朱婷婷,段標(biāo)標(biāo),宋戰(zhàn)鋒,彭盛華
深圳鐵崗水庫水體中抗生素污染特征分析及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)
朱婷婷,段標(biāo)標(biāo),宋戰(zhàn)鋒,彭盛華
國家環(huán)境保護(hù)飲用水水源地管理技術(shù)重點(diǎn)實(shí)驗(yàn)室,深圳市飲用水水源地安全保障重點(diǎn)實(shí)驗(yàn)室,深圳市環(huán)境科學(xué)研究院,廣東 深圳 518001
近年來水體中不斷被檢出的抗生素逐漸成為研究者關(guān)注的焦點(diǎn)。許多國家的河流、湖泊、地下水中均檢出了抗生素殘留。目前國內(nèi)外關(guān)于抗生素污染特征的研究主要集中在河流、河口灣和污水處理廠等水環(huán)境中,對(duì)于抗生素在飲用水源地水體中的污染狀況研究極少。利用高效液相色譜-串聯(lián)質(zhì)譜技術(shù)(HPLC-MS/MS)檢測分析了5類典型抗生素在深圳鐵崗飲用水源地型水庫中的污染特征。結(jié)果表明,9種目標(biāo)抗生素中,有8種在鐵崗水庫水體中被檢出,濃度范圍為1.1~203 ng·L-1,其中,林肯霉素檢出濃度最高,紅霉素次之,阿莫西林未檢出;入庫支流抗生素污染程度普遍高于鐵崗水庫,其中大官陂河中抗生素質(zhì)量濃度最高(277.0 ng·L-1),九圍河次之(196.4 ng·L-1);枯水期抗生素濃度高于豐水期。采用風(fēng)險(xiǎn)商值法初步評(píng)價(jià)的結(jié)果表明,枯水期時(shí)料坑水中紅霉素、大官陂河中磺胺甲噁唑和林肯霉素,以及豐水期時(shí)九圍河中林肯霉素的生態(tài)風(fēng)險(xiǎn)商(RQ)均大于1,對(duì)生態(tài)環(huán)境具有高風(fēng)險(xiǎn);風(fēng)險(xiǎn)簡單疊加模型計(jì)算結(jié)果顯示,枯水期時(shí)料坑水、塘頭河、大官陂河以及豐水期時(shí)九圍河中抗生素的聯(lián)合毒性風(fēng)險(xiǎn)商(RQsum)均大于1,對(duì)生態(tài)環(huán)境可能會(huì)產(chǎn)生較高的風(fēng)險(xiǎn)。
飲用水源水;抗生素;污染特征;生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)
近年來水體中不斷被檢出的抗生素逐漸成為研究者關(guān)注的焦點(diǎn)。許多國家的河流、湖泊、地下水中均檢出了抗生素殘留,其濃度大多在ng·L-1~μg·L-1水平(Xu等, 2007; Kümmerer, 2009; Homem和Santos, 2011; Benotti等, 2009; Mompelat等, 2009)。由于該類藥物在水體中濃度低、難降解、易重構(gòu),且對(duì)微生物具有抑制作用,使得它們?cè)谒w中得以長期存在(Sarmah等, 2006; Le-Minh等, 2010)[6,7]。目前,歐美等發(fā)達(dá)國家已經(jīng)就水環(huán)境中抗生素的殘留水平和環(huán)境行為開展了較多研究,結(jié)果表明,水環(huán)境中微量水平的抗生素即會(huì)對(duì)生態(tài)環(huán)境和人體健康產(chǎn)生威脅(Kümmerer, 2009; Watkinsona等, 2007; Petrovi?等, 2003; Gao等, 2012; Zhu等, 2013)。近年來國內(nèi)外關(guān)于抗生素污染特征的研究主要集中在河流、河口灣和污水處理廠等水環(huán)境中(梁惜梅等,2013),而作為我國近年來才廣受關(guān)注的新型有機(jī)污染物之一,抗生素在飲用水源地水體中的污染情況還鮮有報(bào)道。
深圳是我國七大嚴(yán)重缺水城市之一,城市供水主要依賴于市內(nèi)飲用水源地,由于地域狹小,其獨(dú)特的空間布局使得飲用水源地處在城市建成區(qū)的包圍之中,從而導(dǎo)致飲用水源地受污染的風(fēng)險(xiǎn)很高。目前,關(guān)于深圳飲用水源地中抗生素的調(diào)查研究尚屬空白,對(duì)于水源地中污染物的生態(tài)風(fēng)險(xiǎn)研究大多側(cè)重于重金屬等(鄭玲芳, 2013; 徐中義等, 2014),對(duì)抗生素在水源地中的生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)目前尚未有報(bào)道。本研究對(duì)深圳最大的飲用水源地型水庫—鐵崗水庫及其入庫支流中β-內(nèi)酰胺類、大環(huán)內(nèi)酯類、磺胺類等5類共9種常見的典型抗生素的污染特征進(jìn)行了調(diào)查,并對(duì)水庫及支流中抗生素的生態(tài)風(fēng)險(xiǎn)進(jìn)行了評(píng)估,揭示鐵崗飲用水源地水體中抗生素的污染現(xiàn)狀和風(fēng)險(xiǎn)水平,為后續(xù)抗生素污染防控工作提供科學(xué)依據(jù)。
1.1水樣采集
分別于2012年9月(豐水期)和2013年1月(枯水期)進(jìn)行采樣。根據(jù)鐵崗水庫及其主要入庫支流的環(huán)境與水文基本特征,本研究布設(shè)了8個(gè)采樣點(diǎn),分別為西麗引水入口、鐵崗水庫庫中1~3、塘頭河入水口、料坑水入水口、大官陂河入水口、九圍河入水口,具體位置見圖1。水樣采集與保存程序符合國家標(biāo)準(zhǔn)(GB/T 5750.2-2006)。
圖1 鐵崗水庫采樣示意圖Fig. 1 The sampling sites of Tiegang Reservoir
1.2樣品分析
1.2.1 儀器與試劑
儀器:Agilent 1100型高效液相色譜儀(美國, Agilent);API 2000三重四級(jí)桿串聯(lián)質(zhì)譜儀(美國, AB Sciex);多通道固相萃取儀(美國, Waters);Bridge? C18色譜柱(2.1 mm×50 mm, 5 μm, 美國, Waters);EYELA MG-2200氮吹濃縮儀(日本, Rikakikai),Allegra X-22R高速臺(tái)式離心機(jī)(美國, Backman Coulter),Q-POD型MILLI-Q超純水儀(德國, Millipore)。
試劑:甲硝唑(MTZ)、頭孢呋辛(CXM),購自德國Dr Ehrenstorfer GmbH公司;阿莫西林(AMC)、紅霉素(ERY)、磺胺甲惡唑(SMX)、磺胺二甲嘧啶(SMZ),均購自美國Sigma-Aldrich公司;羅紅霉素(ROX)、林肯霉素(LNC),購自瑞士Fluka公司;頭孢氨芐(CEX)購自德國Riedelde Ha?n公司。回收率指示劑,氯霉素-d5(英國, Cambridge Isotope 實(shí)驗(yàn)室);Na2EDTA溶液、NaN3溶液(美國, Sigma-Aldrich);甲酸(美國, VWR International)。甲醇為色譜純,試驗(yàn)用水為超純水。
1.2.2 樣品預(yù)處理
預(yù)處理:水樣經(jīng)0.45 μm的玻纖濾膜過濾后,取500 mL濾液于1000 mL的聚丙烯瓶中,依次加入5 mL 5% Na2EDTA溶液和1 mL 10% NaN3溶液,用5 mol·L-1甲酸調(diào)節(jié)濾液的pH值至3.2;對(duì)于水樣中CEX的分析,取樣體積和各添加物體積均減半,用5 mol·L-1甲酸調(diào)節(jié)濾液樣品的pH值至2.5。
固相萃取:依次用4 mL甲醇、4 mL超純水對(duì)固相萃取柱進(jìn)行活化處理,將上述預(yù)處理后的樣品導(dǎo)入多通道固相萃取儀,以1 drop·s-1的速度進(jìn)行提取(整個(gè)過程保持柱子浸潤);待樣品全部通過固相萃取柱后,加入4 mL超純水沖洗柱子中殘余的Na2EDTA;而后萃取柱在3000 rpm·min-1下離心2 min,重復(fù)2次,以除凈柱筒中剩余的水份;用4 mL甲醇對(duì)小柱進(jìn)行洗脫,將洗脫液在速度適中的高純氮?dú)饬飨聺饪s、定容至0.5 mL(頭孢氨芐水樣為0.25 mL),轉(zhuǎn)移萃取液于進(jìn)樣瓶中,進(jìn)行儀器分析。
1.2.3 LC-MS/MS分析
色譜條件:以濃度均為10 mM的甲酸水溶液(A)和甲酸甲醇溶液(B)為流動(dòng)相,流速為300 μL·min-1,進(jìn)樣體積10 μL,柱溫25 ℃。梯度洗脫程序:0~10 min,B相由10%線性升至90%;10~13 min,B相由90%降為10%,平衡時(shí)間為10 min。
質(zhì)譜條件:采用多反應(yīng)監(jiān)測(MRM)模式。正離子模式(ESI+):電壓為4.5 kV,離子源溫度500 ℃,AMC、MTZ、LNC、SMZ、CEX、SMX、ERY和ROX的掃描離子分別為m/z 366.3、172.2、407.0、279.1、348.1、254.1、716.6、837.8;負(fù)離子模式(ESI-):電壓為5 kv,離子源溫度500 ℃,CXM的掃描離子為m/z 423.2。
1.2.4 質(zhì)量控制與方法學(xué)驗(yàn)證
采用現(xiàn)場空白和溶劑空白,進(jìn)行樣品采集和試驗(yàn)過程污染的控制與追蹤;在樣品序列的開始、中間及最后均設(shè)置一個(gè)標(biāo)準(zhǔn)曲線的中間濃度點(diǎn)樣本,監(jiān)測儀器的靈敏度和重現(xiàn)性,確保其相對(duì)標(biāo)準(zhǔn)偏差小于5%,同時(shí)平行樣品間分析物濃度的變化要小于10%。
采用外標(biāo)法對(duì)樣品的質(zhì)量濃度進(jìn)行定量分析,線性方程濃度范圍由1、5、20、100、400 μg·L-1這5個(gè)濃度值組成,其R2值均大于0.99(表1)。在實(shí)際空白樣品中進(jìn)行加標(biāo)回收試驗(yàn),加標(biāo)水平為100 μg·L-1,平行測定7份,考察方法的回收率和精密度。結(jié)果表明,抗生素的回收率為60.1%~104.6%,RSD為0.7%~5.5%。以信噪比≧3時(shí)各目標(biāo)抗生素的質(zhì)量濃度為檢測限(LOQs),為0.4~0.8 ng·L-1。說明所采用分析方法的重現(xiàn)性和靈敏性較好,能夠滿足試驗(yàn)要求。每個(gè)樣品測定3次,取平均值。
表1 目標(biāo)抗生素的回歸系數(shù)、回收率、檢測限和相對(duì)標(biāo)準(zhǔn)偏差Table 1 Correlation coefficients, recoveries, the limits of quantitation and relative standard deviations of the selected antibiotics
1.3生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)方法
水環(huán)境中殘留藥物的生態(tài)風(fēng)險(xiǎn)可以通過風(fēng)險(xiǎn)
商值來評(píng)價(jià)(EC, 2003; Vryzas等, 2011)。RQ的計(jì)算公式如下:
式中:MEC:環(huán)境實(shí)測濃度,即藥物在水環(huán)境中的實(shí)測質(zhì)量濃度,ng·L-1;PNEC:預(yù)測無效應(yīng)濃度,是在現(xiàn)有認(rèn)知下不會(huì)對(duì)環(huán)境中微生物或生態(tài)系統(tǒng)產(chǎn)生不利效應(yīng)的最大藥物濃度,ng·L-1;LC50為半致死濃度,EC50為半最大效應(yīng)濃度,ng·L-1,LC50或EC50均由文獻(xiàn)中取得,當(dāng)存在多個(gè)值時(shí),取最小值;AF為評(píng)價(jià)因子,取water framework directive的推薦值(1000);RQsum:聯(lián)合毒性風(fēng)險(xiǎn)商;RQi:抗生素i的RQ值。
根據(jù)各殘留藥物的RQ評(píng)價(jià)其在水環(huán)境中的生態(tài)風(fēng)險(xiǎn)。當(dāng)0.01≦RQ<0.1,為低風(fēng)險(xiǎn);0.1≦RQ<1,為中風(fēng)險(xiǎn);RQ≧1,為高風(fēng)險(xiǎn)(EC, 2003; Hernando等, 2006)。
水環(huán)境中抗生素一般不是單一存在,而是多種抗生素共同存在的。目前關(guān)于抗生素環(huán)境風(fēng)險(xiǎn)的研究多集中在單一藥品效應(yīng)研究,缺乏對(duì)藥品聯(lián)合效應(yīng)的考察,而已有研究表明,水環(huán)境中多種抗生素共存時(shí),抗生素的環(huán)境危害作用會(huì)因共存而加強(qiáng)(Cleuvers, 2003; Cleuvers, 2004)。因此,本文采用簡單疊加模型(式3)計(jì)算抗生素的聯(lián)合毒性風(fēng)險(xiǎn)商(Quinn等, 2008)。
2.1鐵崗入庫支流中抗生素污染特征
圖2列出了鐵崗水庫各入庫支流中抗生素質(zhì)量濃度水平及分布情況??梢钥闯?,枯水期時(shí),除西麗引水受抗生素污染程度較輕外(質(zhì)量濃度為36.2 ng·L-1),其他入庫支流抗生素污染程度均較嚴(yán)重,其質(zhì)量濃度均超過150 ng·L-1,大官陂河中抗生素總質(zhì)量濃度高達(dá)277 ng·L-1。豐水期時(shí),各入庫支流中(九圍河除外)抗生素污染程度較枯水期時(shí)顯著降低,其抗生素質(zhì)量濃度均不超過61 ng·L-1,西麗引水中抗生素總質(zhì)量濃度僅為7.5 ng·L-1。九圍河由于污染較嚴(yán)重,枯水期時(shí)污水被截排,豐水期時(shí)仍有少量污水進(jìn)入水庫。九圍河中抗生素污染嚴(yán)重,其總質(zhì)量濃度高達(dá)196 ng·L-1。
圖2 鐵崗水庫入庫支流中抗生素質(zhì)量濃度與種類分布Fig. 2 Distribution of antibiotics in the tributaries of Tiegang Reservoir
表2 各目標(biāo)抗生素的PNECsTable 2 The PNECs of the selected antibiotics (ng·L-1)
各支流水樣中均未檢出AMC。已有研究表明,AMC極易發(fā)生水解,降解速率很快,因而自然水體中一般無AMC殘留(Mutiyar和Mittal, 2013)??菟跁r(shí),SMX和LNC在各支流水樣中均有檢出,質(zhì)量濃度范圍分別為6.1~47 ng·L-1和12~203 ng·L-1。一方面,這與SMX和LNC使用量較高有關(guān),另一方面,SMX和LNC本身性質(zhì)穩(wěn)定,在自然環(huán)境中不易發(fā)生降解與水解是導(dǎo)致其檢出率和檢出質(zhì)量濃度較高的重要因素(Huang等, 2001; Kuchta和Cessna, 2009)。CXM、ERY和MTZ的檢出率均為75%,質(zhì)量濃度范圍分別為15~59 ng·L-1、12~66 ng·L-1和3.2~12 ng·L-1。CXM屬于β-內(nèi)酰胺類抗生素,易發(fā)生水解(劉川等, 2013),ERY為大環(huán)內(nèi)酯類抗生素,在水中降解較快(徐維海, 2007),而CXM和ERY檢出率和檢出質(zhì)量濃度均較高,說明河流流域范圍內(nèi)其使用量均很大。自然環(huán)境中MTZ性質(zhì)較穩(wěn)定,不易降解,但使用量較少,因而與CXM和ERY相比,其檢出質(zhì)量濃度較低(Ingerslve等, 2001)。CEX和ROX檢出率為50%,CEX檢出較低,均不超過4 ng·L-1;SMZ僅在西麗引水中有檢出,其濃度僅為4.7 ng·L-1。豐水期時(shí),大部分抗生素檢出濃度較枯水期時(shí)顯著降低。LNC和ERY在各支流水樣中(九圍河除外)均有檢出,檢出質(zhì)量濃度范圍分別為3.1~32 ng·L-1和1.6~11 ng·L-1;SMX和MTZ檢出率為75%,質(zhì)量濃度范圍分別為5.3~7.6 ng·L-1和1.1~8.2 ng·L-1;塘頭河和大官陂河中均檢出了CXM和SMZ,質(zhì)量濃度較枯水期時(shí)大
幅降低;CEX和ROX僅在料坑水中檢出,質(zhì)量濃度均低于4 ng·L-1。九圍河中檢出了CXM、SMX、MTZ和LNC 4種抗生素,其中LNC的質(zhì)量濃度很高,約占其總濃度的71%。
2.2鐵崗水庫中抗生素污染特征
圖3列出了鐵崗水庫各采樣點(diǎn)水樣中抗生素質(zhì)量濃度水平及分布情況。由于鐵崗入庫支流中均沒有AMC殘留,庫中各水樣中AMC檢出率也為0。枯水期時(shí),各水樣中均檢出了ERY、SMZ、SMX和LNC 4種抗生素,且抗生素質(zhì)量濃度相差不大,均在33 ng·L-1左右,其中以ERY和LNC為主,占抗生素總濃度70%以上。豐水期時(shí),ERY和LNC在庫中各水樣中的檢出率為100%,抗生素質(zhì)量濃度較豐水期時(shí)明顯降低,其中,庫中1和庫中2水樣中抗生素總質(zhì)量濃度在5.5 ng·L-1左右。
結(jié)合圖2可以看出,不同時(shí)期鐵崗水庫中(豐水期時(shí)庫中3除外)抗生素質(zhì)量濃度水平及分布情況與西麗引水類似。這是因?yàn)?,西麗引水是鐵崗水庫流量最大的入庫支流,對(duì)鐵崗水庫抗生素貢獻(xiàn)率最大,而其他入庫支流由于流量均較小,盡管其抗生素污染程度較高,但對(duì)鐵崗水庫抗生素貢獻(xiàn)率較低。加之水庫水量的稀釋作用,支流中存在的MTZ、 ROX等抗生素進(jìn)入水庫后均低于其LQOs,因而未能在水庫中得以檢出。此外,豐水期時(shí)庫中3水樣中還檢出了少量SMZ和SMX,且抗生素總質(zhì)量濃度(為13 ng·L-1)均高出庫中1、2水樣,研究推測,由于九圍河入水口距庫中3采樣點(diǎn)較近,豐水期時(shí)九圍河污水的排入可能使得該采樣點(diǎn)附近水域污染加重,導(dǎo)致庫中3水樣中抗生素質(zhì)量濃度與種類較庫中1、2有所增加。
圖3 鐵崗水庫庫中抗生素污染分布狀況Fig. 3 Distribution of antibiotics in Tiegang Reservoir
表3 枯水期鐵崗水庫水體中抗生素生態(tài)風(fēng)險(xiǎn)商Table 3 The RQs of the selected antibiotics in Tiegang Reservoir in the dry season
2.3鐵崗水庫水體中抗生素生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)
生態(tài)風(fēng)險(xiǎn)商評(píng)價(jià)結(jié)果見表3和表4??梢钥闯觯煌瑫r(shí)期時(shí),鐵崗水庫水體中中CEX、CXM、SMZ和MTZ的RQ均低于0.01,無明顯生態(tài)風(fēng)險(xiǎn)??菟跁r(shí),抗生素生態(tài)風(fēng)險(xiǎn)水平較高,ERY、SMX、LNC的RQ均高于0.1,處于中風(fēng)險(xiǎn)及以上水平,其中料坑水中ERY(3.30)、大官陂河中SMX(1.57)和LNC(2.90)的RQ均大于1.0,處于較高風(fēng)險(xiǎn)水平,對(duì)生態(tài)環(huán)境的危害作用較大。
豐水期時(shí),鐵崗水庫水體中抗生素風(fēng)險(xiǎn)水平有所降低,僅九圍河中LNC處于高風(fēng)險(xiǎn)水平(RQ為2.00)。除大官陂河外(0.08,低風(fēng)險(xiǎn)),ERY在鐵崗水庫和其他入庫支流中的RQ均大于0.1,SMX在鐵崗入庫支流(西麗引水除外)中的RQ也均高于0.1,對(duì)各自水環(huán)境具有中等程度的危害性。而由于九圍河污水的影響,鐵崗庫中3中SMX的RQ為0.05,處于低風(fēng)險(xiǎn)水平。LNC在鐵崗水庫和西麗引水中的RQ低于0.1,生態(tài)風(fēng)險(xiǎn)較低;入庫支流中(九圍河除外)LNC的RQ均在0.1以上,處于中風(fēng)險(xiǎn)水平。
風(fēng)險(xiǎn)簡單疊加模型計(jì)算結(jié)果顯示,枯水期時(shí),鐵崗水庫水體中抗生素聯(lián)合毒性風(fēng)險(xiǎn)水平較高,鐵崗水庫和西麗引水中抗生素RQsum均在0.93以上,其他入庫支流中抗生素RQsum均大于1.0,其中料坑水中抗生素RQsum高達(dá)4.99,對(duì)生態(tài)環(huán)境存在較高的危害性。豐水期時(shí),抗生素聯(lián)合生態(tài)風(fēng)險(xiǎn)有所降低,僅九圍河中抗生素RQsum大于1.0,其他入庫支流和鐵崗水庫中抗生素RQsum均在1.0以下,均處
于中風(fēng)險(xiǎn)水平。
表4 豐水期鐵崗水庫水體中抗生素生態(tài)風(fēng)險(xiǎn)商Table 4 The RQs of the selected antibiotics in Tiegang Reservoir in the wet season
(1)鐵崗水庫水體中共檢出了8種抗生素,質(zhì)量濃度范圍為1.1~203 ng·L-1。其中,LNC的檢出濃度最高,ERY次之,AMC在所有采樣點(diǎn)均未被檢出。與珠江、深圳河、深圳灣的檢測結(jié)果(葉計(jì)朋等, 2007)相比,鐵崗水庫的抗生素殘留處于較低的水平。
(2)枯水期時(shí)鐵崗水庫抗生素殘留情況比豐水期更嚴(yán)重。入庫支流的抗生素污染程度普遍高于鐵崗水庫,其中以大官陂河抗生素殘留濃度最高,九圍河次之。鐵崗水庫抗生素殘留種類及濃度范圍與西麗引水基本一致。
(3)按照MEC/PNEC風(fēng)險(xiǎn)綜合評(píng)價(jià)體系,枯水期時(shí)料坑水中ERY、大官陂河中SMX和LNC,豐水期時(shí)九圍河中LNC的RQ均大于1.0,對(duì)環(huán)境具有高風(fēng)險(xiǎn);風(fēng)險(xiǎn)簡單疊加模型計(jì)算結(jié)果表明,枯水期時(shí)料坑水、塘頭河、大官陂河以及豐水期時(shí)九圍河中抗生素的RQsum均大于1.0,對(duì)生態(tài)環(huán)境可能會(huì)產(chǎn)生較嚴(yán)重的危害。
?GERSTRAND M, RUDéN C. 2010. Evaluation of the accuracy and consistency of the Swedish Environmental Classification and Information System for pharmaceuticals [J]. Science of The Total Environment, 408(11): 2327-2339.
BENOTTI M J, TRENHOLM R A, VANDERFORD B J, et al. 2009. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water[J]. Environmental Science Technology, 43(3): 597-603.
BIALK-BIELINSKA A, STOLTE S, ARNING J. 2011. Ecotoxicity evaluation of selected sulfonamides [J]. Chemosphere, 85(6): 928-933.
CLEUVERS M. 2003. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects [J]. Toxicology Letters, 142(3): 185-194.
CLEUVERS M. 2004. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen and acetylsalicylic acid [J]. Ecotoxicology and Environmental Safety, 59(3): 309-315.
EC (European Commission), 2003. European Commission Technical Guidance Document in Support of Commission Directive 93//67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) no.1488/94 on Risk Assessment for Existing Substance.
GAO P P, MAO D Q, LUO Y, et al. 2012. Occurrence of sulfonamide and tetracyline-resistant bacteria and resistance genes in aquaculture environment [J]. Water Research, 46(7): 2355-2364.
GINEBREDA A, MU?OZ I, ALDA M L. 2010. Environmental risk assessment of pharmaceutical substances in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity Indexes in the Llobregat River (NE Spain) [J]. Environmental International, 36(2): 153-162.
HERNANDO M D, MEZCUA M, FERNANDEZ-ALBA A R, et al. 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 69(2): 334-342.
HOMEM V, SANTOS L. 2011. Degradation and removal methods of antibiotics from aqueous matrices-A review [J]. Journal of Environmental Management, 92(10): 2304-2347.
HUANG C H, RENEW J E, SMEBY L K, et al. 2001. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis[J]. Water Resources Update, 120(1): 30-40.
INGERSLVE F, TOR?NG L, LOKE M L, et al. 2001. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems [J]. Chemosphere, 44 (4): 865-872.
ISIDORI M, LAVORGNA M, NARDELLI A. 2005. Toxic and genotoxic evaluation of six antibiotics on non-target organisms [J]. Science of the Total Environment, 346(1-3): 87-98.
KUCHTA S L, CESSNA A J. 2009. Fate of lincomycin in snowmelt run off from manure-amended pasture[J]. Chemosphere, 76(1): 439-446.
KUMMERER K. 2009. Antibiotics in the aquatic environment-A review[J]. Chemosphere, 75(4): 417-441.
LE-MINH N, KHAN S J, DREWES J E. 2010. Fate of antibiotics during municipal water recycling treatment processes[J].Water Research, 44(15): 4295-4323.
LIN A Y C, YU T H, LIN C F. 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan[J]. Chemosphere, 74(1): 131-141.
MOMPELAT S, LE BOT B, THOMAS O. 2009. Occurrence and fate of pharmaceutical products and by products, from resource to drinking water [J]. Environment International, 35(5): 803-814.
MUTIYAR P K, MITTAL A K. 2013. Occurrences and fate of an antibiotic amoxicillin in extended aeration-based sewage treatment plant in Delhi, India: a case study of emerging pollutant [J]. Desalination and Water Treatment, 51(31-33): 6158-6164.
PARK S, CHOI K. 2008. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems [J]. Ecotoxicology, 17(6): 526-538.
Part II. In: Commission, E. (Ed.): 100-103.
PETROVIC M, GONZALEZ S, BARCELó D. 2003. Analysis and removal of emerging contaminants in wastewater and drinking water[J]. TRAC Trends in Analytical Chemistry, 22(10): 685-696.
QUINN B, GAGNE F, BLAISE C. 2008. An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata [J]. Science of the total environment, 389(2-3): 306-314.
SARMAH A K, MEYER M T, BOXALL A B A. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics(VAs) in the environment[J]. Chemosphere, 65(5): 725-759.
STUER-LAURIDSEN F, BIRKVED M, HANSEN L P. 2000. Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use [J]. Chemosphere, 40(7): 783-793.
TURKDOGAN F I, YETILMEZSOY K. 2009. Appraisal of potential environmental risks associated with human antibiotic consumption in Turkey [J]. Journal of Hazardous Materials, 166(1): 297-308.
VRYZAS Z, ALEXOUDIS C, VASSILIOU G, et al. 2011. Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece [J]. Ecotoxicity and Environmental Safety, 74(2): 174-181.
WATKINSONA A J, MURBYC E J, COSTANZO S D. 2007. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling [J]. Water Research, 41(18): 4164-4176.
XU W H, ZHANG G, ZOU S C, et al. 2007. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high performance liquid chromatography electrospray ionization tandem mass spectrometry[J]. Environmental Pollution, 145(3): 672-679.
ZHU Y G, JOHNSON T A, SU J Q, et al. 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms [J]. Proceedings of the National Academy of Sciences of the United States of America, 110(9): 3435-3440.
梁惜梅, 施震, 黃小平. 2013. 珠江口典型水產(chǎn)養(yǎng)殖區(qū)抗生素的污染特征[J]. 生態(tài)環(huán)境學(xué)報(bào), 22(2): 304-310.
劉川, 趙穎穎, 尹秋響. 2013. 頭孢呋辛鈉在水溶液中的降解動(dòng)力學(xué)[J].化學(xué)工業(yè)與工程, 30(1): 8-13.
葉計(jì)朋, 鄒世春, 張干等, 2007. 典型抗生素類藥物在珠江三角洲水體中的污染特征[J]. 生態(tài)環(huán)境, 16(2): 384-388.
鄭玲芳. 2013. 黃浦江水源地沉積物重金屬潛在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 29(6): 762-767.
徐維海. 2007. 典型抗生素類藥物在珠江三角洲水環(huán)境中的分布、行為與歸宿[D]. 廣東: 中國科學(xué)院廣州地球化學(xué)研究所: 55-66.
徐中義, 陳敬安, 張陽, 等. 2014. 阿哈水庫沉積物重金屬形態(tài)分布及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J]. 西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 39(3): 71-76.
Pollution Characteristics and Ecological Risk Assessment of Antibiotics in Tiegang Reservoir in Shenzhen
ZHU Tingting, DUAN Biaobiao, SONG Zhanfeng, PENG Shenghua
State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Drinking Water Source Safety Control, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
Antibiotics have widely been used in agriculture, aquaculture, animal husbandry, human disease treatment and personal care. In recent years, the antibiotics detected in the water environment have gradually become a focus of concern and research. There were antibiotic residues in the rivers, lakes and groundwater in many countries. Currently, many efforts have been made to investigate the occurrences of antibiotics in the rivers, estuaries, sewage treatment plants and so on. Nevertheless, limited studies were conducted on antibiotic residues in the source water. The pollution characteristics of 5 typical groups of antibiotics in Tiegang drinking water source in Shenzhen were investigated using high performance chromatography-electrospray ionization tandem mass spectrometry. Results showed that 8 of the 9 target antibiotics were detected with the concentrations ranged from 1.1 to 203 ng·L-1. Among them, lincomycin was detected with the highest concentration, while erythromycin and amoxicillin were not found in the study. The contamination levels in the tributaries were relatively higher than in the Tiegang reservoir generally, and the highest concentration was detected in Daguanpi river(277.0 ng·L-1), then followed by Jiuwei river(196.4 ng·L-1). The antibiotic contamination levels in dry season were higher than in wet season. The ecological risk assessment revealed that risk quotients(RQs) were over than 1 for the erythromycin in Liaokengshui River, sulfamethoxazole and lincomycin in Daguanpi River(dry season), and lincomycin in Jiuwei river(wet season), indicating the high ecological risk. And the joint risk quotients(RQsums) of antibiotics for Liaokengshui river, Tangtou river, Daguanpi river(dry season) and Jiuwei river(wet season) calculated by simple risk addition model were all higher than 1, which indicated antibiotics would cause obvious hazard to the ecological environment currently.
source water; antibiotics; pollution characteristics; ecological risk assessmen
X508
A
1674-5906(2014)07-1175-06
深圳市環(huán)境科研項(xiàng)目(SZCG2012033773);深圳市知識(shí)創(chuàng)新計(jì)劃(JCYJ20120618154913166)
朱婷婷(1983年生)女,工程師,博士,主要研究方向:水污染防治和飲用水源保護(hù)研究。E-mail: xiaozhu.tt@163.com
2014-02-25
朱婷婷,段標(biāo)標(biāo),宋戰(zhàn)鋒,彭盛華. 深圳鐵崗水庫水體中抗生素污染特征分析及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià) [J]. 生態(tài)環(huán)境學(xué)報(bào), 2014, 23(7): 1175-1180.
ZHU Tingting, DUAN Biaobiao, SONG Zhanfeng, PENG Shenghua. Pollution Characteristics and Ecological Risk Assessment of Antibiotics in Tiegang Reservoir in Shenzhen [J]. Ecology and Environmental Sciences, 2014, 23(7): 1175-1180.
生態(tài)環(huán)境學(xué)報(bào)2014年7期