呂淑芳江靜
(1.河南大學(xué)生命科學(xué)學(xué)院 棉花生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,開封 475004;2.河南科技大學(xué)農(nóng)學(xué)院,洛陽(yáng) 471003)
擬南芥乙烯合成酶ACS基因家族研究進(jìn)展
呂淑芳1,2江靜1
(1.河南大學(xué)生命科學(xué)學(xué)院 棉花生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,開封 475004;2.河南科技大學(xué)農(nóng)學(xué)院,洛陽(yáng) 471003)
1-氨基環(huán)丙烷-1-羧酸(1-aminocyclopropane-1-carboxylic acid,ACC)合酶(ACC synthase,ACS)是乙烯生物合成的限速酶。ACS酶活性是ACC和乙烯調(diào)控植物生長(zhǎng)發(fā)育的基礎(chǔ),其酶活性調(diào)節(jié)主要涉及轉(zhuǎn)錄啟動(dòng)、翻譯后修飾、酶高級(jí)結(jié)構(gòu)形成、生化特性等方面。簡(jiǎn)要總結(jié)擬南芥ACS酶活性研究進(jìn)展。
ACS酶 活性調(diào)控 乙烯
植物激素乙烯(ethylene)是氣體小分子(C2H4),不僅調(diào)節(jié)植物種子萌發(fā)、細(xì)胞伸長(zhǎng)、組織分化、葉片和花的衰老脫落、果實(shí)成熟[1-8]等生長(zhǎng)發(fā)育過程,還調(diào)控生物脅迫和非生物脅迫[9-11]等應(yīng)答反應(yīng)。多種逆境因子都可以增加乙烯生物合成量,并因此改變植物抵抗和耐受逆境脅迫能力。
植物乙烯生物合成是一系列酶促反應(yīng)過程:首先腺苷蛋氨酸合成酶催化蛋氨酸與腺苷酸(AMP)反應(yīng)生成腺苷蛋氨酸(SAM);然后,SAM由ACC合酶催化生成ACC;最后,ACC氧化酶(ACC oxidase,ACO)催化ACC發(fā)生氧化反應(yīng)而生成乙烯[11-14]。其中,ACS催化SAM向ACC轉(zhuǎn)化是關(guān)鍵的限速步驟,所以ACS被認(rèn)為是ACC和乙烯生物合成的限速酶?,F(xiàn)已從番茄、冬瓜、蘋果、康乃馨、筍瓜、豇豆及擬南芥中克隆到一些ACS基因[15-18],這些同源的ACS酶活性調(diào)節(jié)過程各種各樣。本研究著重介紹模式植物擬南芥ACS酶活性及其調(diào)控特點(diǎn)。
擬南芥基因組包含12個(gè)ACS同源基因,分別分布在5條染色體上。家族成員之間的氨基酸序列相似性為32%-91%,核苷酸序列相似34%-84%[19],ACS蛋白序列具有7個(gè)相同的功能結(jié)構(gòu)域和11個(gè)保守性位點(diǎn),包含了輔基磷酸吡哆醛結(jié)合位點(diǎn)、底物特異性結(jié)合位點(diǎn)、磷酸化位點(diǎn)等結(jié)構(gòu)信息。其中,ACS1缺少3個(gè)保守的氨基酸(T、N和P),沒有酶促活性[20],ACS3的基因是假基因[19,21],ACS10和
ACS12執(zhí)行氨基轉(zhuǎn)移酶功能[19],其余9個(gè)ACS酶具有催化ACC生物合成功能。根據(jù)其蛋白C末端序列的差異分為3個(gè)類型,即TypeI:ACS1、2和6;TypeII:ACS4、5、8和9;TypeIII:ACS7、11[22-24](圖1)。其中,TypeI有一個(gè)鈣依賴蛋白激酶(Calcium-dependent protein kinase,CDPK)磷酸化位點(diǎn)和3個(gè)有絲分裂原蛋白激酶(Mitogen activated protein kinase,MAPK)磷酸化位點(diǎn),TypeII僅有一個(gè)單獨(dú)CDPK磷酸化位點(diǎn),TypeIII沒有以上所述蛋白激酶磷酸化位點(diǎn)。
圖1 擬南芥ACS蛋白C端差異及其分類
研究表明,ACS蛋白序列和結(jié)構(gòu)存在一定的保守性和差異性。就蛋白序列而言,肽鏈長(zhǎng)度,分子量的不同,氨基酸的豐度、功能性位點(diǎn)各不相同[27];就結(jié)構(gòu)特點(diǎn)而言,N末端序列的保守性、C末端序列的多樣性等也不相同[28]。這些決定了其生化特性不同,如等電點(diǎn)、底物親和力和最大反應(yīng)速度的不同,對(duì)ACS抑制劑AVG、Sinefungin的敏感程度不同[19],同時(shí)也決定了其功能差異(表1)。
表1 ACS家族成員的生化指標(biāo)[19]
擬南芥ACS酶活性直接關(guān)系到體內(nèi)乙烯含量。野生型植株(Wild type,WT)的黃化苗過量產(chǎn)生乙烯(Ethylene over-produce),在ACS5和ACS9功能缺失突變體acs5、acs9或者acs5acs9這一過程受限[25,26],說明ACS5和ACS9是WT植株黃化苗時(shí)期乙烯過度產(chǎn)生的主效基因。光照條件下,5 d齡的WT植株中的乙烯含量高于功能缺損的acs1-1突變體;類似的功能缺失突變體acs4-1與acs9-1植株中的乙烯含量要顯著高于WT;而單突變acs2-1,acs5-1 對(duì)乙烯含量的影響并不顯著[29]。這些結(jié)果暗示,ACS酶活性隨著植物生長(zhǎng)發(fā)育階段而改變,且各成員具有功能特異性。但是,令人費(fèi)解的是,ACS1被認(rèn)為無催化乙烯合成活性[29,30],acs1-1突變體卻表現(xiàn)出乙烯含量顯著變化。據(jù)此推測(cè),單個(gè)ACS基因突變可能影響ACS基因家族整體表達(dá)水平的調(diào)節(jié)。
ACS單個(gè)成員具有功能特異性和專一性,主要表現(xiàn)在下胚軸伸長(zhǎng)、開花時(shí)間和子葉面積的大小3個(gè)方面。acs1-1 和 acs9-1黑暗中生長(zhǎng)的黃化幼苗下胚軸伸長(zhǎng)得到促進(jìn),而acs4-1下胚軸長(zhǎng)度受到抑制;光下生長(zhǎng)的所有ACS單突變體下胚軸伸長(zhǎng)得
到促進(jìn),子葉面積增加。acs1-1、acs6-1、acs7-1和acs9-1開花時(shí)間較WT提前,但acs6-1 acs7-1雙突變體早花表型受到抑制,開花時(shí)間較WT延遲[29]。暗示ACS6和ACS7在調(diào)控開花時(shí)間方面可能存在功能拮抗作用。
基因的轉(zhuǎn)錄水平調(diào)控是植物應(yīng)答各種信號(hào)刺激的重要過程。借助于基因芯片技術(shù)、Northern blot、定量PCR技術(shù)、GUS轉(zhuǎn)基因和酶活性分析等技術(shù),分析不同的生長(zhǎng)發(fā)育時(shí)期、不同外界信號(hào)刺激下ACS基因家族的轉(zhuǎn)錄活性調(diào)節(jié)發(fā)現(xiàn),ACS家族成員轉(zhuǎn)錄調(diào)控各有特點(diǎn)。
2.1 不同發(fā)育時(shí)期、不同器官組織中特點(diǎn)
除ACS9在發(fā)育后期表達(dá)外,擬南芥ACS家族其它基因在5 d的黃化苗、光下生長(zhǎng)的幼苗及表皮細(xì)胞、保衛(wèi)細(xì)胞、維管組織中均有表達(dá)[9,31-34];其中ACS11在萼片的香毛簇中特異表達(dá),ACS1在胚座框中特異表達(dá);而在擬南芥中胚軸、根、花的不同組織和長(zhǎng)角果中表現(xiàn)為多個(gè)ACS基因共表達(dá)[21]。
2.2 不同環(huán)境因素調(diào)節(jié)的ACS表達(dá)特點(diǎn)
生物脅迫與非生物脅迫可改變ACS轉(zhuǎn)錄活性和乙烯合成。物理傷害雖然能抑制下胚軸中ACS1、ACS5的組成性表達(dá),但卻誘導(dǎo)ACS2、ACS4、ACS6、ACS7、ACS8的表達(dá)[21];冷處理抑制ACS5 和ACS11表達(dá),且改變了ACS8表達(dá)模式;熱處理增強(qiáng)了ACS4的mRNA含量,改變了ACS8和ACS11的表達(dá)模式;缺氧環(huán)境下誘導(dǎo)ACS2、ACS6、ACS7、ACS9的表達(dá)[21]。ACS基因轉(zhuǎn)錄活性也被外源激素所調(diào)控。IAA可提高ACS2、ACS4、ACS5、ACS6、ACS7、ACS8、ACS11在擬南芥根中的表達(dá),特異的誘導(dǎo)擬南芥黃化苗中ACS4表達(dá)[32];油菜素內(nèi)酯能夠增強(qiáng)ACS4的mRNA含量[33]。同時(shí),基因芯片結(jié)果(http://bar.utoronto.ca/efp)顯示,處理150 mmol/L NaCl時(shí),ACS家族各基因mRNA含量呈現(xiàn)不同的時(shí)間相關(guān)性。光照誘導(dǎo)ACS8表達(dá)呈現(xiàn)晝夜節(jié)律變化[35]。
ACS基因表達(dá)也會(huì)受到體內(nèi)或體外乙烯水平自催化調(diào)節(jié)。ACS4、ACS 7、ACS9受到ACC顯著性的誘導(dǎo)[34,36];ACS9在乙烯不敏感突變體etr1-1與ein2-1均表現(xiàn)為mRNA含量的下降,且ACC處理不能恢復(fù)ACS9的mRNA含量[37]。這些研究結(jié)果暗示,ACC處理對(duì)ACS酶活性誘導(dǎo)是必要而非充分的,同時(shí)也暗示了乙烯的自催化調(diào)節(jié)是通過乙烯受體感受乙烯信號(hào)后反饋調(diào)節(jié)ACS基因表達(dá)。
另外,張舒群等[38]報(bào)道ACS2和ACS6轉(zhuǎn)錄活性可被促有絲分裂活化蛋白激酶(Mitogen-activated protein kinase,MPK)3/MPK6和轉(zhuǎn)錄因子WRKY33所調(diào)控,從而影響乙烯的合成。
ACS是以磷酸吡哆醛為輔因子的胞質(zhì)酶,半衰期很短,通常只有30 min到幾小時(shí)[39-41]。ACS蛋白結(jié)構(gòu)決定了自身的生化功能,保守性較低的C端往往是蛋白修飾位點(diǎn);位于中間某些位置的Arg、Try是二聚體相互作用的位點(diǎn)。這些位點(diǎn)屬于非酶活性位點(diǎn),但是調(diào)節(jié)著ACS命運(yùn)。
3.1 ACS家族蛋白修飾
廣譜蛋白激酶抑制劑K252a或十字孢堿(Staurosporine)能夠抑制真菌誘導(dǎo)劑對(duì)番茄懸浮細(xì)胞ACS酶活性的誘導(dǎo)作用[42],而用蛋白磷酸化酶抑制劑花萼海綿誘癌素A(Calyculin A)處理番茄后能夠組成型的誘導(dǎo)ACS酶活性[42,43],說明磷酸化可以調(diào)節(jié)ACS活性。進(jìn)一步的研究證明,磷酸化對(duì)ACS活性的調(diào)節(jié)是通過對(duì)其穩(wěn)定性的調(diào)節(jié)來改變ACS活性[22,44,45]。
TypeI和TypeII ACSs在沒有乙烯存在時(shí)通過蛋白酶體降解。對(duì)于TypeI ACSs,乙烯的存在可能誘導(dǎo)E3識(shí)別位點(diǎn)的磷酸化從而阻止了E3的識(shí)別。TypeII ACSs,其降解受到擬南芥3個(gè)BTB 結(jié)構(gòu)域的E3180 連接酶的作用,其適配器蛋白是ETO1、EOL1和EOL2。其中ETO1與cullin3和AtACS5互作,ETO1表達(dá)的破壞導(dǎo)致了ACS5的穩(wěn)定性和持續(xù)乙烯的合成,所以ETO1可能作為一個(gè)特異的底物適配器介導(dǎo)AtACS5的降解[46-48]。ACS4、ACS8和ACS9具有與ACS5相似的C端,都含有類似的絲氨酸位點(diǎn),同時(shí)ACS5蛋白的C端絲氨酸位點(diǎn)被證明是CDPK磷酸化位點(diǎn)[49]。XBAT32是E3連接酶環(huán)指區(qū)域的一個(gè)蛋白,酵母雙雜交顯示XBAT32能與ACS4和ACS7相互作用,修飾ACS蛋白負(fù)調(diào)控乙烯的合成,從而調(diào)控?cái)M南芥?zhèn)雀陌l(fā)育[50-52]。
14-3-3蛋白在乙烯信號(hào)傳遞中發(fā)揮一定的作用,14-3-3蛋白可能通過結(jié)合ACS磷酸化的C末端來調(diào)節(jié)ACS的活性,保護(hù)ACS在乙烯生物合成時(shí)不被降解。用串聯(lián)親和純化標(biāo)簽(Tandem affinity purification,TAP)標(biāo)記擬南芥14-3-3ω(At1g78300),并在轉(zhuǎn)基因植物中表達(dá)。串聯(lián)MS分析純化復(fù)合物,結(jié)果表明14-3-3蛋白能與121個(gè)蛋白相互作用,其中包括參與乙烯合成的ACC合成酶(ACS-6、-7和-8)[53]。 最近,Huang等[54]證明14-3-3與ACS7相互作用參與根的向重力性。Yao等[55]通過酵母雙雜交系統(tǒng),證明在酵母細(xì)胞中水稻14-3-3蛋白和ACS能發(fā)生相互作用。
圖2 ACS蛋白在乙烯合成中的調(diào)控模式[58]
表2 ACS蛋白之間互作[8]
番茄成熟后期,Le-ACS2位于C端的第460位氨基酸被磷酸化后,表現(xiàn)出乙烯的過量產(chǎn)生,而Le-ACS4并沒有表現(xiàn)出磷酸化[22]。說明ACS蛋白磷酸化是由其蛋白結(jié)構(gòu)決定的,更準(zhǔn)確地說是由其C末端的序列決定的[56,57]。植物體內(nèi)、體外因子都可以改變ACS蛋白的磷酸化進(jìn)程。正常條件下,ACS表現(xiàn)出低活性,當(dāng)植物受到外界刺激的時(shí)候,能夠迅速產(chǎn)生乙烯,蛋白激酶通過直接與ACS相互作用并對(duì)其磷酸化來參與這一過程。擬南芥I型ACS家族成員具有保守的MPK3和MPK6作用位點(diǎn),ACS2、6能夠被MPK6磷酸化[45,57]。II型與III型的ACS家族成員不具備MPK磷酸化位點(diǎn)(圖2),當(dāng)ACS6沒有被磷酸化的情況下,能夠被迅速形成的26S蛋白酶復(fù)合體降解,而磷酸化的作用就是抑制蛋白酶復(fù)合體對(duì)C端的結(jié)合,從而改變其蛋白穩(wěn)定性[56]。驗(yàn)發(fā)現(xiàn),ACS蛋白之間能夠形成同源二聚體與異源二聚體,位于其肽鏈中間位置的Arg、Try是二聚體相互作用位點(diǎn)。不同的二聚體具有不同的生化特性,也決定了不同的蛋白純化條件[36],同時(shí)表現(xiàn)出不同的酶活力[59],包括對(duì)底物SAM結(jié)合的米氏常數(shù)(Km值:8.3-4 mol/L)、催化常數(shù)(kcat值:0.19-4.82 s-1)和對(duì)抑制劑AVG的抑制常數(shù)(Ki值:0.019-0.8 mol/L)。但并不是所有的二聚體都具有酶活力。ACS單體間能夠形成25個(gè)具有酶活力的二聚體與20個(gè)不具有酶活力的二聚體。除了ACS1外,擬南芥ACS家族其他蛋白同源二聚體都具有酶活力(表2)。ACS7能夠與TypeI和TypeII的ACS單體形成功能性的異源二聚體。意外的是,ACS1同源二聚體不具備酶活力,但能夠與ACS2和ACS6形成具有酶活力的異源二聚體[9]。但是,迄今為止,這些二
3.2 ACS蛋白互作
通過大腸桿菌(E. coli)ACS蛋白體外純化實(shí)
聚體如何形成,以何種方式結(jié)合,亞細(xì)胞定位以及具有什么樣的生物學(xué)調(diào)控功能與意義都還不確定。
ACS每個(gè)基因成員的表達(dá)調(diào)控受不同脅迫因素的誘導(dǎo),基因的表達(dá)也較為復(fù)雜,其調(diào)節(jié)主要發(fā)生在轉(zhuǎn)錄水平上,同時(shí)也發(fā)生在翻譯水平上[60,61]。因此,乙烯生物合成的調(diào)控可能存在多種因素,通過不同的調(diào)控因子分別接受不同的刺激,誘導(dǎo)特定的ACS的表達(dá)[62-65],同時(shí)也通過所編碼蛋白的氨基酸序列的差異決定其反應(yīng)的動(dòng)力學(xué)性質(zhì)及乙烯生物合成的速度[13,65]。但是到目前為止,調(diào)控ACS表達(dá)的轉(zhuǎn)錄因子、轉(zhuǎn)錄調(diào)控的信號(hào)通路等都鮮少報(bào)道。
乙烯生物合成途徑中的ACC合成酶基因不斷被分離克隆,有的已經(jīng)通過基因工程技術(shù),將其轉(zhuǎn)入到不同的物種中,通過轉(zhuǎn)基因技術(shù)來調(diào)控植物ACC合成酶基因的表達(dá)。但植物體內(nèi)參與乙烯生物合成的ACC合成酶基因的數(shù)目及特性尚不清楚。今后,需要進(jìn)一步從分子和蛋白水平上進(jìn)行研究。
[1]Hidenori T, Takahiro I, Tetsuhito S, et al. Isolation and characterization of the ACC synthase genes from lettuce and the involvement in low pH-induced root hair initiation[J]. Plant Cell Physiol, 2003, 44(1):62-69.
[2]Yuri T, José RB. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple[J]. J Exp Bot, 2006, 57(14):3953-3960.
[3]Salman MA, Levi A, Wolf S, et al. ACC synthase genes are polymorphic in watermelon and differentially expressed in flowers and in response to auxin and gibberellin[J]. Plant Cell Physiol, 2008, 49(5):740-750.
[4]Mu?oz-robredo P, Rubiob P, Infanteb R, et al. Ethylene biosynthesis in apricot:Identification of a ripening-related 1-aminocyclopropane-1-carboxylic acid synthase(ACS)gene[J]. Postharvest Biol Technol, 2012, 63(1):85-90.
[5]Akira N, Shinjiro S, Yasutaka K, et al. Expression and internal feedback regulation of ACC synthase and ACC oxidase genes in ripening tomato fruit[J]. Plant Cell Physiol, 1997, 38(10):1103-1110.
[6]Yoon GM, Kieber JJ. 1-Aminocyclopropane-1-carboxylic acid as a signalling molecule in plants[J]. Aob Plants, 2013, 5:plt017.
[7]Xia LS, Keller JA, Shen NF. The 1-aminocyclopropane-1 -carboxylate synthase gene family of Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1992, 89(22):11046-11050.
[8]Wang A, Li T, Harada T. The regulation of 1-aminocyclopropan-1-carboxylate synthase genes on fruit shelf life of apple[J]. Eur J Hortic Sci, 2011, 76(8):77-83.
[9]Wang NN, Shih MC, Li N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes ACS4, ACS5, and ACS7 induced by hormones and stresses[J]. J Exp Bot, 2005, 56(3):909-920.
[10]Wi SJ, Park KY. Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants[J]. Mol Cells, 2002, 13(2):209-220.
[11]Young TE, Meeley RB, Gallie DR. ACC synthase expression regulates leaf performance and drought tolerance in maize[J]. Plant J, 2004, 40(2):813-825.
[12]Lin ZF, Zhong S, Dong G. Recent advances in ethylene research[J]. J Exp Bot, 2009, 60:3311-3336.
[13]Zeinolabedin J. Ethylene Biosynthesis[J]. Tech J Engin & App Sci, 2012, 1(4):107-110.
[14]Argueso CT, Hansen M, Kieber JJ. Regulation of ethylene biosynthesis[J]. J Plant Growth Regul, 2007, 26(2):92-105.
[15]Boller T, Herner R, Kende H. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid[J]. Planta, 1979, 145(3):293-303.
[16]Johnson PR, Ecker JR. The ethylene gas signal transduction pathway:a molecular perspective[J]. Annu Rev Genet, 1998, 32:227-254.
[17]Ge L, Liu J, Wong W, et al. Identification of a novel multiple environmental factor-responsive 1-aminocyclopropane-1-carboxylate synthase gene, NT-ACS2, from tobacco[J]. Plant Cell Environ, 2000, 23(11):1169-1182.
[18]Shi HY, Zhang YX, Chen L. Cloning, characterization and expression analysis of a 1-aminocyclopropane-1-carboxylate synthase gene from pear[J]. Can J Plant Sci, 2013, 93(3):465-471.
[19]Yamagami T, Tsuchisaka A, Yamada K, et al. Biochemical diversity among the 1-amino-cyclopropane-1- carboxylate synthase isozymes encoded by the Arabidopsis gene family[J]. J Bio Chem, 2003,
278(49):49102-49112.
[20]Liang XW, Abel S, Keller JA, et al. The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1992, 89(22):11046-11050.
[21]Tsuchisaka A, Theologis A. Heterodimeric interactions among the 1-amino-cyclopropane- 1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family[J]. Proc Natl Acad Sci USA, 2004, 101(8):2275-2280.
[22]Yoshida H, Nagata M, Saito K, et al. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases[J]. BMC Plant Biol, 2005, 5:14-20.
[23]Wang KL, Yoshid AH, Lurin C, et al. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein[J]. Nature, 2004, 428(6986):945-950.
[24]Hansen M, Chae HS, Kieber JJ. Regulation of ACS protein stability by cytokinin and brassinosteroid[J]. Plant J, 2009, 57(4):606-614.
[25]Woeste KE, Ye C, Kieber JJ. Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane -1-carboxylic acid synthase[J]. Plant Physiol, 1999, 119(2):521-530.
[26]Vogel JP, Woeste KE, Theologis A, et al. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively[J]. Proc Natl Acad Sci USA, 1998, 95:4766-4771.
[27]Zhang TC, Qiao Q, Zhong Y. Detecting adaptive evolution and functional divergence in aminocyclopropane-1-carboxylate synthase(ACS)gene family[J]. Comput Biol Chem, 2012, 38:10-16.
[28]Choudhury S, Roy S, Sengupta D. C-terminal phosphorylation is essential for regulation of ethylene synthesizing ACC synthase enzyme[J]. Plant Signal Behav, 2013, 8:e23000.
[29]Tsuchisaka A, Yu G, Jin H, et al. A combinatorial interplay among the 1-aminocyclopropane- 1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana[J]. Genetics, 2009, 183(3):979-1003.
[30]Liang X, Oono Y, Shen NF, et al. Characterization of two members(ACS1 and ACS3)of the 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana[J]. Gene, 1995, 167(1-2):17-24.
[31]Toufighi K, Brady SM, Austin R, et al. The botany array resource: e-northerns, expression angling, and promoter analyses[J]. Plant J, 2005, 43(1):153-163.
[32]Tsuchisaka A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members[J]. Plant Physiol, 2004, 136(2):2982-3000.
[33]Joo S, Seo YS, Kim SM, et al. Brassinosteroid induction of AtACS4 encoding an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase 4 in Arabidopsis seedlings[J]. Physiologia Plantarum, 2006, 126(4):592-604.
[34]Tang X, Chang L, Wu S, et al. Auto-regulation of the promoter activities of Arabidopsis 1-aminocyclopropane-1-carboxylate synthase genes ACS4, ACS5, and ACS7 in response to different plant hormones[J]. Plant Sci, 2008, 175(1-2):161-167.
[35]Simon CT, Filip V, Lucas JJ, et al. Circadian rhythms of ethylene emission in Arabidopsis[J]. Plant Physiol, 2004, 136(11):3751-3761.
[36]Peng HP, Lin TY, Wang NN, et al. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia[J]. Plant Mol Biol, 2005, 58(1):15-25.
[37]Jose MA, Takashi H, Gregg R, et al. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis[J]. Science, 1999, 284(5423):2148-2152.
[38]Li G, Meng X, Wang R, et al. Dual-level regulation of acc synthase activity by mpk3/mpk6 cascade and its downstream wrky transcription factor during ethylene induction in Arabidopsis[J]. PLoS Genet, 2012, 8(6):e1002767.
[39]Chae HS, Faure F, Kieber J. The eto1, eto2 and eto3 mutations and cytokinin treatment crease ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein[J]. Plant Cell, 2003, 15:1-15.
[40]Yip WK, Dong JG, Kenny JW, et al. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase[J]. Proc Natl Acad Sci USA, 1990, 87:7930-7934.
[41]Bleecker AB, Kendeh. Ethylene:a gaseous signal molecule in plants[J]. Annu Rev Cell Dev Biol, 2000, 16(1):1-18.
[42]Grosskopf DG, Felix G, Boller T. K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro[J]. FEBS Lett, 1990, 275(1-2):177-180.
[43]Felix G, Grosskopf DG, Regenass M, et al. Elicitor-induced
ethylene biosynthesis in tomato cells characterization and use as a bioassay for elicitor action[J]. Plant Physiol, 1991, 97(1):19-25.
[44]Sunjoo J, Liu YD, Abraham L, et al. MAPK phosphorylationinduced stabilization of ACS6 protein is mediated by the noncatalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway[J]. Plant J, 2008, 54(1):129-140.
[45]Han L, Li GJ, Yang KY, et al. Mitogen-activated protein kinase 3 and 6 regulate botrytis cinerea-induced ethylene production in Arabidopsis[J]. Plant J, 2010, 64(1):114-127.
[46]Delaure SL, van Hemelrijck W, De Bolle MFC, et al. Building up plant defenses by breaking down proteins[J]. Plant Sci, 2008, 174(4):375-385.
[47]Wang KL, Yoshida H, Lurin C, et al. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein[J]. Nature, 2004, 428(6986):945-950.
[48]Chae HS, Faure FKieber JJ. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein[J]. Plant Cell, 2003, 15(2):545-559.
[49]Spanu P, Grosskopf DG, Felix G, et al. The apparent turnover of 1-aminocyclopropane-1 -carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation[J]. Plant Physiol, 1994, 106(2):529-535.
[50]Prasad ME, Schofield A, Lyzenga M, et al. Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis[J]. Plant Physiol, 2010, 153:1587-1596.
[51]Wendy J, Lyzenga M, Judith K, et al. The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7[J]. Plant J, 2012, 71(1):23-34.
[52]Prasad ME, Stone SL. Further analysis of XBAT32, an Arabidopsis RING E3 ligase, involved in ethylene biosynthesis[J]. Plant Signal Behav, 2010, 5(11):1425-1429.
[53]Chang IF, Curran A, Woolsey R, et al. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana[J]. Proteomics, 2009, 9(11):2967- 2985.
[54]Huang SJ, Chang CL, Wang PH, et al. A typeIII ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana[J]. J Exp Bot, 2013, 14(64):4343-4360.
[55]Yao Y, Du Y, Jiang L, et al. Interaction between ACC synthase 1 and 14-3-3 proteins in rice:a new insight[J]. Biochemistry(Moscow), 2007, 72(9):1003-1007.
[56]Skottke KR, Yoon GM, Kieber JJ. Delong a protein phosphatase 2a controls ethylene biosynthesis by differentially regulating the turnover of acc synthase isoforms[J]. PLoS Genet, 2011, 7(4):e1001370.
[57]Tatsuki M. Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region[J]. J Biol Chem, 2001, 276(30):28051-28057.
[58]McManus MT. The plant hormone ethylene[M]. New York:John Wiley Sons, 2012.
[59]Kende H. Ethylene biosynthesis[J]. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44(1):283-307.
[60]Woeste KE, Ye C, Kieber JJ. Two Arabidopsis mutants that overproduce ethylene are affected in the post-transcriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase[J]. Plant Physiol, 1999, 119(29):521-529.
[61]Varanasi V, Shin S, Mattheis J, et al. Expression profiles of the Md-ACS3 gene suggest a function as an accelerator of apple(Malus× domestica)fruit ripening[J]. Postharvest Biol Technol, 2011, 62(2):141-148.
[62]Mark LT, Xue P, Yang RH. 1-Aminocyclopropane-1-carboxylic acid(ACC)concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode(Heterodera glycines)-infected roots[J]. J Exp Bot, 2010, 61 : 463-472.
[63]Tan DM, Li TZ, Wang AD. Apple 1-aminocyclopropane-1-carboxylic acid synthase genes, MdACS1 and MdACS3a, are expressed in different systems of ethylene biosynthesis[J]. Plant Mol Biol Rep, 2013, 31(1):204-209.
[64]Shi HY, Zhang YX, Sun W. Molecular characterization of pear 1-aminocyclopropane-1-carboxylate synthase gene preferentially expressed in leaves[J]. J Agr Sci, 2012, 4(6):72-79.
[65]Wang KL, Yoshida H, Lurin C, et al. Regulation of ethylene gas biosynthesis by the Arbidopsis ETO1 protein[J]. Nature, 2004, 428(6986):945-950.
(責(zé)任編輯 狄艷紅)
Review of Arabidopsis 1-Aminocyclopropane-1-Carboxylic Acid Synthases
Lü Shufang1,2Jiang Jing1
(1. State Key Laboratory of Cotton Biology,College of Life Science,Henan University,Kaifeng 475004;2. College of Agricultural,Henan University of Science and Technology,Luoyang 471003)
1-aminocyclopropane-1-carboxylic acid(ACC)synthase(ACS)is the key rate-limiting enzyme of ethylene biosynthesis. The activity of ACS enzyme is the basis of ACC or ethylene regulates plant growth and development. This regulation is mainly involved in various levels:transcription, post-transcriptional modification, enzyme structure formation, biochemical characteristics, and so on. Here we briefly review the research progresses of ACS enzymic activity.
ACS enzyme Activity regulation Ethylene
2014-03-27
國(guó)家自然科學(xué)基金項(xiàng)目(31271510)
呂淑芳,女,講師,碩士研究生,研究方向:植物學(xué)與分子生物學(xué);E-mail:lvshufang780515@sina.com
江靜,博士,教授,研究方向:植物抗逆生理與分子生物學(xué);E-mail:jiangjing@henu.edu.cn