亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        帶有通信噪聲的隨機(jī)時(shí)延復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的H∞控制

        2014-02-21 11:51:26韋慶陽(yáng)樊春霞
        關(guān)鍵詞:時(shí)延信道耦合

        韋慶陽(yáng), 樊春霞, 顧 瑜

        南京郵電大學(xué)自動(dòng)化學(xué)院,南京210003

        近年來(lái),復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)成為各個(gè)領(lǐng)域的研究熱點(diǎn)[1-6],其控制與同步問(wèn)題也得到了很多關(guān)注.由于網(wǎng)絡(luò)本身的很多元素,如網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)變化、時(shí)間延遲、通信噪聲等,復(fù)雜網(wǎng)絡(luò)的同步控制面臨諸多具體問(wèn)題[7-8].

        復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)節(jié)點(diǎn)之間進(jìn)行信息傳輸,不可避免地受到信道噪聲干擾,且隨機(jī)發(fā)生傳輸時(shí)延.文獻(xiàn)[9]考慮存在依賴于系統(tǒng)狀態(tài)且滿足伯努利分布的白噪聲干擾情況下,時(shí)滯離散復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的同步控制問(wèn)題.文獻(xiàn)[10]針對(duì)傳感器存在隨機(jī)時(shí)延和隨機(jī)飽和的情況,研究了復(fù)雜網(wǎng)絡(luò)的狀態(tài)估計(jì)問(wèn)題.文獻(xiàn)[11]針對(duì)非線性節(jié)點(diǎn)和有隨機(jī)干擾的延遲復(fù)雜網(wǎng)絡(luò),采用混合自適應(yīng)方法和脈沖控制方法實(shí)現(xiàn)了隨機(jī)同步.文獻(xiàn)[12]實(shí)現(xiàn)了針對(duì)帶有隨機(jī)耦合強(qiáng)度變化和不確定性節(jié)點(diǎn)延遲的馬爾科夫耦合神經(jīng)網(wǎng)絡(luò)的同步控制.文獻(xiàn)[13]研究了隨機(jī)切換耦合結(jié)構(gòu)的復(fù)雜網(wǎng)絡(luò)的同步問(wèn)題.文獻(xiàn)[14]提出了一種節(jié)點(diǎn)狀態(tài)信息通信時(shí)隨機(jī)發(fā)生延遲的復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)模型,并給出了同步控制器存在準(zhǔn)則,由此可見(jiàn),隨機(jī)因素作為復(fù)雜網(wǎng)絡(luò)研究中不可忽略的因素,逐步成為該領(lǐng)域的熱點(diǎn)問(wèn)題.

        文獻(xiàn)[14]不但提出了隨機(jī)時(shí)延復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的模型,而且給出了該網(wǎng)絡(luò)模型同步控制器的存在準(zhǔn)則,但沒(méi)有考慮節(jié)點(diǎn)間在傳輸狀態(tài)信息時(shí)存在的信道噪聲.文獻(xiàn)[5]利用牽制控制的方法,以最少數(shù)量的控制器獲得了節(jié)點(diǎn)受到噪聲干擾的線性耦合隨機(jī)神經(jīng)網(wǎng)絡(luò)的同步.該網(wǎng)絡(luò)中的噪聲由布朗運(yùn)動(dòng)描述,且依賴于系統(tǒng)狀態(tài).每個(gè)節(jié)點(diǎn)噪聲的強(qiáng)度與該節(jié)點(diǎn)狀態(tài)量呈現(xiàn)出某種函數(shù)關(guān)系.對(duì)于這種噪聲,文獻(xiàn)[5]采用伊藤積分的方法來(lái)處理.

        本文研究具有隨機(jī)時(shí)延和信道噪聲的復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò),所考慮的信道噪聲不依賴于系統(tǒng)狀態(tài),采用H∞控制方法來(lái)抑制噪聲對(duì)網(wǎng)絡(luò)穩(wěn)定性的影響.利用Lyapunov穩(wěn)定性理論、隨機(jī)分析方法與H∞控制方法,實(shí)現(xiàn)了一個(gè)帶有信道噪聲的隨機(jī)時(shí)延復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的控制.將復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的節(jié)點(diǎn)信息在傳輸過(guò)程中的時(shí)延描述成Markov鏈形式,建立了隨機(jī)時(shí)延耦合的復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)H∞控制器設(shè)計(jì)準(zhǔn)則.最后,以Lorenz混沌系統(tǒng)作為節(jié)點(diǎn)動(dòng)力學(xué),構(gòu)造了復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)并進(jìn)行數(shù)值仿真.仿真結(jié)果表明,本文所提出的控制器能夠?qū)⒕哂须S機(jī)時(shí)延的復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)漸近穩(wěn)定在平衡點(diǎn),且滿足一定的H∞性能指標(biāo).

        1 建立網(wǎng)絡(luò)模型和設(shè)計(jì)控制器

        考慮包含N個(gè)節(jié)點(diǎn)的隨機(jī)時(shí)延耦合的復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)

        式中,xi(t)=(xi1(t),xi2(t),···,xin(t))T∈Rn是節(jié)點(diǎn)i的狀態(tài)向量;f:Rn→Rn為非線性平滑向量值函數(shù),˙xi(t)=f(xi(t))為節(jié)點(diǎn)動(dòng)態(tài)方程,A為任意兩個(gè)節(jié)點(diǎn)之間的內(nèi)部耦合矩陣,ui(t)為控制輸入,τ(t)為網(wǎng)絡(luò)耦合的延遲時(shí)間,C=(cij)N×N為復(fù)雜網(wǎng)絡(luò)的耦合拓?fù)渚仃?,wj(t)∈L2[t0,∞)是節(jié)點(diǎn)j的狀態(tài)xj傳輸?shù)焦?jié)點(diǎn)i時(shí)受到的信道噪聲干擾,B∈Rn×n為一個(gè)常數(shù)矩陣,決定了通信噪聲wj(t)的強(qiáng)度,δ(t)∈[0,1]表示是否發(fā)生時(shí)延的隨機(jī)變量.如果第i個(gè)節(jié)點(diǎn)與第j(i/=j)個(gè)節(jié)點(diǎn)有連接,則cij>0;否則,cij=0(i/=j),且cii=0(i=1,2,···,N).若復(fù)雜網(wǎng)絡(luò)中沒(méi)有孤立的簇,則C對(duì)稱不可約[17].δ(t)=1表示一個(gè)節(jié)點(diǎn)的鄰居節(jié)點(diǎn)狀態(tài)向量xj(t)在傳輸?shù)皆摴?jié)點(diǎn)的過(guò)程中沒(méi)有發(fā)生時(shí)間延遲,δ(t)=0表示一個(gè)節(jié)點(diǎn)的鄰居節(jié)點(diǎn)狀態(tài)向量xj(t)傳輸?shù)皆摴?jié)點(diǎn)的過(guò)程中會(huì)發(fā)生時(shí)間延遲.δ(t)是一個(gè)Markov鏈,且滿足如下的指數(shù)分布變換[18-19]:

        注1 在復(fù)雜網(wǎng)絡(luò)(1)中,節(jié)點(diǎn)i的信息不通過(guò)網(wǎng)絡(luò)傳遞到該節(jié)點(diǎn),因此不用考慮信息傳輸時(shí)延以及信道噪聲;在文獻(xiàn)[14]提出的隨機(jī)時(shí)延耦合復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)模型中,節(jié)點(diǎn)i的信息通過(guò)網(wǎng)絡(luò)傳遞到該節(jié)點(diǎn),因而節(jié)點(diǎn)自身信息耦合時(shí)也發(fā)生了時(shí)延.從工程實(shí)現(xiàn)角度來(lái)講,節(jié)點(diǎn)i的信息可以直接傳遞該節(jié)點(diǎn),而沒(méi)有必要通過(guò)網(wǎng)絡(luò)傳遞,故不增加網(wǎng)絡(luò)的通信負(fù)載.從這個(gè)意義上來(lái)說(shuō),復(fù)雜網(wǎng)絡(luò)(1)比文獻(xiàn)[14]中提出的網(wǎng)絡(luò)模型更符合工程實(shí)際.

        注2 復(fù)雜網(wǎng)絡(luò)(1)考慮的是信息在節(jié)點(diǎn)之間的傳輸時(shí)延以及信道噪聲對(duì)網(wǎng)絡(luò)穩(wěn)定性的影響,文獻(xiàn)[5,10-12]中的節(jié)點(diǎn)動(dòng)力學(xué)是時(shí)延系統(tǒng),而對(duì)于信息在網(wǎng)絡(luò)上的傳輸過(guò)程沒(méi)有給予更多的關(guān)注.

        假設(shè)1 復(fù)雜網(wǎng)絡(luò)(1)中的時(shí)延τ(t)滿足

        式中,τ1、τ2、h均為正數(shù),h為延遲時(shí)間變化率的界.假設(shè)2 非線性函數(shù)f(·)滿足Lipschitz條件

        式中,x和y表示任意時(shí)變n維向量,Li是一個(gè)正數(shù),且i=1,2,···,n,記作L=diag{L1,L2,···,Ln}.

        采用反饋控制的原理設(shè)計(jì)控制器

        式中,控制器增益ki是待確定的.將式(6)代入式(1),則得到被控網(wǎng)絡(luò)為

        由假設(shè)2可得

        定義1 若wi(t)=0,且滿足E(˙V(t))≤0,則被控復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)(6)在均方意義下漸進(jìn)穩(wěn)定.

        本文旨在給出控制器(5)的設(shè)計(jì)準(zhǔn)則,使得復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)(6)滿足以下2個(gè)條件:

        1)當(dāng)wi(t)=0時(shí),復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)(6)是均方意義下的漸近穩(wěn)定.

        2)當(dāng)wi(t)/=0(i=1,2,···,N)時(shí),在零初始條件下,被控動(dòng)態(tài)網(wǎng)絡(luò)(6)的狀態(tài)滿足

        式中,r為給定的標(biāo)量,且r>0.本文需要引入引理1和2.

        引理1[20]對(duì)于任意兩個(gè)向量x,y∈Rn和標(biāo)量ε>0,不等式2xTy≤εxTx+ε-1yTy成立.

        引理2[21]矩陣Schur補(bǔ)引理.線性矩陣不等式

        式中,Q(x)=QT(x)、R(x)=RT(x)和S(x)映射于x,等價(jià)于

        2 復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的H∞控制

        下面研究復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)(6)的H∞控制問(wèn)題.

        定理1 如果存在標(biāo)量ε>0,對(duì)稱正定矩陣P和Q,滿足矩陣不等式

        證明 取Lyapunov-Krasovskii泛函為

        式中,P和Q均為對(duì)稱正定矩陣.對(duì)V(t)求導(dǎo),可得

        根據(jù)引理1和假設(shè)2可得

        令Z(t)=(x1(t)T,···,xN(t)T)T,可得式(16)~(24)

        因此可得

        式中,U=I3N+(˙τ(t)-1)(IN?Q)對(duì)式(25)的兩邊求期望值,因?yàn)?/p>

        所以

        式中,U1=I3N+(H-1)(IN?Q)

        利用引理2對(duì)式(27)進(jìn)行變換,可得式(11)和(12).當(dāng)且僅當(dāng)M1<0,式(12)成立.

        根據(jù)Lyapunov穩(wěn)定性理論可知,當(dāng)wi(t)=0時(shí),在控制器(5)作用下,被控網(wǎng)絡(luò)(6)是均方意義下的漸近穩(wěn)定.

        定理2 給定H∞性能指標(biāo)r>0.如果存在標(biāo)量ε>0和對(duì)稱正定矩陣P、Q,滿足矩陣不等式

        式中,M2=(C?(PAB))

        則帶有通信噪聲的隨機(jī)時(shí)延復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)(6)是均方漸近穩(wěn)定的,且對(duì)于所有非零點(diǎn),wi(t)(i=1,2,···,N)能滿足H∞性能指標(biāo)(8).

        那么,考慮式(16)~(24)和式(29)可得

        考慮時(shí)間t服從時(shí)間[t0,∞),將式(30)兩邊積分可得

        在零初始條件下,可得V(t0)=0和V(∞)≤0,

        注3可以用MATLAB軟件的YALMIP工具箱求解控制器設(shè)計(jì)的準(zhǔn)則線性矩陣不等式(11)和(12).

        3 數(shù)值仿真

        在仿真中,建立一個(gè)包含10個(gè)節(jié)點(diǎn)的隨機(jī)時(shí)延耦合復(fù)雜網(wǎng)絡(luò),其中每個(gè)節(jié)點(diǎn)采用Lorenz系統(tǒng).Lorenz系統(tǒng)的表達(dá)式為

        式中,a、b、c均為參數(shù).當(dāng)a=10,b=8/3,c=28時(shí),該系統(tǒng)出現(xiàn)混沌特性.在被控網(wǎng)絡(luò)式(6)中,選定性能指標(biāo)r=0.5,δ(t)是滿足式(2)的馬爾科夫鏈

        外部耦合矩陣為

        在仿真中,耦合延遲時(shí)間設(shè)定為函數(shù)τ(t)=0.3+0.1sin t,且延遲時(shí)間函數(shù)導(dǎo)數(shù)的界h=0.1.本文選擇高斯噪聲作為通信噪聲,則網(wǎng)絡(luò)節(jié)點(diǎn)的初始狀態(tài)為

        當(dāng)控制器的增益ki=50,i=1,···,10,=0.5時(shí),求解線性矩陣不等式=0.5可得

        仿真結(jié)果如圖1所示.由圖1可以看出,復(fù)雜網(wǎng)絡(luò)(1)在控制器(5)的作用下所有節(jié)點(diǎn)的狀態(tài)漸近穩(wěn)定,滿足r=0.5的性能指標(biāo).

        圖1 當(dāng)=0.5時(shí),受控復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)節(jié)點(diǎn)的狀態(tài)xi1、x i2、x i3Figure 1 State x i1、x i2、x i3 of controlled complex networks whenδ=0.5

        4 結(jié)語(yǔ)

        本文研究了信道噪聲環(huán)境下隨機(jī)時(shí)延復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)的控制問(wèn)題.考慮到節(jié)點(diǎn)之間信息傳輸時(shí)不可避免地受到信道噪聲的干擾以及傳輸時(shí)延的隨機(jī)發(fā)生,設(shè)計(jì)了狀態(tài)反饋控制器.利用Lyapunov穩(wěn)定性理論、隨機(jī)分析方法和H∞控制方法,得到了信道噪聲環(huán)境下的隨機(jī)時(shí)延耦合復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)控制器設(shè)計(jì)準(zhǔn)則.最后,以Lorenz混沌系統(tǒng)作為節(jié)點(diǎn),構(gòu)建了復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)進(jìn)行數(shù)值仿真.仿真結(jié)果表明,本文所設(shè)計(jì)的狀態(tài)反饋控制器能夠使帶有信道噪聲的隨機(jī)時(shí)延復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)漸近穩(wěn)定,并且滿足給定的H∞性能指標(biāo).

        [1]HIROSE A,YOSHIDA S.Generalization characteristics of complex-valued feed forward neural networks in relation to signal coherence[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(4):541-551.

        [2]蔣國(guó)平,樊春霞,宋玉榮,邵斐.復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)同步控制及其在信息物理系統(tǒng)中的應(yīng)用[J].南京郵電大學(xué)學(xué)報(bào):自然科學(xué)版,2010,30(4):41-51.

        JIANG Guoping,FAN Chunxia,SONG Yurong,SHAO Fei.Synchronization and control of complex dynamical networks with applications in cyber-physical systems[J].Journal of Nanjing University of Posts and Telecommunications:Natural Science,2010,30(4):41-51.(in Chinese)

        [3]何漢林,涂鍵君,熊萍.基于離普希茨常數(shù)估計(jì)的混沌魯里葉系統(tǒng)同步[J].系統(tǒng)工程與電子技術(shù),2011,33(3):600-602.

        HEHanlin,TUJianjun,XIONGPing.Chaos synchronization between lurie systems based on estimation of Lipschitz constant[J].Systems Engineering and Electronics,2011,33(3):600-602.(in Chinese)

        [4]FANChunxia,JIANGGuoping,JIANGFenghua.Synchronization between two complex dynamical networks using scalar under pinging control[J].IEEE Transactions on Circuits and Systems,2010,57(11):2991-2998.

        [5]LU J Q,DANIEL W C H,WANG Z D.Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers[J].IEEE Transactions on Neural Networks,2009,20(10):1617-1629.

        [6]LIU D,MICHEL A N.Cellular neural networks for associative memories[J].IEEE Transaction on Circuits and Systems II,Analog Digit Signal Processing,1993,40(2):119-121.

        [7]LI Z,JIAO L,LEE J J.Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength[J].Physica A,2008,387(5/6):1369-1380.

        [8]YANG Xinsong,CAO Jinde,LU Jianquan.Synchronization of delayed complex dynamical networkswith impulsive and stochastic effects[J].Nonlinear Analysis:Real World Application,2011,12(4):2252-2266.

        [9]WANG Zidong,WANG Yao,LIU Yurong.Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays[J].IEEE Transactions on Neural Networks,2010,21(1):11-25.

        [10]DINGDerui,WANGZidong,SHENBo,SHUHuisheng.H∞state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(5):725-736.

        [11]YANGXinsong,CAOJinde,LUJianquan.Stochastic synchronization of complex networks with nonidentical nodes via hybird adaptive and impulsive control[J].IEEE Transactions on Circuits and Systems,2012,59(2):371-384.

        [12]YANG Xinsong,CAO Jinde,LU Jianquan.Synchronization of Markovian coupled neural networks with nonidentical node-delays and random coupling strengths[J].IEEE Transactions on Neural Networks and learning Systems,2012,23(1):60-71.

        [13]LIU Bo,LU Wenlian,CHEN Tianping.Synchronization in complex networks with stochastically switching coupling structures[J].IEEE Transactions on Automatic Control,2010,57(3):754-760.

        [14]CHEN Maoyin.Synchronization in complex dynamical networks with random sensor delay[J].IEEE Transaction on Circuits and Systems II,2010,57(1):46-50.

        [15]BALASUBRAMANIAM P, VEMBARASAN V,RAKKIYAPPAN R.Delay dependent robust exponential state estimation of Markovian jumping fuzzy hopf ield neural networks with mixed random time-varying delays[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(4):2109-2129.

        [16]LIU Yurong,WANG Zidong,LIANG Jinling,LIU Xiaohui.Stability and synchronization of discretetime markovian jumping neural networks with mixed mode dependent time delays[J].IEEE Transactions on Neural Networks,2009,20(7):1102-1116.

        [17]PECORA L M,CARROLL T L.Master stability functions for synchronized coupled systems[J].Physical Review Letters,1988,80(10):2109-2112.

        [18]LIN Chong,WANG Zidong,YANG Fuwen.Observerbased networked control for continuous-time systems with random sensor delays[J].Automatica,2009,45(2):578-584.

        [19]YUE D,TIAN E G,WANG Z D,LAM J.Stabilization of systems with probabilistic interval input delay and its applications to networked control systems[J].IEEE Transactions on Systems,Man and Cybernetics,Part A:Systems and Humans,2009,39(4):939-945.

        [20]WANG Jianan,LIU Heping,SHI Xin.Adaptive synchronization between two complex networks with nonidentical topological structures and time-varying delay coupling[J].Journal in Beijing University of Technology,2010,32(12):132-138.

        [21]BOYD S,GHAOUI L,FERON E,BALAKRISHNAN V.Linear matrix inequalities in system and control theory[M].Society for Industrial and Applied Mathematics,1994.

        猜你喜歡
        時(shí)延信道耦合
        非Lipschitz條件下超前帶跳倒向耦合隨機(jī)微分方程的Wong-Zakai逼近
        基于GCC-nearest時(shí)延估計(jì)的室內(nèi)聲源定位
        電子制作(2019年23期)2019-02-23 13:21:12
        基于改進(jìn)二次相關(guān)算法的TDOA時(shí)延估計(jì)
        FRFT在水聲信道時(shí)延頻移聯(lián)合估計(jì)中的應(yīng)用
        基于分段CEEMD降噪的時(shí)延估計(jì)研究
        基于導(dǎo)頻的OFDM信道估計(jì)技術(shù)
        基于“殼-固”耦合方法模擬焊接裝配
        大型鑄鍛件(2015年5期)2015-12-16 11:43:20
        一種改進(jìn)的基于DFT-MMSE的信道估計(jì)方法
        基于MED信道選擇和虛擬嵌入塊的YASS改進(jìn)算法
        求解奇異攝動(dòng)Volterra積分微分方程的LDG-CFEM耦合方法
        亚洲日本中文字幕乱码在线| 丰满人妻一区二区三区52| 亚洲偷自拍另类图片二区| 欧美亚洲另类自拍偷在线拍| av中文字幕在线资源网| 国产专区亚洲专区久久| 黄片小视频免费观看完整版| 天天躁夜夜躁狠狠是什么心态 | 国产三级久久久精品麻豆三级| 久久综合狠狠色综合伊人| 无码人妻丰满熟妇啪啪7774| av色综合网站| 精品蜜臀国产av一区二区| 日韩一区二区三区久久精品| 暖暖 免费 高清 日本 在线| 国产精品51麻豆cm传媒| 欧洲亚洲综合| AV在线毛片| 日本精品中文字幕人妻| 一区二区三区精品少妇| 亚洲a∨无码男人的天堂| 国产熟女高潮视频| 中文不卡视频| 日本高清长片一区二区| 中文字幕精品一区二区的区别| 人妻少妇精品久久久久久| 久久国产精久久精产国| 久久国产免费观看精品| 日韩一区二区,亚洲一区二区视频| 日本亚洲系列中文字幕| 日本精品少妇一区二区三区| 亚洲欧美成人一区二区在线电影 | 免费又黄又爽又猛的毛片| 欧美中文字幕在线看| 亚洲一区二区三区久久久| 日韩精品综合一本久道在线视频| 国产农村妇女精品一二区| 国产日产高清欧美一区| 午夜亚洲国产精品福利| 国产理论亚洲天堂av| 日韩人妻无码精品一专区二区三区 |