yīng)激軸的作用機(jī)制,以期為深入研究環(huán)境污染物對(duì)魚類應(yīng)激功能的作用機(jī)理提供一定理論基礎(chǔ)。

        1 硬骨魚腎間應(yīng)激軸

        當(dāng)人或動(dòng)物自身完整性受到挑戰(zhàn)并處于危險(xiǎn)狀態(tài)的時(shí)候,我們稱人或動(dòng)物受到“脅迫(stress)”[8]。動(dòng)物應(yīng)對(duì)環(huán)境脅迫的關(guān)鍵反應(yīng),則稱為“應(yīng)激反應(yīng)(stress response)”,包括一系列的行為、生理以及細(xì)胞的變化。急性應(yīng)激反應(yīng)通常是短期的、適應(yīng)性的反應(yīng),它能使機(jī)體應(yīng)對(duì)潛在的威脅;而慢性應(yīng)激反應(yīng)被認(rèn)為是長(zhǎng)期的、不利的反應(yīng),它能夠?qū)ιL(zhǎng)、生殖和免疫反應(yīng)等產(chǎn)生不利的影響[9-11]。

        硬骨魚的應(yīng)激反應(yīng)主要受到下丘腦-垂體-腎間腺軸的調(diào)節(jié)[12-13]。腎間應(yīng)激軸的激活首先從下丘腦開始,下丘腦接收從中樞和周邊神經(jīng)系統(tǒng)發(fā)出的“應(yīng)激”信號(hào),“應(yīng)激”信號(hào)促進(jìn)下丘腦視前核(preoptic nucleus, NPO)神經(jīng)細(xì)胞分泌并釋放促腎上腺皮質(zhì)激素釋放因子(corticotrophin releasing factor, CRF)[14]。CRF在魚類HPI軸的調(diào)控中發(fā)揮關(guān)鍵性作用[15],CRF通過(guò)與垂體前葉促腎上腺皮質(zhì)細(xì)胞膜上的鳥嘌呤核苷酸結(jié)合蛋白(G-蛋白)偶聯(lián)受體結(jié)合,促進(jìn)垂體分泌促腎上腺皮質(zhì)激素(adrenocorticotropic hormone, ACTH),ACTH由前體激素阿黑皮素原(pro-opiomelanocortin, POMC)衍生而來(lái),在脊椎動(dòng)物應(yīng)激反應(yīng)中處于中心角色[16]。垂體分泌并釋放的ACTH與頭腎腎間細(xì)胞上的黑皮質(zhì)素2型受體(melanocortin type 2 receptor, MC2R)結(jié)合后[17],激活MC2R,經(jīng)過(guò)cAMP信號(hào)轉(zhuǎn)導(dǎo)途徑,一些調(diào)節(jié)類固醇激素生成的蛋白被磷酸化,這些蛋白質(zhì)磷酸化后由非活性變成活性,將皮質(zhì)類固醇合成原料--膽固醇由線粒體外膜轉(zhuǎn)運(yùn)至線粒體內(nèi)膜,在一系列皮質(zhì)類固醇生成酶的作用下,最終合成大量的應(yīng)激激素皮質(zhì)醇(cortisol,最主要的皮質(zhì)類固醇激素)(圖1)。皮質(zhì)醇經(jīng)血液循環(huán)到達(dá)靶組織并與靶組織上的糖皮質(zhì)激素受體(glucocorticoid receptor, GR)結(jié)合,調(diào)控一些與糖代謝、免疫功能以及行為等相關(guān)目的基因的轉(zhuǎn)錄[18-19]。GR是類固醇激素受體家族的成員之一,屬于核受體超家族[20],主要存在于硬骨魚的鰓、肝臟、大腦和腸中[21-23]。大多數(shù)硬骨魚如虹鱒魚(Oncorhynchusmykiss)[24]、棘鰭類熱帶淡水魚伯氏樸麗魚(Haplochromisburtoni)[25]等均具有兩種GRs(GR1和GR2),斑馬魚(Daniorerio)是迄今為止被報(bào)道的只有一種GR的硬骨魚。通過(guò)皮質(zhì)醇的合成與釋放,生物體的能量得以重新分配,從而滿足應(yīng)激引起的機(jī)體能量增加的需求[12,26]。

        2 環(huán)境污染物對(duì)腎間應(yīng)激軸的干擾效應(yīng)及其潛在干擾機(jī)制

        2.1 環(huán)境污染物對(duì)腎間應(yīng)激軸的干擾效應(yīng)

        環(huán)境污染物可通過(guò)降低魚體皮質(zhì)醇水平和糖原含量,減弱其對(duì)二次脅迫的應(yīng)答能力。Benguira等[27]利用體內(nèi)試驗(yàn)研究表明,5、20、50 mg·kg-1有機(jī)氯農(nóng)藥o,p’-DDD注射14 d可引起虹鱒魚血漿皮質(zhì)醇水平降低、高濃度處理組肝臟糖原含量顯著減少,從而導(dǎo)致魚體對(duì)二次脅迫的應(yīng)答能力減弱。某些污染物還有可能通過(guò)直接損傷腎間組織、破壞腎間細(xì)胞以及垂體促腎上腺皮質(zhì)細(xì)胞,干擾HPI軸的正常運(yùn)行。Brodeur等[28]認(rèn)為腎間組織功能異常是導(dǎo)致黃色河鱸(Percaflavescens)皮質(zhì)醇應(yīng)激反應(yīng)損壞的原因之一,受重金屬污染水域黃色河鱸的腎間組織(體外)在ACTH的刺激下皮質(zhì)醇分泌水平顯著低于對(duì)照組。因此,環(huán)境污染物對(duì)HPI軸的干擾效應(yīng)最終表現(xiàn)為血漿皮質(zhì)醇水平的降低,導(dǎo)致機(jī)體不能正常啟動(dòng)應(yīng)激反應(yīng),從而無(wú)法提供充足能量應(yīng)對(duì)二次脅迫,使魚體處于亞健康狀態(tài)。

        圖1 魚類皮質(zhì)醇合成途徑Fig. 1 Cortisol biosynthesis pathway in fish

        2.2 腎間應(yīng)激軸的干擾對(duì)其它生理學(xué)功能的影響

        污染物對(duì)腎間應(yīng)激軸的干擾導(dǎo)致皮質(zhì)醇水平的異常,可能會(huì)進(jìn)一步影響魚類的代謝、離子平衡的調(diào)節(jié)以及免疫等生理功能[29-30]。

        皮質(zhì)醇參與調(diào)節(jié)機(jī)體的能量代謝。Aluru和Vijayan[31]研究證實(shí)皮質(zhì)醇通過(guò)與肝臟GR結(jié)合,上調(diào)肝臟葡糖異生作用的限速酶磷酸烯醇式丙酮酸羧激酶(phosphoenolpyruvate carboxykinase, PEPCK),使肝細(xì)胞葡萄糖含量升高,為恢復(fù)體內(nèi)平衡提供能量來(lái)源。污染物可能通過(guò)干擾皮質(zhì)醇合成、GR途徑等,進(jìn)一步影響魚類的代謝[32]。Gagnon等[33]研究發(fā)現(xiàn),Cu(80 μg·L-1)暴露30 d,導(dǎo)致虹鱒魚急性皮質(zhì)醇反應(yīng)能力降低,同時(shí)伴隨血漿葡萄糖水平和肝臟糖原含量的降低。Ings[2]研究表明,100%市政污水暴露導(dǎo)致虹鱒魚在二次脅迫下皮質(zhì)醇應(yīng)答減弱,同時(shí)肝臟己糖激酶(hexokinase, HK)和葡糖激酶(glucokinase, GK)的活性顯著降低,表明虹鱒魚的能量代謝能力也受到了抑制。

        皮質(zhì)醇涉及魚類離子平衡的調(diào)節(jié)。由于硬骨魚不能像哺乳動(dòng)物一樣合成鹽皮質(zhì)激素如醛固酮,皮質(zhì)醇在硬骨魚中除了發(fā)揮糖皮質(zhì)激素功能外,還具有鹽皮質(zhì)激素的作用[12,34]。污染物干擾皮質(zhì)醇應(yīng)激反應(yīng)可能會(huì)進(jìn)一步影響魚類的離子平衡。皮質(zhì)醇能夠促進(jìn)鰓氯細(xì)胞的增殖和分化[35-36]。Laflamme等[32]認(rèn)為,污染最嚴(yán)重湖泊(Osisiko)中的黃鱸血漿氯離子水平減少可能是急性應(yīng)激反應(yīng)能力降低導(dǎo)致的生理學(xué)后果。Na+,K+-ATPase涉及硬骨魚類鰓的離子攝取和鹽分泌[37]。皮質(zhì)醇能夠提高大西洋鮭魚(Salmosalar)鰓Na+,K+-ATPase的活性和mRNA水平,提高耐鹽性[38]。Levesque等[39]研究發(fā)現(xiàn),金屬污染水域中黃鱸急性皮質(zhì)醇反應(yīng)損壞的同時(shí)伴隨鰓Na+,K+-ATPase活性的改變。Lerner等[29]認(rèn)為17β-雌二醇(2 μg·L-1)通過(guò)降低GR水平減少大西洋鮭魚鰓Na+,K+-ATPase的活性,使其離子調(diào)節(jié)能力和海水中的耐鹽性減弱。

        除了能夠干擾能量代謝和離子平衡,皮質(zhì)醇的變化還會(huì)抑制魚類的生殖、生長(zhǎng)以及免疫等功能。如大量的文獻(xiàn)已經(jīng)證實(shí)高于生理水平的皮質(zhì)醇不僅對(duì)生殖功能具有有害影響,還能抑制魚類的生長(zhǎng)。Poursaeid等[40]研究發(fā)現(xiàn)皮質(zhì)醇長(zhǎng)期處理不僅導(dǎo)致大鱘魚Husohuso血漿睪酮和17β-雌二醇水平降低,而且最高濃度處理組身體增長(zhǎng)指數(shù)(包括體重增加率、比生長(zhǎng)速率、肥滿度)也顯著下降。過(guò)高水平的皮質(zhì)醇對(duì)免疫功能也具有抑制作用。Castillo等人[41]的研究則表明皮質(zhì)醇能夠抑制分離巨噬細(xì)胞細(xì)胞因子(TNF、TGFb、IL-6)的表達(dá),當(dāng)皮質(zhì)醇和脂多糖(LPS)同時(shí)加入到巨噬細(xì)胞中,細(xì)胞因子的誘導(dǎo)也被皮質(zhì)醇顯著抑制。

        2.3 環(huán)境污染物對(duì)腎間應(yīng)激軸的潛在干擾機(jī)制

        研究表明環(huán)境污染物主要通過(guò)干擾下丘腦和垂體促皮質(zhì)類固醇激素的分泌、皮質(zhì)醇的合成與代謝、cAMP信號(hào)轉(zhuǎn)導(dǎo)以及皮質(zhì)醇負(fù)反饋途徑等,最終抑制皮質(zhì)醇的合成與分泌,減弱魚類的應(yīng)激反應(yīng)能力。通常情況下,某一種污染物往往是以HPI軸的多個(gè)位點(diǎn)為靶目標(biāo)發(fā)揮干擾效應(yīng)。就目前報(bào)道的文獻(xiàn)來(lái)看,多數(shù)污染物主要通過(guò)干擾類固醇生成和大腦糖皮質(zhì)激素信號(hào)這兩條途徑影響HPI軸的功能[42-44]。

        2.3.1 對(duì)HPI軸的過(guò)度刺激

        皮質(zhì)醇和ACTH等激素分泌亢進(jìn)可能是環(huán)境污染物導(dǎo)致HPI軸功能損壞的機(jī)制之一。如在野外環(huán)境下,污染物本身就作為一個(gè)“應(yīng)激源(stressor)”,長(zhǎng)期、過(guò)度激活腎間應(yīng)激軸,引起慢性應(yīng)激反應(yīng)即皮質(zhì)醇分泌亢進(jìn),可能進(jìn)一步導(dǎo)致魚類HPI軸功能受損或衰竭,對(duì)二次脅迫的應(yīng)答能力下降[45-46]。Hontela等[47]研究表明,加拿大一條被污染河流中的黃色河鱸和白斑狗魚(Esoxlucius)在二次脅迫下應(yīng)激反應(yīng)減弱,原因可能是污染物慢性暴露引起HPI軸持續(xù)活躍、皮質(zhì)醇分泌系統(tǒng)衰竭所致。Norris等人[48]的研究進(jìn)一步證實(shí)了Hontela的推測(cè),受金屬污染水域中的褐鱒魚(Salmotrutta)因過(guò)度分泌ACTH導(dǎo)致HPI軸功能衰竭,二次應(yīng)激的血漿皮質(zhì)醇水平顯著低于對(duì)照組。

        2.3.2 干擾下丘腦以及垂體主要促激素對(duì)皮質(zhì)醇的調(diào)節(jié)

        污染物對(duì)CRF和ACTH的干擾可能直接影響HPI軸功能的正常發(fā)揮。在哺乳動(dòng)物中研究發(fā)現(xiàn),Cd可通過(guò)干擾Y-1型鼠腎上腺腫瘤細(xì)胞ACTH的分泌影響皮質(zhì)類固醇的分泌[49]。因魚體CRF、ACTH等激素水平較難測(cè)定,相關(guān)研究主要是在基因水平上開展的,如Fuzzen等[50]研究表明,100 ng·L-1E2暴露48 h導(dǎo)致雄性斑馬魚皮質(zhì)醇應(yīng)答減弱、crfmRNA的表達(dá)水平降低了三倍。然而,基因水平的變化與激素水平的變化有時(shí)并不成正相關(guān)關(guān)系。因此,未來(lái)還需要從蛋白水平進(jìn)一步研究污染物暴露下CRF和ACTH對(duì)皮質(zhì)醇的調(diào)節(jié)作用。

        2.3.3 干擾cAMP信號(hào)途徑

        普遍認(rèn)為cAMP信號(hào)級(jí)聯(lián)反應(yīng)的過(guò)程主要為:ACTH與受體MC2R結(jié)合后,激活G蛋白,G蛋白激活后促進(jìn)腺苷酸環(huán)化酶生成大量的cAMP[51]。cAMP通過(guò)激活多個(gè)靶目標(biāo)如cAMP-依賴性蛋白激酶A(protein kinase A, PKA)等促進(jìn)類固醇激素的生成[52-53]。cAMP信號(hào)途徑的各個(gè)因子都有可能是環(huán)境污染物干擾皮質(zhì)類固醇合成的關(guān)鍵目標(biāo)。研究發(fā)現(xiàn),有機(jī)氯農(nóng)藥o,p’-DDD能顯著抑制G蛋白激動(dòng)劑NaF、腺苷酸環(huán)化酶激動(dòng)劑毛喉素以及cAMP類似物對(duì)皮質(zhì)醇生成的促進(jìn)效應(yīng),表明cAMP信號(hào)途徑的多個(gè)因子(G蛋白、腺苷酸環(huán)化酶等)均是o,p’-DDD干擾虹鱒魚腎間細(xì)胞皮質(zhì)醇生成的靶位點(diǎn)(體外)[54]。Sandhu和Vijayan[55]研究認(rèn)為鎘(10、100、1 000 nmol)干擾虹鱒魚頭腎細(xì)胞皮質(zhì)醇合成的靶目標(biāo)位于cAMP生成的上游,并推測(cè)MC2R信號(hào)途徑(ACTH誘導(dǎo)皮質(zhì)醇生成首要的一步)可能是鎘干擾虹鱒魚頭腎細(xì)胞皮質(zhì)醇生成的關(guān)鍵目標(biāo)。

        2.3.4 干擾皮質(zhì)醇的合成與代謝

        皮質(zhì)類固醇生物合成途徑的關(guān)鍵限速步驟主要包括:類固醇急性調(diào)節(jié)蛋白(steroidogenic acute regulatory protein, StAR)和外周型苯二氮受體(peripheral-type benzodiazepine receptor,PBR)共同將膽固醇從線粒體外膜轉(zhuǎn)移到細(xì)胞色素P450側(cè)鏈裂解酶(cytochrome P450 side chain cleavage enzyme, P450scc)的活性部位[56-58];P450scc將膽固醇轉(zhuǎn)化成孕烯醇酮[59]。皮質(zhì)類固醇合成途徑中關(guān)鍵酶或蛋白轉(zhuǎn)錄水平的微小變化可能會(huì)對(duì)皮質(zhì)醇激素水平產(chǎn)生顯著的影響[44]。多篇文獻(xiàn)研究結(jié)果表明皮質(zhì)醇合成限速步驟中的關(guān)鍵酶或蛋白是環(huán)境污染物干擾腎間應(yīng)激軸的關(guān)鍵靶目標(biāo),環(huán)境污染物可通過(guò)降低該限速步驟中關(guān)鍵因子的轉(zhuǎn)錄水平,進(jìn)而干擾皮質(zhì)醇的合成。Aluru等[60]研究表明,芳香烴受體(aryl hydrocarbon receptor, AhR)激動(dòng)劑(β-萘黃酮,BNF)和拮抗劑(α-萘黃酮,ANF)可通過(guò)降低StAR和P450scc的mRNA含量使腎間類固醇生成能力減弱,顯著抑制了ACTH對(duì)虹鱒魚頭腎細(xì)胞皮質(zhì)醇分泌的促進(jìn)效應(yīng)(體外)。100 mg·kg-1水楊酸鹽喂食虹鱒魚3 d,可導(dǎo)致頭腎StAR和PBR的mRNA水平顯著降低[43]。

        除了限速步驟中的StAR、PBR和P450scc,皮質(zhì)類固醇合成途徑中的主要蛋白還包括下游的17α-羥化酶(CYP17)、3β-羥化類固醇脫氫酶(3β-HSD)、21-羥化酶(CYP21)和11β-羥化酶(CYP11B)[59]。其中11β-羥化酶(CYP11B)是一個(gè)重要的多功能類固醇合成酶,它參與皮質(zhì)醇生物合成的最后一步,將11-脫氧皮質(zhì)醇轉(zhuǎn)化為皮質(zhì)醇[61]。Kortner等[62]研究發(fā)現(xiàn),0.1、1、10 mg·kg-1三丁基錫(TBT)灌食幼年大馬哈魚72 h,可顯著抑制腎間11β-羥化酶的mRNA水平。但Walsh等[63]認(rèn)為,與限速步驟因子StAR、P450scc等相比,類固醇合成途徑下游的一些酶對(duì)污染物的暴露可能表現(xiàn)較低的敏感性。如芳香烴受體(AhR)激動(dòng)劑(β-萘黃酮,BNF)和拮抗劑(α-萘黃酮,ANF)顯著降低了虹鱒魚頭腎細(xì)胞StAR和P450scc的轉(zhuǎn)錄水平,但對(duì)CYP11B表達(dá)無(wú)影響[60]。Gravel和Vijayan[43]研究表明,水楊酸鹽暴露可顯著降低虹鱒魚頭腎StAR和PBR的mRNA水平,而11β-羥化酶的mRNA水平無(wú)明顯變化。

        皮質(zhì)類固醇的代謝對(duì)血漿皮質(zhì)醇水平的維持也起關(guān)鍵性的作用,環(huán)境污染物可能通過(guò)干擾皮質(zhì)醇的代謝,促進(jìn)或抑制皮質(zhì)醇轉(zhuǎn)化為失活代謝物,進(jìn)而影響其發(fā)揮正常生理功能。Ings等[2]研究發(fā)現(xiàn),城市污水暴露虹鱒魚14 d,在急性脅迫后24 h,100%未稀釋污水處理組皮質(zhì)醇合成酶(StAR、P450scc、11β-羥化酶)mRNA水平均顯著降低,而血漿皮質(zhì)醇含量較對(duì)照組顯著升高,由此推測(cè)城市污水的暴露可能干擾了皮質(zhì)醇的代謝。Wiseman等[64]研究表明,用含硒代蛋氨酸8.47 mg·(kg·dm)-1的食物喂養(yǎng)雌性虹鱒魚126 d后,給予空氣暴露脅迫,血漿皮質(zhì)醇水平較對(duì)照組降低,而其失活代謝物--皮質(zhì)酮水平顯著升高,進(jìn)而導(dǎo)致虹鱒魚對(duì)二次脅迫的應(yīng)激應(yīng)答能力減弱。雖然現(xiàn)有文獻(xiàn)已經(jīng)證明皮質(zhì)醇的代謝是污染物干擾魚類應(yīng)激反應(yīng)的靶位點(diǎn),但是污染物是如何干擾皮質(zhì)醇的代謝途徑尚不清楚。Wiseman等[64]研究中缺少對(duì)11β-羥化類固醇脫氫酶(將皮質(zhì)醇轉(zhuǎn)化成皮質(zhì)酮的直接指標(biāo))水平的測(cè)定。

        2.3.5 干擾大腦GR信號(hào)途徑

        皮質(zhì)醇可通過(guò)負(fù)反饋途徑作用于下丘腦和垂體,調(diào)節(jié)CRF和ACTH的分泌,從而維持血漿中皮質(zhì)醇的水平。其中大腦GR信號(hào)途徑是皮質(zhì)醇負(fù)反饋調(diào)節(jié)環(huán)的一個(gè)關(guān)鍵組成部分,Alderman等[65]研究表明,GR涉及調(diào)節(jié)虹鱒魚下丘腦視前區(qū)(preoptic area, POA)CRF轉(zhuǎn)錄水平,進(jìn)而影響血漿皮質(zhì)醇的水平。大腦GR信號(hào)途徑是污染干擾腎間應(yīng)激軸的靶位點(diǎn)之一。在分子水平上,Aluru等[42]研究表明,高濃度PCBs 100 mg·(kg·bm)-1暴露北極紅點(diǎn)鮭(Salvelinusalpinus)引起神經(jīng)毒性,使含GR的神經(jīng)細(xì)胞減少,大腦GR基因表達(dá)下降,從而干擾了皮質(zhì)醇的負(fù)反饋調(diào)節(jié),導(dǎo)致血漿皮質(zhì)醇水平降低。在蛋白水平上,Gravel和Vijayan[43]的研究也獲得了類似結(jié)果,100 mg·(kg·bw)-1水楊酸鹽處理虹鱒魚3 d導(dǎo)致大腦GR蛋白含量顯著降低約50%,從而干擾了皮質(zhì)醇負(fù)反饋調(diào)節(jié)。

        3 研究展望

        3.1 開發(fā)環(huán)境腎間腺干擾物篩選的分子標(biāo)志物

        三大內(nèi)分泌軸線下丘腦-垂體-性腺軸(hypothalamic-pituitary-gonadal, HPG軸)、下丘腦-垂體-甲狀腺軸(hypothalamic-pituitary-thyroid axis, HPT軸)以及HPI軸共同調(diào)節(jié)魚體的內(nèi)分泌平衡。污染物干擾任一內(nèi)分泌軸線均可導(dǎo)致魚體內(nèi)分泌紊亂,甚至威脅個(gè)體的存活。利用指示內(nèi)分泌軸線干擾的分子標(biāo)志物可以準(zhǔn)確、敏感地評(píng)價(jià)污染物對(duì)魚類早期、低水平的內(nèi)分泌擾亂作用,例如卵黃原蛋白(vitellogenin, VTG)是指示HPG軸是否受到環(huán)境雌激素干擾的理想分子標(biāo)志物。目前,對(duì)HPI軸分子標(biāo)志物的研究工作還未見開展。而開發(fā)指示腎間腺軸干擾的分子標(biāo)志物,對(duì)鑒別和篩選“環(huán)境腎間腺干擾物”具有重要意義。早期關(guān)于哺乳動(dòng)物的研究發(fā)現(xiàn),具有皮質(zhì)類固醇受體啟動(dòng)元件的基因可能是研究污染物干擾皮質(zhì)醇應(yīng)答的有效標(biāo)志物,這可能同樣適用于魚類。Quabius等[66]研究表明,PCBs暴露能引起虹鱒魚前腎細(xì)胞中糖皮質(zhì)激素受體和白細(xì)胞介素-1-β的升高。因此,今后應(yīng)該著重研究含有皮質(zhì)醇受體啟動(dòng)元件的基因,在基因表達(dá)水平上篩選“環(huán)境腎間腺干擾物”的分子標(biāo)志物。

        3.2 環(huán)境污染物對(duì)腎間應(yīng)激軸作用機(jī)制的深入探討

        目前,環(huán)境污染物干擾腎間應(yīng)激軸的機(jī)制研究遠(yuǎn)不夠深入。Ings等[2]研究發(fā)現(xiàn),城市污水暴露導(dǎo)致虹鱒魚皮質(zhì)醇合成酶基因表達(dá)下降而血漿皮質(zhì)醇水平顯著升高,推測(cè)原因是皮質(zhì)醇的代謝也受到干擾,但是該作者并沒(méi)有進(jìn)一步證實(shí)。多篇文獻(xiàn)表明大腦GR信號(hào)途徑是污染物干擾HPI軸的靶位點(diǎn),但垂體水平的負(fù)反饋調(diào)節(jié)卻未見報(bào)道。其次,環(huán)境污染物因其種類、結(jié)構(gòu)和性質(zhì)的不同,其干擾機(jī)制也存在較大差異,有些是對(duì)魚類腎間應(yīng)激軸直接的作用,還有些可能是污染物對(duì)其它內(nèi)分泌軸線的作用間接導(dǎo)致腎間軸線的變化。腎間應(yīng)激軸與生殖軸[67-68]、甲狀腺軸均存在交互作用[69]。三大軸線之間也可以進(jìn)行復(fù)雜的交叉反應(yīng),Liu等[70]研究表明咪鮮胺(prochloraz, PCZ)可通過(guò)降低雌性斑馬魚血漿E2濃度下調(diào)HPI軸CRF的基因表達(dá),并進(jìn)一步導(dǎo)致血漿皮質(zhì)醇水平的降低;而CRF的降低又能夠下調(diào)HPT軸促甲狀腺激素(thyroid-stimulating hormone, TSH)水平,最終導(dǎo)致甲狀腺素(thyroxine, T4)含量下降。因此,作用機(jī)制的進(jìn)一步探討首先要從軸線外角度明確污染物干擾腎間應(yīng)激軸是直接作用還是間接作用,其次要深入研究軸線內(nèi)的靶位點(diǎn),皮質(zhì)醇代謝途徑的酶和因子以及垂體水平的正負(fù)反饋調(diào)節(jié)等應(yīng)是今后深入探討污染物干擾HPI軸作用機(jī)制的研究重點(diǎn),而污染物對(duì)魚類完整內(nèi)分泌系統(tǒng)的影響研究應(yīng)是未來(lái)的研究熱點(diǎn)和難點(diǎn)。

        3.3 大腦神經(jīng)遞質(zhì)系統(tǒng)與應(yīng)激軸的聯(lián)合研究

        目前已知大腦單胺能神經(jīng)遞質(zhì)系統(tǒng)涉及脊椎動(dòng)物的完整應(yīng)激反應(yīng),其中大腦5-羥色胺(5-hydroxytryptamine, 5-HT)系統(tǒng)在復(fù)雜的神經(jīng)內(nèi)分泌環(huán)中發(fā)揮關(guān)鍵作用,在鼠中已經(jīng)證實(shí)5-HT神經(jīng)末端與室旁核內(nèi)包含CRH的神經(jīng)元之間存在直接的突觸聯(lián)系[71],5-HT能夠促進(jìn)哺乳動(dòng)物下丘腦CRF[72]和垂體ACTH的釋放[73];同時(shí),5-HT活性也受到應(yīng)激反應(yīng)中的因子如皮質(zhì)醇、CRF等影響[74]。早期文獻(xiàn)就已表明大腦5-HT能系統(tǒng)在魚類HPI軸的調(diào)節(jié)中也發(fā)揮關(guān)鍵作用[75],但具體機(jī)制還不清楚。近來(lái),Gesto等[76]研究表明,急性應(yīng)激能夠誘導(dǎo)虹鱒魚前腦血清素活性和終腦多巴胺能活性的增加。因此,環(huán)境污染物對(duì)魚類完整應(yīng)激反應(yīng)的影響除了與應(yīng)激軸有關(guān),應(yīng)該還要考慮大腦神經(jīng)遞質(zhì)系統(tǒng)是否也受到干擾,上游神經(jīng)遞質(zhì)系統(tǒng)受到干擾可能也會(huì)影響下游軸線的調(diào)節(jié)。由于單胺能系統(tǒng)與應(yīng)激軸之間存在復(fù)雜的交互作用,在哺乳動(dòng)物中相關(guān)研究很有限,魚類中的文獻(xiàn)更是非常罕見,魚類大腦神經(jīng)遞質(zhì)系統(tǒng)與應(yīng)激軸的聯(lián)系還有待于進(jìn)一步揭示。

        參考文獻(xiàn):

        [1] Tort L. Stress and immune modulation in fish [J]. Developmental and Comparative Immunology, 2011, 35(12): 1366-1375

        [2] Ings J S, Servos M R, Vijayan M M. Exposure to municipal wastewater effluent impacts stress performance in rainbow trout [J]. Aquatic Toxicology, 2011, 103(1-2): 85-91

        [3] Mishra A K, Mohanty B. Effect of hexavalent chromium exposure on the pituitary-interrenal axis of a teleost,Channapunctatus(Bloch) [J]. Chemosphere, 2009, 76(7): 982-988

        [4] Hontela A. Interrenal dysfunction in fish from contaminated sites: In vivo and in vitro assessment [J]. Environmental Toxicology and Chemistry, 1998, 17(1): 44-48

        [5] Odermatt A, Gumy C, Atanasov A G, et al. Disruption of glucocorticoid action by environmental chemicals: Potential mechanisms and relevance [J]. The Journal of Steroid Biochemistry and Molecular Biology, 2006, 102(1-5): 222-231

        [6] Sigismondi L A, Weber L J. Changes in avoidance response time of juvenile chinook salmon exposed to multiple acute handling stresses [J]. Transactions of the American Fisheries Society, 1988, 117(2): 196-201

        [7] Pankhurst N W. The endocrinology of stress in fish: An environmental perspective [J]. General and Comparative Endocrinology, 2011, 170: 265-275

        [8] Selye H. The present state of stress conception [J]. M nchener Medizinische Wochenschrift, 1953, 95(15): 426-433

        [9] Maule A G, Tripp R A, Kaattari S L, et al. Stress alters immune function and disease resistance in chinook salmon (Oncorhynchustshawytscha) [J]. Journal of Endocrinology, 1989, 120: 135-142

        [10] Pickering A D. Rainbow trout husbandry: Management of the stress response [J]. Aquaculture, 1992, 100(1-3): 125-139

        [11] Schreck C B, Contreras-Sanchez W, Fitzpatrick M S. Effects of stress on fish reproduction, gamete quality, and progeny [J]. Aquaculture, 2001, 197(1-4): 3-24

        [12] WendelaarBonga S E. The stress response in fish [J]. Physiological Reviews, 1997, 77(3): 591-625

        [13] Flik G, Klaren P H M, Van den Burg E H, et al. CRF and stress in fish [J]. General and Comparative Endocrinology, 2006, 146(1): 36-44

        [14] Huising M O, Metz J R, Schooten V C, et al. Structural characterisation of a cyprinid (CyprinuscarpioL.) CRH, CRH-BP and CRH-R1, and the role of these proteins in the acute stress response [J]. Journal of Molecular Endocrinology, 2004, 32: 627-648

        [15] Yao M, Denver R J. Regulation of vertebrate corticotropin-releasing factor genes [J]. General and Comparative Endocrinology, 2007, 153(1-3): 200-216

        [16] Metz J R, Huising M O, Meek J, et al. Localisation, expression, and control of adrenocorticotropic hormones in the nucleus preopticus and pituitary gland of common carp (CyprinuscarpioL.) [J]. Journal of Endocrinology, 2004, 182: 23-31

        [17] Alderman S L, Bernier N J. Ontogeny of the corticotropin-releasing factor system in zebrafish [J]. General and Comparative Endocrinology, 2009, 164(1): 61-69

        [18] Mommsen T P, Vijayan M M, Moon T W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation [J]. Reviews in Fish Biology and Fisheries, 1999, 9(3): 211-268

        [19] Bury N R, Sturm A. Evolution of the corticosteroid receptor signaling pathway in fish [J]. General and Comparative Endocrinology, 2007, 153(1-3): 47-56

        [20] Zhang Z, Burch P E, Cooney A J, et al. Genomic analysis of the nuclear receptor family: New insights into structure, regulation, and evolution from the rat genome [J]. Genome Research, 2004, 14: 580-590

        [21] Maule A G, Schreck C B. Stress and cortisol treatment changed affinity and number of glucocorticoid receptors in leukocytes and gill of coho salmon [J]. General and Comparative Endocrinology, 1991, 84(1): 83-93

        [22] Lee P C, Goodrich M, Struve M, et al. Liver and brain glucocorticoid receptor in rainbow trout,Oncorhynchusmykiss: Down-regulation by dexamethasone [J]. General and Comparative Endocrinology, 1992, 87(2): 222-231

        [23] Pottinger T G, Knudsen F R, Wilson J. Stress-induced changes in the affinity and abundance of cytosolic cortisol-binding sites in liver of rainbow trout,Oncorhynchusmykiss(Walbaum), are not accompanied by changes in measurable nuclear binding [J]. Fish Physiology and Biochemistry, 1994, 12(6): 499-511

        [24] Bury N R, Sturm A, Le Rouzic P, et al. Evidence for two distinct functional glucocorticoid receptors in teleost fish [J]. Journal of Molecular Endocrinology, 2003, 31: 141-156

        [25] Greenwood A K, Butler P C, White R B, et al. Multiple corticosteroid receptors in a teleost fish: Distinct sequences, expression patterns, and transcriptional activities [J]. Endocrinology, 2003, 144(10): 4226-4236

        [26] Gallo V P, Civinini A. Survey of the adrenal homolog in teleosts [J]. Internation Reviews of Cytology, 2003, 230: 89-187

        [27] Benguira S, Leblond V S, Weber J P, et al. Loss of capacity to elevate plasma cortisol in rainbow trout (OncorhynchusMykiss) treated with a single injection ofo,p'-dichlorodiphenyldichloroethane [J]. Environmental Toxicology and Chemistry, 2002, 21(8): 1753-1756

        [28] Brodeur J C, Sherwood G, Rasmussen J B, et al. Impaired cortisol secretion in yellow perch (Percaflavescens) from lakes contaminated by heavy metals: In vivo and in vitro assessment [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(12): 2752-2758

        [29] Lerner D T, Bjornsson B T, McCormick S D. Larval exposure to 4-nonylphenol and 17beta-estradiol affects physiological and behavioral development of seawater adaptation in Atlantic salmon smolts [J]. Environmental Science & Technology, 2007, 41(12): 4479-4485

        [30] 史熊杰, 劉春生, 余珂, 等.環(huán)境內(nèi)分泌干擾物毒理學(xué)研究[J].化學(xué)進(jìn)展, 2009, 21(2-3): 340-349

        Shi X J, Liu C S, Yu K, et al. Toxicological research on environmental endocrine disruptors [J]. Progress in Chemistry, 2009, 21(2-3): 340-349 (in Chinese)

        [31] Aluru N, Vijayan M M. Hepatic transcriptome response to glucocorticoid receptor activation in rainbow trout [J]. Physiological Genomics, 2007, 31(3): 483-491

        [32] Laflamme J S, Couillard Y, Campbell P G C, et al. Interrenal metallothionein and cortisol secretion in relation to Cd, Cu, and Zn exposure in yellow perch,Percaflavescens, from Abitibi lakes [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(8): 1692-1700

        [33] Gagnon A, Jumarie C, Hontela A. Effects of Cu on plasma cortisol and cortisol secretion by adrenocortical cells of rainbow trout (Oncorhynchusmykiss) [J]. Aquatic Toxicology, 2006, 78(1): 59-65

        [34] Sturm A, Bury N, Dengreville L, et al. 11-deoxycorticosterone is a potent agonist of the rainbow trout (Oncorhynchusmykiss) mineralocorticoid receptor [J]. Endocrinology, 2005, 146(1): 47-55

        [35] Laurent P, Perry S F. Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout,Salmogairdneri[J]. Cell and Tissue Research, 1990, 259(3): 429-442

        [36] Madsen S S. Cortisol treatment improves the development of hypoosmoregulatory mechanisms in the euryhaline rainbow trout,Salmogairdneri[J]. Fish Physiology Biochemistry, 1990, 8(1):45-52

        [37] Evans D H, Piermarini P M, Choe K P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste [J]. Physiological Reviews, 2005, 85(1): 97-177

        [38] McCormick S D, RegishA , O'Dea M F, et al. Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+, K+-ATPase activity and isoform mRNA levels in Atlantic salmon [J]. General and Comparative Endocrinology, 2008, 157(1): 35-40

        [39] Levesque H M, Dorval J, Hontela A. Hormonal, morphological, and physiological responses of yellow perch (Percaflavescens) to chronic environmental metal exposures [J]. Journal of Toxicology and Environmental Health, Part A, 2003, 66(7): 657-676

        [40] Poursaeid S, Falahatkar B, Amiri B M, et al. Effects of long-term cortisol treatments on gonadal development, sex steroids levels and ovarian cortisol content in cultured great sturgeonHusohuso[J]. Comparative Biochemistry and Physiology, Part A, 2012, 163(1): 111-119

        [41] Castillo J, Castellana B, Acerete L, et al. Stress-induced regulation of steroidogenic acute regulatory protein expression in head kidney of Gilthead seabream (Sparusaurata) [J]. Endocrinology, 2008, 196(2): 313-322

        [42] Aluru N, Jorgensen E H, Maule A G, et al. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous arctic charr [J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2004, 287: 787-793

        [43] Gravel A, Vijayan M M. Salicylate disrupts interrenal steroidogenesis and brain glucocorticoid receptor expression in rainbow trout [J]. Toxicological Sciences, 2006, 93(1): 41-49

        [44] Aluru N, Vijayan M M. Aryl hydrocarbon receptor activation impairs cortisol response to stress in rainbow trout by disrupting the rate-limiting steps in steroidogenesis [J]. Endocrinology, 2006, 147(4): 1895-1903

        [45] Quabius E S, Balm P H M, Wendelaar Bonga S E. Interrenal stress responsiveness of tilapia (Oreochromismossambicus) is impaired by dietary exposure to PCB 126 [J]. General and Comparative Endocrinology, 1997, 108(3): 472-482

        [46] Cericato L, Neto J G M, Fagundes M, et al. Cortisol response to acute stress in jundiáRhamdiaquelenacutely exposed to sub-lethal concentrations of agrichemicals [J]. Comparative Biochemistry and Physiology, Part C, 2008, 148(3): 281-286

        [47] Hontela A, Rasmussen J B, Audet C, et al. Impaired cortisol stress response in fish from environments polluted by PAHs, PCBs, and Mercury [J]. Archives of Environmental Contamination and Toxicology, 1992, 22(3): 278-283

        [48] Norris D O, Donahue S, Dores R M, et al. Impaired adrenocortical response to stress by brown trout,Salmotrutta, living in metal-contaminated waters of the Eagle River, Colorado [J]. General and Comparative Endocrinology, 1999, 113(1): 1-8

        [49] Mgbonyebi O P, Smothers C T, Mrotek J J. Modulation of adrenal cell functions by cadmium salts: 2. Sites affected by CdCI2during unstimulated steroid synthesis [J]. Cell Biology and Toxicology, 1994, 10(1): 23-33

        [50] Fuzzen M L M, Bernier N J, Kraak G V D. Differential effects of 17β-estradiol and 11-ketotestosterone on the endocrine stress response in zebrafish (Daniorerio) [J]. General and Comparative Endocrinology, 2011, 170(2): 365-373

        [51] Miller W L. Molecular biology of steroid hormone synthesis [J]. Endocrine Reviews, 1988, 9(3): 295-318

        [52] Lacroix M, Hontela A. Regulation of acute cortisol synthesis by cAMP-dependent protein kinase and protein kinase C in a teleost species, the rainbow trout (Oncorhynchusmykiss) [J]. Endocrinology, 2001, 169: 71-78

        [53] Stocco D M. Tracking the role of a StAR in the sky of the new millennium [J]. Molecular Endocrinology, 2001, 15(8): 1245-1254

        [54] Lacroix M, Hontela A.The organochlorineo,p'-DDD disrupts the adrenal steroidogenic signaling pathway in rainbow trout (Oncorhynchusmykiss) [J]. Toxicology and Applied Pharmacology, 2003, 190(3): 197-205

        [55] Sandhu N, Vijayan M M. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout [J]. Aquatic Toxicology, 2011, 103(1-2): 92-100

        [56] Culty M, Li H, Boujrad N, et al. In vitro studies on the role of the peripheral-type benzodiazepine receptor in steroidogenesis [J]. The Journal of Steroid Biochemistry and Molecular Biology, 1999, 69(1-6): 123-130

        [57] Papadopoulos V. In search of the function of the peripheral-type benzodiazepine receptor [J]. Endocrine Research, 2004, 30(4): 677-684

        [58] Stocco D M, Wang X J, Jo Y, et al. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: More complicated than we thought [J]. Molecular Endocrinology, 2005, 19(11): 2647-2659

        [59] Payne A H, Hales D B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones [J]. Endocrine Reviews, 2004, 25(6): 947-970

        [60] Aluru N, Renaud R, Leatherland J F, et al. Ah receptor-mediated impairment of interrenal steroidogenesis involves StAR protein and P450scc gene attenuation in rainbow trout [J]. Toxicological Sciences, 2005, 84(2): 260-269

        [61] Kime D E. Classical and nonclassical reproductive steroids in fish [J]. Reviews in Fish Biology and Fisheries, 1993, 3(2): 160-180

        [62] Kortner T M, Pavlikova N, Arukwe A. Effects of tributyltin on salmon interrenal CYP11β, steroidogenic factor-1 and glucocorticoid receptor transcripts in the presence and absence of second messenger activator, forskolin [J]. Marine Environmental Research, 2010, 69(1): 56-58

        [63] Walsh L P, Webster D R, Stocco D M. Dimethoate inhibits steroidogenesis by disrupting transcription of the steroidogenic acute regulatory (StAR) gene [J]. Journal of Endocrinology, 2000, 167: 253-263

        [64] Wiseman S, Thomas J K, McPhee L, et al. Attenuation of the cortisol response to stress in female rainbow trout chronically exposed to dietary selenomethionine [J]. Aquatic Toxicology, 2011, 105(3-4): 643-651

        [65] Alderman S L, McGuire A, Bernier N J, et al. Central and peripheral glucocorticoid receptors are involved in the plasma cortisol response to an acute stressor in rainbow trout [J]. General and Comparative Endocrinology, 2012, 176(1): 79-85

        [66] Quabius E S, Krupp G, Secombes C J. Polychlorinated biphenyl 126 affects expression of genes involved in stress-immune interaction in primary cultures of rainbow trout anterior kidney cells [J]. Environmental Toxicology and Chemistry, 2005, 24(12): 3053-3060

        [67] McQuillan H J, Lokman P M, Young G. Effects of sex steroids, sex, and sexual maturity on cortisol production: An in vitro comparison of chinook salmon and rainbow trout interrenals [J]. General and Comparative Endocrinology, 2003, 133(1): 154-163

        [68] Carragher J F, Sumpter J P, Pottinger T G, et al. The deleterious effects of cortisol implantation on reproductive function in two species of trout,SalmotruttaL. andSalmogairdneriRichardson[J]. General and Comparative Endocrinology, 1989, 76(2): 310-321

        [69] Peter V S, Peter M C S. The interruption of thyroid and interrenal and the inter-hormonal interference in fish: Does it promote physiologic adaptation or maladaptation? [J]. General and Comparative Endocrinology, 2011, 174(3): 249-258

        [70] Liu C S, Zhang X W, Deng J, et al. Effects of prochloraz or propylthiouracil on the cross-talk between the HPG, HPA, and HPT axes in zebrafish [J]. Environmental Science & Technology, 2011, 45(2): 769-775

        [71] Liposits Z, Phelix C, Paull W K. Synaptic interaction of serotonergic axons and corticotropin releasing factor (CRF) synthesizing neurons in the hypothalamic paraventricular nucleus of the rat [J]. Histochemistry, 1987, 86(6): 541-549

        [72] Boisvert J P, Boschuetz T J, Resch J M, et al. Serotonin mediated changes in corticotropin releasing factor mRNA expression and feeding behavior isolated to the hypothalamic paraventricular nuclei [J]. Neuroscience Letters, 2011, 498(3): 213-217

        [73] Calogero A E, Bagdy G, Moncada M L, et al. Effect of selective serotonin agonists on basal, corticotrophin-releasing hormone and vasopressin-induced ACTH releaseinvitrofrom rat pituitary cells [J]. Journal of Endocrinology, 1993, 136(3): 381-387

        [74] DiBattista J D, Anisman H, Whitehead M, et al. The effects of cortisol administration on social status and brain monoaminergic activity in rainbow troutOncorhynchusmykiss[J]. Journal of Experimental Biology, 2005, 208: 2707-2718

        [75] Winberg S, Nilsson A, Hylland P. Serotonin as a regulator of hypothalamic-pituitary-interrenal activity in teleost fish [J]. Neuroscience Letters, 1997, 230(2): 113-116

        [76] Gesto M, López-Patio M A, HernndezJ, et al. The response of brain serotonergic and dopaminergic systems to an acute stressor in rainbow trout: A time course study [J]. Journal of Experimental Biology, 2013, 216: 4435-4442

        猜你喜歡
        虹鱒魚類固醇皮質(zhì)醇
        危重患者內(nèi)源性皮質(zhì)醇變化特點(diǎn)及應(yīng)用進(jìn)展
        The most soothing music for dogs
        超聲引導(dǎo)腕管注射類固醇治療腕管綜合征及其對(duì)神經(jīng)電生理的影響
        牛脾轉(zhuǎn)移因子聯(lián)合核酸疫苗對(duì)虹鱒魚IHN病的保護(hù)率影響研究
        人11β-羥基類固醇脫氫酶基因克隆與表達(dá)的實(shí)驗(yàn)研究
        血睪酮、皮質(zhì)醇與運(yùn)動(dòng)負(fù)荷評(píng)定
        超聲引導(dǎo)下局部注射皮質(zhì)類固醇混合制劑治療老年性膝骨關(guān)節(jié)炎的止痛療效
        飼料無(wú)酶褐變對(duì)雄性虹鱒魚胃蛋白酶活性的影響
        飼料博覽(2016年7期)2016-04-05 14:20:34
        三倍體虹鱒魚的海水馴化試驗(yàn)
        唾液皮質(zhì)醇與血漿皮質(zhì)醇、尿游離皮質(zhì)醇測(cè)定的相關(guān)性分析及其臨床價(jià)值
        人妻体体内射精一区中文字幕| 被三个男人绑着躁我好爽视频| 免费看黑人男阳茎进女阳道视频| 人妻少妇精品视频一区二区三区| 国产精品爽爽va在线观看网站| 国产精品美女一级在线观看| 亚洲一区二区三区高清视频| 91偷拍与自偷拍亚洲精品86| 免费观看a级毛片| 国产精成人品日日拍夜夜免费| 少妇邻居内射在线| 久久久久人妻精品一区5555| 麻豆国产成人av高清在线| 亚洲毛片在线免费视频| 国模吧无码一区二区三区| 国产99久久久久久免费看| 亚洲欧美日韩中文v在线| 熟女乱乱熟女乱乱亚洲| 中文字幕亚洲综合久久综合| 久久精品中文闷骚内射| 亚洲欧洲偷自拍图片区| 亚洲aⅴ久久久噜噜噜噜| 亚洲精品中文字幕乱码三区99| av影院手机在线观看| 又粗又黄又猛又爽大片免费| 国产香蕉97碰碰视频va碰碰看| 国产做床爱无遮挡免费视频 | 日本在线观看一区二区三区视频 | 亚洲AV秘 无码一区二p区三区| 亚洲熟女国产熟女二区三区| 久久久人妻一区二区三区蜜桃d| 风韵少妇性饥渴推油按摩视频| 日韩熟女系列中文字幕| 精品无码av一区二区三区| 亚洲欧洲中文日韩久久av乱码| 亚洲AV秘 无码一区二区在线| 亚洲av专区一区二区| 极品少妇hdxx麻豆hdxx| 国内a∨免费播放| 亚洲国产精品综合福利专区| 久久久精品国产三级精品|