亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Boundedness for Commutators of Approximate Identities on Weighted Morrey Spaces

        2014-03-03 03:35:03ZHANGLEIZHENGQINGYUANDSHISHAOGUANG

        ZHANG LEI,ZHENG QING-YU AND SHI SHAO-GUANG

        (School of Sciences,Linyi University,Linyi,Shandong,276005)

        Boundedness for Commutators of Approximate Identities on Weighted Morrey Spaces

        ZHANG LEI,ZHENG QING-YU AND SHI SHAO-GUANG*

        (School of Sciences,Linyi University,Linyi,Shandong,276005)

        Communicated by Ji You-qing

        The aim of this paper is to set up the weighted norm inequalities for commutators generated by approximate identities from weighted Lebesgue spaces into weighted Morrey spaces.

        approximate identity,weighted Morrey space,weighted BMO space, commutator

        1 Introduction

        Suppose that φ∈L1(Rn),f∈Lp(Rn)(1≤p<∞)and φε(x)=ε?nφ(ε?1x)for all ε>0. If the operator

        then as ε→0,φεis called the kernel of approximate identities on Lp(Rn),and Tφis called the operator of approximate identities.If φεfurther satis fi es

        Franciaet al.[1]have proved that Tφis bounded from Lp(Rn)into Lp(Rn)with 1<p<∞.

        Recall the de fi nitions of Muckenhoupt classes(see[2])∶

        For a measure ν,we say w(x)∈Ap(ν)if

        For w∈Ap,the weighted BMO space is de fi ned by

        To investigate the local behavior of solutions to the second order elliptic partial di ff erential equations,Morrey[4]fi rst introduced the classical Morrey space Mp,q(Rn)with the norm

        For some earlier work on Mp,q(Rn),see,e.g.,[5–6].For a recent account of the theory on the general case of Mp,q(Rn),we refer the reader to[7–9].Mp,q(Rn)is a natural expansion of Lp(Rn)in the sense that Mp,p(Rn)=Lp(Rn).

        Komori and Shirai[10]introduced the weighted Morrey space,which is a natural generalization of the weighted Lebesgue space.Let 1≤p<q<∞and w1,w2be two functions. Then the norm of the weighted Morrey space Mp,q(w1,w2)is de fi ned by

        If w1=w2=w,we denote Mp,q(w1,w2)=Mp,q(w).It is obvious that Mp,0(w)=Lp(w) and Mp,1(w)=L∞(w).

        Inspired by[3,10],we establish the weighted estimates for Tφ,bon Mp,k(w).

        2 Preliminaries

        For any B?Rn,the sharp Hardy-littlewood maximal function is given by

        It was proved in[2]that Mwis bounded on Lp(w)if 1<p<∞and w∈Ap.Now,we state the well known sharp function theorem which fi rst introduced by Bloom[11].

        Lemma 2.1[11]Letf∈L1(dν),1<p<∞andM?f∈Lp(w)for somew∈A∞(dν).Thenf∈Lp(w)with

        Using Lemma 2.1,we can easily obtain the following weighted BMO theorem.

        Lemma 2.2[11]LetB=B(x0,r)be a ball andBk=2kB=B(x0,2kr).Then ifb∈BMO(w)withw∈Ap,we have

        where

        Proof.w∈Apand the reverse H¨older’s inequality yield that there exists an ε>0,for any fi xed ball B?Rn,we have

        that is,

        which implies that

        Proof.Since b∈BMO(w),we can obtain that

        which yields that

        By Lemma 2.3,(2.1)and the Lp(w)boundedness of M,we get

        which is the desired result.Similar analysis see,e.g.,Corollary 2.2 of[11].

        Proof.We fi rst claim that

        Indeed,by H¨older’s inequality,we have

        By the reverse H¨older’s inequality,we get Lemma 2.5.

        Lemma 2.6[3]Under the same condition as in Theorem1.1,Tφ,bis bounded fromLp(w1)intoLp(w2).

        3 Proofs of the Main Results

        Proof of Theorem 1.1The proof of Theorem 1.1 depends heavily on the following proposition.

        Proof.Let B=B(x0,r)denote the ball with center at x0and radius r,J=8B= B(x0,8r).Given a function f with compact support,we set

        and

        For x∈B,noting

        we have

        By H¨older’s inequality and Lemmas 2.3–2.4,

        By the similar analysis,we can obtain

        Now,we come to deal with the term III.Applying(1.1)to III,we obtain

        Similar arguments as those of II give

        On the other hand,applying Lemma 2.2 to the term III2yields

        The proof of Proposition 3.1 is completed.

        We are now in a position to show the proof of Theorem 1.1.By Proposition 3.1,we have

        Lemma 2.5 and H¨older’s inequality imply

        In the same manner,we can obtain that

        and

        Theorem 1.1 is a by-product of the above estimates for J,JJ and JJJ.

        Proof of Theorem 1.2.Theorem 1.2 is a straightforward result of Lemma 2.6.In fact,

        This completes the proof.

        [1]Rubio de Francia J,Ruiz J,Torrea F.Calder`on-Zygmund theory for operator-valued kernels. Adv.Math.,1986,62:7–48.

        [2]Garcia-Cuerva J,Rubio de Francia J.Weighted Norm Inequalities and Related Topics.North-Holland:Amsterdam,1985.

        [3]Segovia C,Torrea J.Vector valued commutators and applications.Indiana Univ.Math.J., 1989,38:959–971.

        [4]Morrey C.On the solutions of quasi-linear elliptic partial di ff erential equations.Trans.Amer. Math.Soc.,1938,43:126–166.

        [5]Adams D.A note on Riesz potentials.Duke Math.J.,1975,42:765–778.

        [6]Chiarenza F,Frasca M.Morrey spaces and Hardy-Littlewood maximal function.Rend.Math. Appl.,1987,7(7):273–279.

        [7]Duong X,Xiao J,Yan L.Old and new Morrey spaces with heat kernel bounds.J.Fourier Anal.Appl.,2007,13:87–111.

        [8]Lin H,Nakai H,Yang D.Boundedness of Lusin-area and g?λfunctions on localized Morrey-Campanato spaces over doubling metric measure spaces.J.Funct.Spaces Appl.,2011,9(3): 245–282.

        [9]Nakai E.The Cmapanato,Morrey and H¨older spaces on spaces of homogeneous type.Studia Math.,2006,176:1–19.

        [10]Komori Y,Shirai S.Weighted Morrey spaces and a singular integral operator.Math.Nachr., 2009,282:219–231.

        [11]Bloom S.A commutator theorem and weighted BMO.Trans.Amer.Math.Soc.,1985,292: 103–122.

        tion:42B20,42B25

        A

        1674-5647(2014)03-0257-08

        10.13447/j.1674-5647.2014.03.07

        Received date:Jan.26,2012.

        Foundation item:This work was partially supported by the NSF(11271175)of China and the NSF (ZR2012AQ026)of Shandong Province.

        *Corresponding author.

        E-mail address:zhanglei-0335@163.com(Zhang L),shishaoguang@lyu.edu.cn(Shi S G).

        最近中文字幕免费完整版| 手机免费在线观看日韩av| 国产精品一区二区三区av在线| 免费看美女被靠到爽的视频| 久久精品免视看国产成人| 亚洲一区视频在线| 日本成人三级视频网站| 开心久久综合婷婷九月| 欧美人妻少妇精品久久黑人| 美女裸体自慰在线观看| 91精品国产综合久久青草| 一区二区三区日本高清| 先锋中文字幕在线资源| 最新亚洲人成无码网站| 亚洲 美腿 欧美 偷拍| 久久久亚洲免费视频网| 97日日碰曰曰摸日日澡| 五十路熟女一区二区三区| 日韩一区二区三区中文字幕| 久久国产亚洲精品一区二区三区 | 国产超碰人人做人人爽av大片| 久久久久亚洲av无码专区| 亚洲大尺度动作在线观看一区| 一区二区三区乱码专区| 国产免费一区二区三区免费视频 | 久久久亚洲av成人网站| 狠狠噜天天噜日日噜| 亚洲中文字幕乱码一二三区| 免费av日韩一区二区| 色噜噜av亚洲色一区二区| 久久中文字幕无码一区二区| 午夜精品人妻中字字幕| 成 人色 网 站 欧美大片在线观看 | 国产精品厕所| 中文字幕精品人妻av在线| 日本一区二区三区视频国产| 中国农村熟妇性视频| 久久婷婷综合色拍亚洲| 国产乱人伦偷精品视频还看的| 乱码丰满人妻一二三区| 99福利在线|