亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A study of the validation of atmospheric CO2from satellite hyper spectral remote sensing

        2014-03-20 21:37:46ZHANGMioZHANGXingYingLIURuiXiHULieQun
        Advances in Climate Change Research 2014年3期

        ZHANG Mio,ZHANG Xing-Ying,*,LIU Rui-Xi,HU Lie-Qun

        aKey Lab of Radiometric Calibration and Validation for Environmental Satellites/National Satellite Meteorological Center, China Meteorological Administration,Beijing 100081,China

        bUrumqi Meteorological Satellite Ground Station,Urumqi 830011,China

        A study of the validation of atmospheric CO2from satellite hyper spectral remote sensing

        ZHANG Miaoa,ZHANG Xing-Yinga,*,LIU Rui-Xiaa,HU Lie-Qunb

        aKey Lab of Radiometric Calibration and Validation for Environmental Satellites/National Satellite Meteorological Center, China Meteorological Administration,Beijing 100081,China

        bUrumqi Meteorological Satellite Ground Station,Urumqi 830011,China

        Three total column dry-air mole fractions of CO2(XCO2)products from satellite retrievals,namely SCIAMACHY,NIES-GOSAT,and ACOS-GOSAT,in the Northern Hemisphere were validated by ground data from the Total Carbon Column Observing Network(TCCON).The results showed that the satellite data have the same seasonal fluctuations as in the TCCON data,with maximum in April or May and minimum in August or September.The three products all underestimate the XCO2.The ACOS-GOSAT and the NIES-GOSAT products are roughly equivalent,and their mean standard deviations are 2.26×10-6and 2.27×10-6respectively.The accuracy of the SCIMACHY product is slightly lower,with a mean standard deviation of 2.91×10-6.

        CO2;Satellite remote sensing;Validation

        1.Introduction

        As the main greenhouse gas in the atmosphere(Xiang et al., 2009),CO2has produced the radiation force which causes the global warming and has become one of the most influential global environmental problems(IPCC,2007;Zou et al.,2008; Feng et al.,2008).Although traditional ground-based observation methods have the advantages of high precision and reliability,they are constrained by the distribution and number of the sites,and the lack of ability of a wide range of real-time monitoring.Satellite remote sensing of atmospheric CO2concentrationoffersstable,continuous,large-scale observation and many other advantages(Zhang et al.,2007) so in the monitoring of CO2,satellite has played an increasingly important role.With the development of satellite hyper spectral remote sensing technology,a series of satellites with the ability to detect CO2have been launched one after another The AIRS sensor carried on the Aqua satellite of the United States can extract the information of CO2in the middle troposphere through the infrared spectrum detection(Ba et al.,2010).The SCIAMACHY sensor carried on the Envisat satellite of the European Space Agency is detecting with the near infrared spectrum and has become the first sensor sensitive to the boundary layer;the TANSO sensor carried on GOSAT satellite has gained the global observation data of CO2for nearly six years;and other new carbon monitoring satellites such as the small satellite constellation and the orbiting carbon observatory are also under development(He et al. 2012).The first CO2monitoring satellite in China will be launched and it will fill the blank in greenhouse gas monitoring technology in China.The results will help to study the variation of global warming and global carbon distributionand provide effective support in response to global climate change and other aspects of the country.

        There are many research results about the inversion algorithm and validation of total column dry-air mole fractions of CO2(XCO2)products from different satellites.Using the measurement results of FTS,Reuter et al.(2011a)validated the XCO2product accuracy of SCIAMACHY,which was inverted by the BESD algorithm(Reuter et al.,2010,2011b; Morino et al.,2011).The result showed that the standard deviation is 2.5×10-6.Some scholars(Morino et al.,2011; Yoshida et al.,2011,2013)used the ground data and model simulation results to validate the NIES/JAXA/MOE GOSAT TANSO-FTS SWIR XCO2L2 products,and their results showed that the GOSAT XCO2products of version 01.xx have a negative deviation of(8.85±4.75)×10-6(2.3%±1.2%), and the standard deviation is about 1%after the negative deviation correction.Compared with the version 01.xx,the version 02.xx product has a smaller standard deviation of 2.1×10-6.The ACOS project in the United States also obtained the XCO2products using the data of GOSAT satellite. UsingtheTotalCarbonColumnObservingNetwork (TCCON)data,Wunch et al.(2011a)validated the precision of this XCO2product and the results showed that the standard deviation is 2.2×10-6.

        In the present study,three XCO2products from satellite retrievals were validated by using ground data from the TCCON in the Northern Hemisphere.These three XCO2products are the SCIAMACHY product,which was inverted by the BESD algorithm;NIES/JAXA/MOE GOSAT TANSOFTS SWIR XCO2L2 product(hereinafter referred to as NIESGOSAT product);and the XCO2product inverted by the ACOS project(hereinafter referred to as ACOS-GOSAT product).A quantitative evaluation of the products’precision should be made.

        2.Data and methods

        The seven Northern Hemisphere ground XCO2data used in this study were from the TCCON website(https://tccon-wiki. caltech.edu/)(Wunch et al.,2011b).The distribution of the sites is shown in Fig.1.TCCON is a network of ground-based Fourier Transform Spectrometers that record direct solar spectra in the near-infrared.From these spectra,accurate and precise column-averaged abundances of atmospheric constituents including CO2,CH4,N2O,CO and O2,are retrieved, providinggroundvalidationdataforsatelliteproducts.Fordetails of the inversion method of XCO2one can refer to Washenfelder et al.(2006).Wunch et al.(2010)used aircraft observations to validate its accuracy,indicating that the maximum error for sites around the globe was less than 0.8×10-6.

        The data of XCO2products are from April 2010 to March 2012.The SCIAMACHY is a global XCO2orbit product (version v01.00.01)coming from Bremen University in Germany,which was inverted by the BESD method.The specific processing method can be found in Reuter et al.(2010,2011a, 2011b).The NIES-GOSAT product is a global TANSO-FTS SWIR XCO2L2 product(version v0211)coming from NIES GOSAT website(https://data.gosat.NIES.Go.Jp/),which was preprocessed,screened,extracted and post-processed from L1 data.For details of this processing method one can refer to Yoshida et al.(2011).The ACOS-GOSAT product is global XCO2v2.9 dataset coming from Goddard Data and Information Services Center,which was inverted from the GOSAT satellite data using the orbiting carbon observatory inversion method by the ACOS project in the United States.

        3.The sensitivity test of time-space matching method

        By consulting to the validation work of others(Reuter et al.,2010,2011a,2011b;Yoshida et al.,2011,2013; Morino et al.,2011;Wunch et al.,2010),the space matching scope of 1°-5°and time matching scope of 1-3 h were used respectively,and through matching,the comparison between satellite XCO2products and TCCON is shown in Fig.2. Resulted statistics such as the absolute error,the standard deviation,the correlation coefficient and matching point number are given in Table 1.Here we only list the comparison between NIES-GOSAT data and Park Falls ground-based observations.These results showed that as the range of time and space relaxed,matching points increase gradually,while the difference between the statistical results of different timespace matching methods is not significant,indicating that satellite XCO2products is not sensitive to the selected timespace matching method,XCO2change little in this range of time and space.Keppel-Aleks et al.(2011)detailed the use of the potential temperature coordinate as a proxy for equivalentlatitude for CO2gradients in the Northern Hemisphere,and for the coincidence criteria of Wunch et al.(2011a),they found GOSAT measurements were within 10 days,latitudes within ±10°and longitudes within±30°of the TCCON site,for which pressure(700 hPa)was±2 K of the value over the TCCON site.Such a broad space-time matching method further illustrates the XCO2change little in space(time).Thus, in order to ensure enough matching points in relatively small range of time and space scope,the satellite XCO2products are restricted to within 2 h,latitude to within±1.5°,longitude to within±3.5°of TCCON site.

        4.Results

        4.1.The quantitative comparison

        Tables2-4 present the statisticsresults of threecomparisons betweensatellitedataandTCCON,includingtheabsoluteerror,the standard deviation,the correlation coefficient and matching point numbers,and the correlation coefficients all passed the significance test of 0.05.It can be seen from the tables that the mean absolute error of the three satellite products are all negative,indicating that the three products all underestimate the XCO2.This underestimation may be caused by instrumental calibration error(Morino et al.,2011;Yoshida et al.,2011, 2013).Further to analysis the mean standard deviation,it can be seen that the accuracy of the ACOS-GOSAT product and the NIES-GOSAT product is almost the same,and their mean standarddeviationare2.26×10-6and2.27×10-6respectively. The accuracy of the SCIMACHY product is slightly lower with mean standard deviation of 2.91×10-6.

        4.2.Comparison of time series

        Further to compare the matching data in time series,as shown in Fig.3,part did not find matching data.It can be seen that the satellite data have the same seasonal fluctuations as TCCON,in general with maximum in April or May and minimum in August or September.This is mainly because in summer and fall,plants are flourishing and CO2is consumed by photosynthesis,so the concentration is low.However in winter and spring,the plants withered and photosynthesis is weak,with the CO2emissions of winter heating system,CO2reaches the highest value in April or May.

        5.Conclusions and discussion

        Three XCO2products from satellite retrievals,including SCIAMACHY,NIES-GOSAT,and ACOS-GOSAT,in the Northern Hemisphere were validated by ground data from TCCON.As a result,conclusions are as follows:

        (1)Compared to TCCON,the three products of satellite retrievals all underestimate the XCO2.

        (2)The accuracy of the ACOS-GOSAT and the NIESGOSAT products is almost the same,and their mean standard deviations are 2.26×10-6and 2.27×10-6respectively.The accuracy of the SCIMACHY product is slightly lower,with mean standard deviation of 2.91×10-6.

        (3)The satellite data show the same seasonal fluctuations with TCCON,in general with maximum in April or May and minimum in August or September.

        The SCIAMACHY products are retrieved from the bands near 0.76 μm and 1.58 μm.In addition to these two bands,the NIES-GOSAT and ACOS-GOSAT products use the band near 2.06 μm as well(Reuter et al.,2013),which is the main reason that SCIAMACHY has a worse precision.The discrepancies of the precision between NIES-GOSAT and ACOS-GOSAT are mainly caused by the difference of scattering module used in the inversion and cloud removal methods.

        Acknowledgements

        This paper was funded by the 863 Project(2011AA12A104) and National Natural Science Foundation of China(41375025).

        Bai,W.-G.,Zhang,X.-Y.,Zhang,P.,2010.Temporal and spatial distribution of tropospheric CO2over China based on satellite observations.Chin.Sci. Bull.55(31),3612-3618(in Chinese).

        Feng,X.-Z.,Wang,X.-C.,Chen,H.-F.,2008.Analysis of factors impacting China's CO2emissions during 1971-2005.Adv.Clim.Change Res.4(1), 42-47(in Chinese).

        He,Q.-T.,Yu,T.,Cheng,H.,et al.,2012.Atmospheric carbon dioxide satellite remote sensing retrieval accuracy inspection and spatio-temporal characteristics analysis.J.Geo-Information Sci.14(2),250-257(in Chinese).

        IPCC,2007.Climate Change 2007:Synthesis Report.Cambridge University Press,Cambridge.

        Keppel-Aleks,G.,Wennberg,P.O.,Schneider,T.,2011.Sources of variations in total column carbon dioxide.Atmos.Chem.Phys.11,3581-3593.

        Morino,I.,Uchino,O.,Inoue,M.,et al.,2011.Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wave length infrared spectra atmospheric measurement techniques.Atmos.Meas.Tech.4(6),1061-1076.

        Reuter,M.,Buchwitz,M.,Schneising,O.,et al.,2010.A method for improved SCIAMACHY CO2retrieval in the presence of optically thin clouds. Atmos.Meas.Tech.3,209-232.

        Reuter,M.,Bovensmann,H.,Buchwitz,M.,etal.,2011a.Retrievalofatmospheric CO2with enhanced accuracy and precision from SCIAMACHY:Validation withFTSmeasurementsandcomparisonwithmodelresults.J.Geophys.Res. 116,D04301.http://dx.doi.org/10.1029/2010JD015047.

        Reuter,M.,Bovensmann,H.,Buchwitz,M.,etal.,2011b.AlgorithmTheoretical Basis Document(ATBD)Bremen Optimal Estimation DOAS(BESD) Version 1.Accessed.http://www.iup.uni-bremen.de/~mreuter/besd.php.

        Reuter,M.,Bosch,H.,Bovensmann,H.,et al.,2013.A joint effort to deliver satelliteretrievedatmospheric CO2concentrationsfor surfacefluxinversions: theensemblemedianalgorithmEMMA.Atmos.Chem.Phys.13,1771-1780.

        Washenfelder,R.A.,Toon,G.C.,Blavier,J.F.,et al.,2006.Carbon dioxide column abundances at the Wisconsin tall tower site.J.Geophys.Res.111, D22.http://dx.doi.org/10.1029/2006JD007154.

        Wunch,D.,Toon,G.,Wennberg,P.O.,et al.,2010.Calibration of the total carbon column observing network using aircraft profile data.Atmos.Meas. Tech.3(5),1351-1362.

        Wunch,D.,Wennberg,P.O.,Toon,G.C.,et al.,2011a.A method for evaluating bias in global measurements of CO2total columns from space.Atmos. Chem.Phys.11(23),12317-12337.

        Wunch,D.,Toon,G.C.,Blavier,J.F.L.,et al.,2011b.The total carbon column observing network.Philosophical Trans.R.Soc.A:Math.Phys.Eng.Sci 369(1943),2087-2112.

        Xiang,L.-Q.,Gao,X.,Zhou,S.-Q.,et al.,2009.Comparisons of CO2emission from fuel combustion among major countries and regions.Adv.Clim Change Res.5(5),278-284(in Chinese).

        Yoshida,Y.,Ota,Y.,Eguchi,N.,et al.,2011.Retrieval algorithm for CO2and CH4column abundances from short-wavelength infrared spectral obser vations by the greenhouse gases observing satellite.Meas.Tech.4 717-734.

        Yoshida,Y.,Kikuchi,N.,Morino,I.,et al.,2013.Improvement of the retrieva algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data.Atmos.Meas.Tech.Discuss.6,949-988.

        Zhang,X.-Y.,Zhang,P.,Fang,Z.-Y.,et al.,2007.The progress in trace gas remote sensing study based on the satellite monitoring.Meteorol.Mon.33 1-14(in Chinese).

        Zou,Y.-C.,Yang,X.-Q.,Pan,Z.-X.,et al.,2008.Effect of CO2doubling on extreme precipitation in eastern China.Adv.Clim.Change Res.4(2) 84-89(in Chinese).

        Received 26 May 2014;revised 2 July 2014;accepted 2 August 2014

        Available online 10 November 2014

        *Corresponding author.

        E-mail address:zhangxy@cma.gov.cn(ZHANG X.-Y.).

        Peer review under responsibility of National Climate Center(China Meteorological Administration).

        http://dx.doi.org/10.1016/j.accre.2014.11.002

        1674-9278/Copyright?2014,National Climate Center(China Meteorological Administration).Production and hosting by Elsevier B.V.on behalf of KeAi This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

        在线视频观看国产色网| 99国产综合精品-久久久久| 日本a一区二区三区在线| 国产成人精品人人做人人爽97| 国产激情久久久久久熟女老人av| 久久久精品人妻一区亚美研究所| 狠狠色欧美亚洲综合色黑a| 99久久婷婷亚洲综合国产| 国产成人精品999视频| 老太脱裤让老头玩ⅹxxxx| 日韩av无码午夜福利电影| 老女人下面毛茸茸的视频| 99精品久久精品一区二区| 亚洲精品你懂的在线观看| 风流少妇一区二区三区| 日本午夜理论片在线观看| 亚洲国产av玩弄放荡人妇系列| 香蕉成人啪国产精品视频综合网| av资源吧首页在线观看| 亚洲天堂av三区四区不卡| 好日子在线观看视频大全免费动漫 | 中文字幕精品人妻av在线| av免费在线免费观看| 国产裸体xxxx视频在线播放| 久久精品国产99久久丝袜| 日韩国产一区二区三区在线观看| 人人超碰人人爱超碰国产| 国产精品成人免费视频网站京东 | 成人av在线免费播放| 国产在线第一区二区三区| 久久精品亚洲中文字幕无码网站| 日韩AV无码中文无码AV| 美女免费视频观看网址| 国偷自产视频一区二区久| 国产91色在线|亚洲| 成人免费毛片立即播放| 国产特黄级aaaaa片免| 国产乱视频| 在线观看国产av一区二区| 天天摸天天做天天爽水多| 亚洲一区二区三区国产精华液|