周廣猛,劉瑞林,許翔,孫文龍,石秉良,祁濤,謝來(lái)卿
(1.軍事交通學(xué)院,天津300161;2.中國(guó)人民解放軍63969部隊(duì),南京230026)
綜 述
高原環(huán)境對(duì)車(chē)輛動(dòng)力性的影響及動(dòng)力提升措施
周廣猛1,劉瑞林1,許翔1,孫文龍1,石秉良2,祁濤2,謝來(lái)卿2
(1.軍事交通學(xué)院,天津300161;2.中國(guó)人民解放軍63969部隊(duì),南京230026)
摘.要:在總結(jié)我國(guó)高原氣候和地理環(huán)境特點(diǎn)的基礎(chǔ)上,從反映車(chē)輛動(dòng)力性能的指標(biāo)出發(fā),以加速時(shí)間、最大爬坡度和最高車(chē)速入手,理論分析了對(duì)整車(chē)高原動(dòng)力性影響較大的因素,主要包括有效熱效率、循環(huán)噴油量、滾動(dòng)阻力系數(shù)、空氣密度對(duì)空氣阻力的影響等。通過(guò)分析高原環(huán)境對(duì)這些因素的影響,總結(jié)出了高原環(huán)境對(duì)車(chē)輛動(dòng)力性的影響機(jī)理,并進(jìn)一步提出了整車(chē)高原動(dòng)力性改進(jìn)的技術(shù)措施,認(rèn)為先進(jìn)增壓、燃燒優(yōu)化、高壓共軌燃油噴射、高原環(huán)境標(biāo)定、熱平衡控制和富氧進(jìn)氣燃燒等技術(shù)措施成為提高車(chē)輛動(dòng)力性的有效技術(shù)措施。
車(chē)輛;高原環(huán)境;動(dòng)力性;提升
KEY WORDS:vehicle;plateau environment;power performance;improvement
在世界地理環(huán)境中,我國(guó)高原具有海拔高和面積廣的特點(diǎn)。海拔3 km以上的高原地域占全國(guó)陸地總面積的26%,僅我國(guó)的青藏高原就達(dá)230萬(wàn)平方公里,平均海拔在4 km以上[1—3]。全世界海拔2 km以上的地域,才占全球陸地總面積的13.2%,遠(yuǎn)低于我國(guó)高原的相應(yīng)比例。隨著海拔高度的升高,環(huán)境參數(shù)發(fā)生變化。海拔每升高1 km,大氣壓力平均下降9.5 kPa,空氣密度平均減小0.092 kg/m3,空氣含氧量平均減少30.18 g/m3,大氣溫度平均下降4℃,水沸點(diǎn)平均降低2.7℃[4—5]。同時(shí)高原環(huán)境外通條件差而少,公路技術(shù)等級(jí)低,質(zhì)量差,其中四級(jí)和等級(jí)外公路占80%左右[1]。高原環(huán)境下氣候和地理環(huán)境條件的變化導(dǎo)致車(chē)輛機(jī)動(dòng)性能降低、加速時(shí)間和加速距離加長(zhǎng)、最高車(chē)速下降、最大爬坡度減小、載質(zhì)量減少、運(yùn)輸效率下降[6],車(chē)輛的動(dòng)力性下降。加速特性和爬坡性能是制約車(chē)輛高原適應(yīng)性好壞的主要因素[7],這意味著整車(chē)的動(dòng)力性已成為制約車(chē)輛高原適應(yīng)性的關(guān)鍵因素,對(duì)車(chē)輛的綜合性能造成影響[8]。對(duì)于軍用車(chē)輛裝備而言,由于機(jī)動(dòng)性是軍車(chē)最重要的評(píng)價(jià)指標(biāo)之一,因此對(duì)車(chē)輛裝備高原動(dòng)力性能的要求更為嚴(yán)格。當(dāng)前,車(chē)輛的動(dòng)力性隨海拔高度的升高而下降已經(jīng)成為了共識(shí),但高原環(huán)境對(duì)車(chē)輛動(dòng)力性影響主要從高原環(huán)境對(duì)發(fā)動(dòng)機(jī)性能的影響進(jìn)行分析或者等同[9—12],缺乏全面而具體的分析。筆者從反映車(chē)輛動(dòng)力性能的指標(biāo)出發(fā),利用理論分析的方式,能夠更為全面地分析高原環(huán)境對(duì)車(chē)輛動(dòng)力性的影響,并在此基礎(chǔ)上,提出了車(chē)輛高原動(dòng)力性能提升的技術(shù)措施。
式中:Ft為驅(qū)動(dòng)力,N;Ff為滾動(dòng)阻力,N;Fw為空氣阻力,N。
汽車(chē)的爬坡能力,是指汽車(chē)在良好路面上克服滾動(dòng)阻力和空氣阻力后的余力全部用來(lái)克服坡度阻力時(shí)能爬上的坡度,利用汽車(chē)行駛方程式確定Ⅰ擋及低擋爬坡能力時(shí),應(yīng)采用Gsinα作為坡度阻力,式(2)給出了最大爬坡度α的計(jì)算公式:
由式(1)和(2)可見(jiàn),車(chē)輛的爬坡能力和加速能力均與[Ft-(Ff+Fw)]成正比。式(3)給出了發(fā)動(dòng)機(jī)轉(zhuǎn)速與汽車(chē)行駛速度之間的關(guān)系,在傳動(dòng)比確定的前提下,整車(chē)的最大行駛速度與發(fā)動(dòng)機(jī)的標(biāo)定轉(zhuǎn)速成正比,而整車(chē)最大轉(zhuǎn)速的實(shí)現(xiàn),也取決于[Ft-(Ff+Fw)]。
由以上分析可得,整車(chē)的動(dòng)力性與[Ft-(Ff+Fw)]直接相關(guān)。其直接的物理意義為:當(dāng)車(chē)速低于最高車(chē)速時(shí),若驅(qū)動(dòng)力大于行駛阻力,汽車(chē)就可以利用剩余的驅(qū)動(dòng)力進(jìn)行加速或爬坡,甚至達(dá)到最大車(chē)速,令ΔF=Ft-(Ff+Fw),則ΔF反映動(dòng)力性的大小。
式(4)給出了Ft的計(jì)算公式,Ttq可由式(5)表示。
式中:Ft為作用于驅(qū)動(dòng)輪的轉(zhuǎn)矩;Ttq為發(fā)動(dòng)機(jī)轉(zhuǎn)矩;ig為變速器的傳動(dòng)比;io為主減速器的傳動(dòng)比;ηT為傳動(dòng)系的機(jī)械效率;r為車(chē)輪半徑。
式中:ηet為有效熱效率;gb為循環(huán)供油量, mg/(缸·循環(huán));Hu為燃料低熱值;i為氣缸數(shù);h為發(fā)動(dòng)機(jī)轉(zhuǎn)速;τ為沖程數(shù)。
Ff可由式(6)表示:
式中:W為車(chē)輪負(fù)荷,N;f為滾動(dòng)阻力系數(shù)。
Fw可由式(7)表示:
式中:CD為空氣阻力系數(shù);ρ為空氣密度, N·s2/m4;A為迎風(fēng)面積,即汽車(chē)行駛方向的投影面積,m2;ur為相對(duì)速度,在無(wú)風(fēng)時(shí)即汽車(chē)的行駛速度ua,m/s。
將式(4)—(7)代入式ΔF=Ft-(Ff+Fw)中,可得:
由式(9)可見(jiàn):車(chē)輛高原動(dòng)力性能主要取決于有效熱效率ηet、循環(huán)噴油量gb、機(jī)械效率ηT、滾動(dòng)阻力系數(shù)f和空氣密度ρ。
1)有效熱效率ηet的影響。ηet能夠表示車(chē)用發(fā)動(dòng)機(jī)燃燒的完善程度,提高ηet不僅能夠提高車(chē)用發(fā)動(dòng)機(jī)的燃油經(jīng)濟(jì)性,也能夠提高車(chē)用發(fā)動(dòng)機(jī)的動(dòng)力性。高原環(huán)境對(duì)ηet的影響較大,在高原環(huán)境條件下,大氣壓力降低,車(chē)用發(fā)動(dòng)機(jī)的進(jìn)氣密度降低,發(fā)動(dòng)機(jī)進(jìn)氣充量減小,過(guò)量空氣系數(shù)降低,即便對(duì)循環(huán)噴油量進(jìn)行調(diào)整,過(guò)量空氣系數(shù)仍然隨海拔的升高而降低。海拔每升高1 km,不同轉(zhuǎn)速下的過(guò)量空氣系數(shù)下降3%以上,低速工況過(guò)量空氣系數(shù)甚至下降至1以內(nèi)[13]。過(guò)量空氣系數(shù)的降低,造成了壓縮終點(diǎn)壓力和溫度降低,同時(shí)由于高原環(huán)境下混合氣密度減小導(dǎo)致反應(yīng)物分子之間的碰撞機(jī)率降低,混合氣預(yù)反應(yīng)的物理和化學(xué)時(shí)間延長(zhǎng),滯燃期延長(zhǎng)。同時(shí)造成化學(xué)反應(yīng)速度降低,燃燒持續(xù)期延長(zhǎng),后燃比例增長(zhǎng),平均指示壓力降低,造成了高原環(huán)境下的指示熱效率和有效熱效率下降[14—17],發(fā)動(dòng)機(jī)火用損失增大,引起發(fā)動(dòng)機(jī)動(dòng)力性下降[3,18—22]。特別是增壓器匹配時(shí)無(wú)法兼顧低速工況,高海拔低轉(zhuǎn)速下壓氣機(jī)效率降低,進(jìn)氣流量大幅下降,低速動(dòng)力性下降幅度更加嚴(yán)重[23—24],造成整車(chē)的低速動(dòng)力性下降,扭矩儲(chǔ)備系數(shù)減小,爬坡能力降低。
2)循環(huán)噴油量gb的影響。當(dāng)不對(duì)gb進(jìn)行調(diào)整時(shí),隨海拔的增加,gb對(duì)整車(chē)動(dòng)力性沒(méi)有影響。隨海拔的升高,發(fā)動(dòng)機(jī)燃燒惡化,后燃增加,造成柴油機(jī)熱負(fù)荷增大。某重型車(chē)用柴油機(jī)的試驗(yàn)結(jié)果表明:從平原到海拔4000 m,渦前排溫最高上升180℃,缸內(nèi)燃燒溫度峰值上升300℃以上,活塞表面最高溫度最多上升173℃[25];同時(shí)由于水沸點(diǎn)降低,容易造成冷卻水開(kāi)鍋,而導(dǎo)致柴油機(jī)冷卻能力下降。二者的共同作用,對(duì)柴油機(jī)在高原環(huán)境條件下的綜合性能造成影響,甚至出現(xiàn)發(fā)動(dòng)機(jī)氣缸墊燒蝕和拉缸的現(xiàn)象,嚴(yán)重影響柴油機(jī)的使用性能,需要通過(guò)減少循環(huán)噴油量來(lái)降低發(fā)動(dòng)機(jī)的熱負(fù)荷。此外,隨著海拔高度的升高,盡管大氣密度降低,導(dǎo)致柴油機(jī)進(jìn)氣量減小,但同時(shí)渦輪背壓也隨之降低,增壓比增大,增壓器轉(zhuǎn)速升高,特別是在高轉(zhuǎn)速區(qū)域,增壓器轉(zhuǎn)速升高的更為明顯,需要減少循環(huán)噴油量,防止增壓器超速[21,26—28]。在高原環(huán)境條件下,對(duì)循環(huán)噴油量進(jìn)行調(diào)整,適當(dāng)犧牲發(fā)動(dòng)機(jī)動(dòng)力性,可以保證發(fā)動(dòng)機(jī)可靠運(yùn)轉(zhuǎn)[13]。
3)機(jī)械效率ηT的影響。高原環(huán)境對(duì)機(jī)械效率ηT的影響主要是在高原環(huán)境下,空氣密度的減小,減速器、變速器等處散熱減少,造成的熱損失增大,由于溫度的變化對(duì)機(jī)械效率造成影響。高原環(huán)境對(duì)其影響程度較對(duì)車(chē)輛發(fā)動(dòng)機(jī)動(dòng)力性的影響程度小,由于在高原環(huán)境條件下風(fēng)沙大,沙塵容易進(jìn)入傳動(dòng)部件,同時(shí)空氣的密度降低,空氣散熱能力降低,傳動(dòng)部件的溫升增加,潤(rùn)滑油使用壽命減低,如果不能及時(shí)對(duì)車(chē)輛進(jìn)行維護(hù)和保養(yǎng),會(huì)造成車(chē)輛機(jī)械效率降低,影響車(chē)輛的動(dòng)力性。
4)滾動(dòng)阻力系數(shù)f的影響。滾動(dòng)阻力系數(shù)f與路面的種類,行駛車(chē)速以及輪胎的構(gòu)造、材料和氣壓等有關(guān)。在高原環(huán)境條件下,道路條件發(fā)生了變化,具體表現(xiàn)在路網(wǎng)稀而偏,密度小,外通條件差而少,公路技術(shù)等級(jí)低,這些道路通行條件的變化造成了道路滾動(dòng)阻力系數(shù)的增大。特別是高原山路、高原荒漠等道路下,滾動(dòng)阻力系數(shù)不同程度地增加。如與良好的瀝青路面相比,碎石路面的滾動(dòng)阻力系數(shù)增加1倍以上,坑洼的卵石路面增加3倍以上,干砂路面甚至達(dá)到了10倍以上。
5)空氣密度ρ的變化對(duì)空氣阻力的影響。對(duì)整車(chē)而言,高原環(huán)境的變化對(duì)整車(chē)的動(dòng)力性提升也有有益的影響,主要體現(xiàn)在高原環(huán)境下空氣密度的下降造成空氣阻力降低,降低的幅度和空氣密度降低的幅度一致,然而對(duì)空氣阻力的減小程度有限,無(wú)法補(bǔ)償高原環(huán)境條件的變化對(duì)整車(chē)動(dòng)力性下降造成的影響。
結(jié)合上述分析,高原環(huán)境對(duì)車(chē)輛動(dòng)力性的影響機(jī)理示意如圖1所示。由該圖可見(jiàn),高原氣候和地理環(huán)境均對(duì)車(chē)輛的動(dòng)力性造成影響,其中發(fā)動(dòng)機(jī)動(dòng)力性的下降是車(chē)輛動(dòng)力性下降的主要因素。研究表明,海拔高度每升高1000 m,非增壓柴油機(jī)的功率約下降8%~13%,增壓柴油機(jī)功率下降約1%~8%,增壓中冷柴油機(jī)功率下降約1% ~4%[7]。在高原環(huán)境條件下,空氣阻力的降低難以補(bǔ)償發(fā)動(dòng)機(jī)動(dòng)力性的下降,造成車(chē)輛高原動(dòng)力性的下降。除此之外,車(chē)輛在高原可靠性的降低也會(huì)對(duì)車(chē)輛動(dòng)力性造成影響,這主要表現(xiàn)為車(chē)輛在使用過(guò)程中,由于其技術(shù)性能下降造成車(chē)輛動(dòng)力性的下降。同時(shí)在高原環(huán)境條件下,制氧機(jī)等附件的使用也消耗部分動(dòng)力,在上述因素影響下整車(chē)動(dòng)力性的下降程度會(huì)進(jìn)一步增加。
圖1 高原環(huán)境對(duì)車(chē)輛動(dòng)力性的影響機(jī)理示意Fig.1 Influencing mechanism of plateau environment on vehicle power performance
隨著對(duì)車(chē)輛節(jié)能減排要求的不斷增高,特別是對(duì)車(chē)輛的高原排放問(wèn)題也逐漸得到重視[29],美國(guó)聯(lián)邦環(huán)保署要求從2002年10月1日起,在用重型車(chē)必須滿足NTE排放限值的規(guī)定[17]。該規(guī)定基于車(chē)載排放測(cè)試技術(shù)[26],對(duì)0~1676 m海拔范圍內(nèi)運(yùn)行的重型車(chē)的排放做出了限制,歐洲要求在1600 m海拔范圍內(nèi)的NOx排放滿足OBD法規(guī)[17,30]。國(guó)內(nèi)北京理工大學(xué)[21,31]和昆明理工大學(xué)[49]現(xiàn)在已經(jīng)開(kāi)展高原環(huán)境條件對(duì)車(chē)輛排放影響的研究。對(duì)高原排放要求的不斷增高,造成整車(chē)動(dòng)力性的降低,國(guó)內(nèi)外尚未對(duì)其進(jìn)行定性分析。
1)采用可變截面渦輪增壓、二級(jí)增壓等先進(jìn)增壓技術(shù)。雖然傳統(tǒng)的廢氣渦輪增壓柴油機(jī)能夠部分恢復(fù)高原動(dòng)力,但仍然存在動(dòng)力性不足、經(jīng)濟(jì)性差、轉(zhuǎn)矩特性不良、增壓器超速、熱負(fù)荷大、適應(yīng)性系數(shù)低等問(wèn)題[32]。雖然受壓力和流量的限制,可變截面渦輪增壓技術(shù),高原功率恢復(fù)有限,但在一定程度上能夠?qū)崿F(xiàn)變工況變海拔的控制,有利于提高發(fā)動(dòng)機(jī)的低速和瞬態(tài)特性。由于二級(jí)增壓技術(shù)特別是融合可變截面渦輪增壓的二級(jí)增壓技術(shù)具有寬廣的流量范圍和更高的效率,因此其具有更大的變海拔適應(yīng)性潛力[33—35]。
2)采用燃燒優(yōu)化技術(shù)。高原下發(fā)動(dòng)機(jī)燃燒惡化,指示和有效熱效率下降,影響發(fā)動(dòng)機(jī)的動(dòng)力性。采用燃燒優(yōu)化技術(shù),通過(guò)優(yōu)化噴油定時(shí)、循環(huán)噴油量,能夠改善車(chē)用發(fā)動(dòng)機(jī)高原燃燒,提高其動(dòng)力性。在對(duì)循環(huán)噴油量進(jìn)行優(yōu)化時(shí),需要適當(dāng)減小噴油量,提高空燃比,改善燃燒;在進(jìn)行噴油定時(shí)優(yōu)化時(shí),可以通過(guò)適當(dāng)提前噴油,增加上止點(diǎn)附件燃燒放熱量,提高發(fā)動(dòng)機(jī)燃燒效率[36]。
3)采用高壓共軌燃油噴射技術(shù)。該技術(shù)是建立在直噴技術(shù)、預(yù)噴射技術(shù)和電控技術(shù)基礎(chǔ)上的一種全新概念的噴油系統(tǒng)[37]。它克服了柴油機(jī)機(jī)械式供油系統(tǒng)中轉(zhuǎn)速對(duì)軌壓的影響,軌壓、噴油過(guò)程和噴油持續(xù)期不受負(fù)荷和轉(zhuǎn)速的影響,噴油定時(shí)與燃油計(jì)量完全分開(kāi),可以實(shí)現(xiàn)預(yù)噴射、三角形噴射、后噴射和多段噴射等,有利于全面改善整機(jī)性能[38—39]。在高原環(huán)境條件下采用該技術(shù),一方面能夠改善發(fā)動(dòng)機(jī)在高原環(huán)境條件下的霧化特性,另一方面能夠采用更靈活的噴油策略,更方便地實(shí)現(xiàn)噴油參數(shù)的大氣壓力修正,從而改善發(fā)動(dòng)機(jī)高原燃燒,提高整機(jī)動(dòng)力性[36,40]。
4)采用高原環(huán)境標(biāo)定技術(shù)。采用電控技術(shù)后,車(chē)輛的高原動(dòng)力性在很大程度上取決于高原環(huán)境標(biāo)定的好壞,否則其整機(jī)性能可能比不采用電控技術(shù)下降得更多。在柴油機(jī)上采用電控后,燃油噴射參數(shù)、增壓控制參數(shù)[41]、廢氣再循環(huán)參數(shù)[35,42]等控制參數(shù)均要考慮高原標(biāo)定問(wèn)題。西弗吉尼亞大學(xué)和墨西哥城環(huán)境署對(duì)9臺(tái)柴油車(chē)進(jìn)行高海拔試驗(yàn)時(shí)發(fā)現(xiàn):由于Volvo VE D7C-300高壓共軌柴油機(jī)高海拔匹配和標(biāo)定工作不完善,在墨西哥城(海拔2133.6 m)運(yùn)行時(shí),出現(xiàn)排放性和經(jīng)濟(jì)性惡化,動(dòng)力性下降的問(wèn)題[43]。通過(guò)對(duì)某車(chē)進(jìn)行高原優(yōu)化標(biāo)定后,與平原相比,該車(chē)在格爾木地區(qū)最高檔40~80 km/h加速由原來(lái)下降22.0%改善到4.8%,起步連續(xù)換擋0~80 km/h由原來(lái)下降8.6%改善到3.0%[44],整車(chē)動(dòng)力性得到明顯改善。
5)采用熱平衡控制技術(shù)。對(duì)散熱器等部件進(jìn)行優(yōu)化設(shè)計(jì)[45],通過(guò)采用電控水泵、電控風(fēng)扇[46]等,根據(jù)高原環(huán)境條件、運(yùn)行工況等參數(shù),來(lái)動(dòng)態(tài)調(diào)整冷卻風(fēng)扇轉(zhuǎn)速、節(jié)溫器的開(kāi)啟等,控制整機(jī)的冷卻量,解決車(chē)輛在高原地區(qū)的熱平衡問(wèn)題。特別是通過(guò)運(yùn)用發(fā)動(dòng)機(jī)高原熱管理技術(shù)充分挖掘車(chē)輛動(dòng)力性提升的潛力[47],使熱平衡這一約束條件能夠保證整車(chē)動(dòng)力性能的發(fā)揮。
6)采用富氧進(jìn)氣燃燒技術(shù)。車(chē)輛高原動(dòng)力性下降主要是由于在高原環(huán)境條件下,空氣稀薄、氧含量低造成的。富氧進(jìn)氣燃燒技術(shù)的應(yīng)用可以有效地改善燃燒,提高車(chē)輛的動(dòng)力性[48—49],但受制于現(xiàn)階段制氧技術(shù)水平的限制,如膜法富氧技術(shù)的能耗較高,當(dāng)前該技術(shù)還處于研究階段[50]。
在高原環(huán)境條件下,隨海拔的升高,整車(chē)動(dòng)力性降低,已成為制約車(chē)輛高原適應(yīng)性的關(guān)鍵因素,對(duì)車(chē)輛的綜合性能造成影響。對(duì)在高原環(huán)境條件下發(fā)動(dòng)機(jī)有效熱效率、循環(huán)噴油量等影響整車(chē)動(dòng)力性的因素進(jìn)行了分析,明確了高原環(huán)境對(duì)整車(chē)動(dòng)力性的作用機(jī)理,進(jìn)一步總結(jié)了先進(jìn)渦輪增壓技術(shù)、燃燒優(yōu)化技術(shù)、高壓共軌燃油噴射技術(shù)、高原環(huán)境標(biāo)定技術(shù)、熱平衡控制技術(shù)、富氧進(jìn)氣燃燒等技術(shù)改善整車(chē)高原環(huán)境下的動(dòng)力性能。
[1] 劉瑞林,董素榮,許翔,等.柴油機(jī)高原環(huán)境適應(yīng)性研究[M].北京:北京理工大學(xué)出版社,2013. LIU Rui-lin,DONG Su-rong,XU Xiang,et al.Research on Plateau Environmental Adaptability ofDiesel Engines [M].Beijing:Beijing Institute of Technology Press,2013.
[2] WANG S J,CHEN J B,ZHANG J Z,et al.Development of Highway Constructing Technology in the Permafrost Region on the Qinghai-Tibet Plateau[J].Science in China Series E:Technological Sciences,2009,52(2):497—506.
[3] ZHANG Hai-lei,ZHU-GE Wei-lin,ZHANG Yang-jun,et al.Study of the Control Strategy of the Plateau Self-adapted Turbocharging System for Diesel Engine[C]//SAE Paper.Shanghai,China,2008.
[4] 周廣猛,劉瑞林,董素榮,等.柴油機(jī)高原環(huán)境適應(yīng)性研究綜述[J].車(chē)用發(fā)動(dòng)機(jī),2013(4):1—5. ZHOU Guang-meng,LIU Rui-lin,DONG Su-rong,et al. Review on Plateau Environment Adaptability of Diesel Engine[J].Vehicle Engine,2013(4):1—5.
[5] 許翔,劉瑞林,董素榮,等.車(chē)輛高原環(huán)境模擬試驗(yàn)技術(shù)發(fā)展現(xiàn)狀綜述[J].裝備環(huán)境工程,2012,9(6):63—66. XU Xiang,LIU Rui-lin,DONG Su-rong,et al.On Development of Vehicle Simulated Plateau Environmental Test Technology[J].Equipment Environmental Engineering, 2012,9(6):63—66.
[6] PENHALBEL L,MOREIRA F,ARAU'JO J.Altitude and Winter Tests for Best Vehicle Operations[C]//SAE Paper.S?o Paulo,Brasil,2007.
[7] 張志強(qiáng),何勇靈,韓志強(qiáng),等.高原環(huán)境對(duì)車(chē)用柴油機(jī)的影響分析及對(duì)策[J].裝備環(huán)境工程,2009,6(2): 27—31. ZHANG Zhi-qiang,HE Yong-ling,HAN Zhi-qiang,et al. Analysis of the Influence of Plateau Environment on Vehicle Diesel and Countermeasure[J].Equipment Environmental Engineering,2009,6(2):27—31.
[8] 胥澤奇,張世燕,宣衛(wèi)芳.裝備環(huán)境適應(yīng)性評(píng)價(jià)[J].裝備環(huán)境工程,2012,9(1):54—59. XU Ze-qi,ZHANG Shi-yan,XUAN Wei-fang.Environmental Worthiness Evaluation of Equipment[J].Equipment Environmental Engineering,2012,9(1):54—59.
[9] 申立中,楊永忠,雷基林,等.不同海拔地區(qū)下增壓中冷柴油機(jī)的性能研究[J].汽車(chē)工程,2005,27(6): 674—677. SHEN Li-zhong,YANG Yong-zhong,LEI Ji-lin,et al.A Study on the Performance of Turbocharged and Intercooled Diesel Engine Working in the Different Altitude Regions [J].Automotive Engineering,2005,27(6):674—677.
[10]葉林保,楊林,高治宏.汽車(chē)用渦輪增壓柴油機(jī)高原性能的研究[J].現(xiàn)代車(chē)用動(dòng)力,2006(1):39—43. YE Lin-bao,YANG Lin,GAO Zhi-hong.Research on Highland Performance of Turbocharged Diesel Engine for Vehicle[J].Modern Vehicle Power,2006(1):39—43.
[11]劉瑞林,劉宏威,秦德.渦輪增壓柴油機(jī)高海拔(低氣壓)性能試驗(yàn)研究[J].內(nèi)燃機(jī)學(xué)報(bào),2003,21(3): 193—196. LIU Rui-lin,LIU Hong-wei,QIN De.An Experimental Study on Performance of Turbocharged Diesel Engines at High Altitude(Low Air Pressure)[J].Transactions of CSICE,2003,21(3):193—196.
[12]徐斌,薄東,堯輝.高原發(fā)動(dòng)機(jī)渦輪增壓的效率修正計(jì)算[J].車(chē)用發(fā)動(dòng)機(jī),2009(6):7—10. XU Bin,BO Dong,YAO Hui.Correction Computation of Engine Turbocharging Efficiency under Plateau Conditions [J].Vehicle Engine,2009(6):7—10.
[13]劉瑞林,周廣猛,李駿,等.高壓共軌柴油機(jī)高海拔全負(fù)荷標(biāo)定[J].燃燒科學(xué)與技術(shù),2012,18(3):199—205. LIU Rui-lin,ZHOU Guang-meng,LI Jun,et al.Calibration of Common-rail Diesel Engine at High Altitudes under Full Load Operating Conditions[J].Journal of Combustion Science and Technology,2012,18(3):199—205.
[14]周廣猛,劉瑞林,董素榮,等.高壓共軌柴油機(jī)高海拔(低氣壓)燃燒特性[J].內(nèi)燃機(jī)學(xué)報(bào),2012,30(3): 220—226. ZHOU Guang-meng,LIU Rui-lin,DONG Su-rong,et al. Combustion Characteristics of Common Rail Diesel Engine Under High Altitude(Low Pressure)Conditions[J]. Transactions of CSICE,2012,30(3):220—226.
[15]申立中,沈穎剛,畢玉華,等.不同海拔高度下自然吸氣和增壓柴油機(jī)的燃燒過(guò)程[J].內(nèi)燃機(jī)學(xué)報(bào),2002, 20(1):49—52. SHEN Li-zhong,SHEN Ying-gang,BI Yu-hua,et al.Combustion Process of Naturally Aspirated and Supercharged Diesel Engines at Regions with Different Altitude[J]. Transactions of CSICE,2002,20(1):49—52.
[16]周廣猛.高壓共軌柴油機(jī)高海拔標(biāo)定和燃燒過(guò)程研究[D].武漢:海軍工程大學(xué),2012. ZHOU Guang-meng.Research on High Altitude Calibration and Combustion Process of Common Rail Diesel Engine[D].Wuhan:Naval University of Engineering,2012.
[17]申立中,畢玉華,張韋,等.不同海拔下增壓和增壓中冷柴油機(jī)的燃燒過(guò)程[J].燃燒科學(xué)與技術(shù),2005,11 (6):525—529. SHEN Li-zhong,BI Yu-hua,ZHANG Wei,et al.Combustion Process of Turbocharged and Inter-Cooled Turbocharged Diesel Engine in Different Altitude Regions[J]. Journal of Combustion Science and Technology,2005,11 (6):525—529.
[18]SOARES S,SODRê J.Effects of Atmospheric Temperature and Pressure on the Performance of a Vehicle[J].Proc Instn Mech Engrs Part D,2002,216(6):473—477.
[19]AGUDELO J,AGUDELO A,PéREZ J.Energy and Energy Analysis of a Light Duty Diesel Engine Operating at Different Altitudes[J].Revista Facultad de Ingeniería Universidad de Antioquia,2009,48:45—54.
[20]YATES A D B.Fleet Tests to Determine the Octane Response at Different Altitudes for Vehicles Equipped with Knock Sensors[C]//SAE Paper.Yokohams,Japan,2003.
[21]HE C,GE Y,MA C,et al.Emission Characteristics of a Heavy-duty Diesel Engine at Simulated High Altitudes [J].Science of the Total Environment,2011,409(7): 3138—3143.
[22]SODRé J,SOARES S.Comparison of Engine Power Correction Factors for Varying Atmospheric Conditions[J].J Braz Soc Mech Sci Eng,2003,XXV(3):279—285.
[22]劉瑞林,周廣猛,許翔,等.SOFIM電控共軌柴油機(jī)高海拔性能模擬[J].燃燒科學(xué)與技術(shù),2010,16(4): 303—308. LIU Rui-lin,ZHOU Guang-meng,XU Xiang,et al.Performance of SOFIM Electrically Controlled Common-rail Diesel Engine at High Altitude[J].Journal of Combustion Science and Technology,2010,16(4):303—308.
[24]劉瑞林,周廣猛,董素榮,等.高壓共軌柴油機(jī)高海拔性能仿真研究[J].車(chē)用發(fā)動(dòng)機(jī),2012(3):87—91. LIU Rui-lin,ZHOU Guang-meng,DONG Su-rong,et al. Simulation Study on Performance of High pressure Common Rail Diesel Engine at High Altitude[J].Vehicle Engine,2012(3):87—91.
[25]王憲成,郭猛超,張晶,等.高原環(huán)境重型車(chē)用柴油機(jī)熱負(fù)荷性能分析[J].內(nèi)燃機(jī)工程,2012,33(1):49—53. WANG Xian-cheng,GUO Meng-chao,ZHANG Jing,et al.Thermal Load Analysis of Heavy Duty Vehicular Diesel Engine in Plateau Area[J].Chinese Internal Combustion Engine Engineering,2012,33(1):49—53.
[26]ZAVALA M,HERNDON S,WOOD E,et al.Comparison of Emissions from On-road Sources Using a Mobile Laboratory under Various Driving and Operational Sampling Modes[J].Atmospheric Chemistry and Physics,2009 (9):1—14.
[27]TATUR M,LAERMANN M,KOEHLER E,et al.Development of an Emission Controls Concept for an IDI Heavyduty Diesel Engine Meeting 2007 Phase-in Emission Standards[C]//SAE Paper.S?o Paulo,Brasil,2007.
[28]MCCORMICK R,ROSS J,GRABOSKI M.Effect of Several Oxygenates on Regulated Emissions from Heavy-duty Diesel Engines[J].Environment of Science and Technology,1997,31(4):1144—1150.
[29]HUMAN D,ULLMAN T,BAINES T.Simulation of High Altitude Effects on Heavy-duty Diesel Emissions[C]// SAE Paper.1990.(余不詳)
[30]GOMPEL P,WILLEMS F,DOOSJE E,et al.Exhaust-Gas Aftertreatment Under Extreme Conditions Validation in a Climatic-Altitude Chamber[J].ATZ Autotechnology, 2010(10):30—35.
[31]趙偉,葛蘊(yùn)珊,譚建偉.不同海拔工況下發(fā)動(dòng)機(jī)排放特性研究[C]//中國(guó)內(nèi)燃機(jī)學(xué)會(huì)燃燒節(jié)能凈化分會(huì)學(xué)術(shù)年會(huì)論文集.天津,2011. ZHAO Wei,GE Yun-shan,TAN Jian-wei.Emission Characteristics of Diesel Engine at Different Simulated Altitudes[C]//CSICE,Tianjin:2011.
[32]董素榮,許翔,周廣猛,等.車(chē)用柴油機(jī)高原性能提升技術(shù)研究現(xiàn)狀與發(fā)展[J].裝備環(huán)境工程,2013(2): 67—70. DONG Su-rong,XU Xiang,ZHOU Guang-meng,et al.Present Status and Development of Performance Advancing Technology of Vehicle Diesel Engine at Plateau[J].Equipment Environmental Engineering,2013(2):67—70.
[33]張海雷.柴油機(jī)變海拔渦輪增壓技術(shù)研究[D].北京:清華大學(xué),2008. ZHANG Hai-Lei.Study of the Turbocharging System for Diesel Engine Operating at Varying Altitude Conditions [D].Beijing:Tsinghua University,2008.
[34]劉系暠,魏名山,馬朝臣,等.不同海拔下單級(jí)和二級(jí)增壓柴油機(jī)的仿真[J].內(nèi)燃機(jī)學(xué)報(bào),2010,28(5): 447—452. LIU Xi-hao,WEI Ming-shan,MA Chao-chen,et al.Simulation on One-Stage and Two-Stage Turbocharged Diesel Engines at Different Altitudes[J].Transactions of CSICE, 2010,28(5):447—452.
[35]GALINDO J,LUJáN J,CLIMENT H,et al.Turbocharging System Design of a Sequentially Turbocharged Diesel Engine by Means of a Wave Action Model[C]//SAE Paper. S?o Paulo,Brasil,2007.
[36]NAZAROV A,RALSTON R,REYNOLDS D.Method and System for Controlling Fuel Injection Timing to Maintain Desired Peak Cylinder Pressure for High Altitude Operation:US,7,246,605 B2.[P].
[37]ABDULLAH N R,WYSZYNSKI M L,TSOLAKIS A,et al. Combined Effects of Pilot Quantity,Injection Pressure and Dwell Periods on the Combustion and Emissions Behaviour of a Modern V6 Diesel Engine[J].Archivum Combustionis,2010,30(4):481—495.
[38]ETHERIDGE J,BHAVE A,SMALLBONE A,et al.Optimization of Injection Strategy,Combution Characteristics and Emissions for IC Engines Using Advanced Simulation Technologies[C]//SAE Paper.2011.(余不詳)
[39]KHATAMNEZHAD H,KHALILARYA S,JAFARMADAR S,et al.Numerical Investigation on Spray Characteristics and Combustion Process in a DI Heavy Duty Diesel Engine at LTC Condition[J].Australian Journal of Basic and Applied Sciences,2011,5(6):523—537.
[40]劉瑞林,周廣猛,李駿,等.高壓共軌柴油機(jī)高海拔全負(fù)荷標(biāo)定[J].燃燒科學(xué)與技術(shù),2012,18(3):199—205. LIU Rui-lin,ZHOU Guang-meng,LI Jun,et al.Calibration of Common-rail Diesel Engine at High Altitudes under Full Load Operating Conditions[J].Journal of Combustion Science and Technology,2012,18(3):199—205.
[41]BIAGGINI G,KNECHT W.The Advanced Iveco Cursor 10 Heavy Duty Truck Diesel Engine[C]//Seoul 2000 FISITA World Automotive Congress.Seoul,2000.
[42]Detroit Diesel Corporation.Series 60 EGR Technician's Manual[Z].Detroit:Detroit Diesel Corporation,2004.
[43]CLARK N,BORRELL E,MCKAIN D,et al.Evaluation of Emissions from New and In-use Transit Buses in Mexico City[C]//TRB 2006 Annual Meeting.Washington DC, 2006.
[44]趙云達(dá).電控柴油機(jī)整車(chē)高原適應(yīng)性評(píng)價(jià)方法研究[D].吉林:吉林大學(xué),2007. ZHAO Yun-da.Study on the Evaluation of Electronic Controlling Diesel Engine Adaptability on Altiplano[D].Jilin:Jilin University,2007.
[45]李毅,李遠(yuǎn)才,劉景平.高原車(chē)用散熱器的傳熱計(jì)算[J].華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,37(9): 90—93. LI Yi,LI Yuan-cai,LIU Jing-ping.Calculating Heat Transfer of Radiators for Plateau Vehicles[J].Huazhong Univ.of Sci.&Tech.(Natural Science Edition),2009, 37(9):90—93.
[46]安相璧,劉瑞林,孫武全,等.海拔高度對(duì)電磁風(fēng)扇離合器工作特性影響的試驗(yàn)研究[J].汽車(chē)技術(shù),2007 (1):28—30. AN Xiang-bi,LIU Rui-lin,SUN Wu-quan,et al.Research for Effects of Altitude on Working Characteristic of Electromagnetic Fan Clutch[J].Vehicle Technology,2007 (1):28—3040.
[47]汪茂海,陳濤,張揚(yáng)軍,等.高原發(fā)動(dòng)機(jī)熱管理系統(tǒng)性能分析研究[J].汽車(chē)工程,2010,32(10):851—853. WANG Mao-hai,CHEN Tao,ZHANG Yang-jun,et al..A Research on the Performances Analyses of Engine Thermal Management System at Plateau[J].Automotive Engineering.2010,32(10):851—853.
[48]PEREZ P L,BOEHMAN A L.Performance of a Singlecylinder Diesel Engine Using Oxygen-enriched Intake Air at Simulated High-altitude Conditions[J].Aerospace Science and Technology.2010,14:83—94.
[49]張永虎,熊云,劉曉,等.富氧進(jìn)氣改善高原汽車(chē)發(fā)動(dòng)機(jī)動(dòng)力性和經(jīng)濟(jì)性研究[J].汽車(chē)技術(shù),2011(3):24—27. ZHANG Yong-hu,XIONG Yun,LIU Xiao,et al.Research on Dynamic Property and Fuel Economy Improvement of Automotive Engine with Oxygen-enriched Intake Air in Highland[J].Vehicle Technology,2011(3):24—27.
[50]肖廣飛,喬信起,黃震,等.膜法富氧技術(shù)在內(nèi)燃機(jī)上應(yīng)用的研究進(jìn)展[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(2): 183—188. XIAO Guang-fei,QIAO Xin-qi,HUANG Zhen,et al.Research Process on the Application of Mebbrane-based Oxygen-enrichment Technology to IC Engine[J].Transactions of the Chinese Society for Agriculture Machinery, 2007,38(2):183—188.
Effects of Plateau Environment on Power Performance of Vehicles and Measures to Improve Power Performance in Plateau
ZHOU Guang-meng1,LIU Rui-lin1,XU Xiang1,SUN Wen-long1,SHI Bing-liang2,QI Tao2,XIE Lai-qing2
(1.Military Transportation University,Tianjin 300161,China;2.63969 PLA Troops,Nanjing 230026,China)
Based on summarizing characteristics of climatic and geographical environment,the factors which affect dynamic performance of vehicles characterized by acceleration time,maximum gradability and maximum vehicle speed evidently were analyzed theoretically,which included effective thermal efficiency,fuel delivery per cycle per cylinder,coefficient of rolling resistance and effects of air density on air friction,etc.The mechanism of plateau environment on power performance of vehicles were got by analyzing the impacts of plateau environment on these factors.Then technical measures to improve plateau power performance of vehicles were put forward.Advanced turbocharging technique,combustion optimization technique,common rail fuel injection technique,plateau environment calibration technique,heat balance control technique and oxygen-enrichment combustion technology were deemed to be effective measures to improve power performance of vehicles in plateau.
10.7643/issn.1672-9242.2014.03.010
TK421
:A
1672-9242(2014)03-0045-07
2014-03-06;
2014-03-30
Received:2014-03-06;Revised:2014-03-30
周廣猛(1984—),男,山東鄒城人,博士,講師,主要研究方向?yàn)閯?dòng)力機(jī)械環(huán)境適應(yīng)性。
Biography:ZHOU Guang-meng(1984—),Male,from Zoucheng,Shandong,Ph.D.,Lecturer,Research focus:environmental adaptability of power machine.