亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Analysis of equivalent antenna based on FDTD method

        2014-02-15 04:35:41YunxingYANGHuichangZHAOCuiDI
        Defence Technology 2014年3期

        Yun-xing YANG,Hui-chang ZHAO*,Cui DI

        School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

        Analysis of equivalent antenna based on FDTD method

        Yun-xing YANG,Hui-chang ZHAO*,Cui DI

        School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

        An equivalent microstrip antenna used in radio proximity fuse is presented.The design of this antenna is based on multilayer multipermittivity dielectric substrate which is analyzed by fnite difference time domain(FDTD)method.Equivalent iterative formula is modifed in the condition of cylindrical coordinate system.The mixed substrate which contains two kinds of media(one of them is air)takes the place of original single substrate.The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna.The validity of analysis can be validated by means of antenna resonant frequency formula.Two antennas have same radiation pattern and similar gain.This method can be used to reduce the weight of antenna,which is signifcant to the design of missile-borne antenna.

        Equivalent microstrip antenna;FDTD;Multi-permittivity dielectric

        1.Introduction

        In recent years,antenna has drawn more and more attention with the increase in demand for military antennas[1,7]. Especially for missile-borne antenna,it is required to be small in size and light in weight.In 1953,Deschamps proposed the conception of microstrip antenna[2].The microstrip antenna has many advantages,such as light weight, small size,and planar structure.Lots of work have been done on its miniaturization[3,4].But few research focused on decreasing the weight of antenna and leaving its basic parameters unchanged under the conditions of same size and thickness.

        In this work,another model is proposed.The aims of this work are:a)to preserve the shape of antenna;b)to preserve the of antenna electromagnetic parameters;and c)to decrease the weight of antenna.For this,a substrate with low permittivity and high permittivity media is taken the place of the original substrate,in which air is used as a lower permittivity media(high permittivity media can be any media as its permittivity is higher than original media).The introduction of the air media can effectively decrease the weight of antenna.The analysis of equivalent antenna is based on FDTD.

        2.Equivalent antenna structure and FDTD analysis

        In1966,K.S.Yee proposed the theory of FDTD[5].FDTD is a novel method which can be used to intuitively and succinctly describe Maxwell's equations.In this method,the electric feld and magnetic feld are included in a threedimensional model(Yee cell).It is used for solving all the problem of electromagnetic feld.A circular antenna is easily integrated into a warhead of bomb compared to rectangle antenna.Therefore the formulae in Refs.[6,7] should be amended in the cylindrical coordinate system(see Fig.1).

        Two medium exist in Yee grid(the permittivities are εr1,εr2). From Ampere circuital theorem,we have,

        Assuming that the magnetic conductivities of two media are the same.It can be known from the boundary condition of electromagnetic feld that the normal component of magnetic feld on the Interface between the two media is continuous,In cylindrical coordinate system,Eq.(3)could be rewritten as

        Fig.1.Yee cell.

        In FDTD iteration.

        Fig.2.Structure of substrate.

        The right side of Eq(5)can be extended to Substituting Eqs.(4),(6)and(7)into Eq.(3),we have,

        Fig.3.Resonant frequencies of three antennas.

        After the simplifcation,the equivalent permittivity can be obtained

        Through the analysis mentioned above,the structure of antenna substrate can be designed,as shown in Fig.2.

        3.Discussion of simulation

        Through the above analysis,FR4 is chosen for original substrate.The basic parameters of antenna are εr=4.4, R=15 mm,h=2 mm,r=13 mm.Eq(10)shows the relationship between two medium.Table 1 lists the parameters of equivalent antennas

        Table 1Parameters of equivalent antennas.

        Fig.4.S11 with different feed feint.

        Fig.5.Original radiation pattern.

        Fig.6.Equivalent radiation pattern.

        Fig.3 shows that the resonant frequency of original antenna is 3.10 GHz,and the resonant frequencies of the equivalent antennas A and B are also remain unchanged.It can be concluded from the resonant frequency formula that the permittivity is the only factor which has effect on resonant frequency when the radius of radiation patch and the working mode remain the same.So two media can be treated as a single medium which has a same permittivity as that of original medium.The results prove the accuracy of FDTD analysis. Because the position of feed point was not changed in simulation,the S11 parameters ofthe equivalentantenna deteriorated compared to the original antenna.So the equivalent antenna is not exactly equal to the original antenna.The parameters can be improved by changing the position of feed point.Fig.4 shows the S11 parameters after changing the position of feed point.

        Fig.5 and 6 show the radiation patterns of equivalent antenna and original antenna.It can be seen from Fig.5 and 6 that the direction and gain of equivalent antenna are similar to those of the original one.This shows that the equivalent antenna can replace the original antenna.

        4.Conclusions

        A method for decreasing the weight of antenna was proposed in the paper.By means of analysis based on FDTD,air medium and a higher permittivity medium are introduced to take the place of original substrate.The simulation results show that resonant frequency,radiation pattern and gain of equivalent antenna did not change.The air media can be used to reduce the weight of antenna.

        Acknowledgement

        The author would like to thank the National Natural Science Foundation of China(Grant No.6111168)for the support.

        [1]Chen N,Ammann MJ,Qing X,Wu XH,See TSP,Cai A.Planar.IEEE Microw Mag 2006;7(6):63-7.

        [2]Krstic M,Kanell Akopoulos I,Kokotovic P.Nonlinear and adaptive control design.New York:Wiley;1995.

        [3]Wong KL.Compact and broadband microstrip antennas.John Wiley& Sons Inc;2002.

        [4]Yee KS.Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media.IEEE Trans Antennas Propagate 1966;14(3):302-7.

        [5]Tafove A,Hagness SC.Computational electrodynamics:the fnite difference time domain method.2nd ed.Norwood,MA:Artech Hoose;2000.

        [6]Greengard L,Rokhlin V.A fast algorithm for particle simulation.J Comp Phys 1987;73:325-48.

        [7]Wu X,Tan YL,Xu J,Fang A.Research on the model of multilayed multiconductor system with equivalent permittivity,32(2).Journal of Zhejiang University of Technology;2006.p.179-82.

        Received 14 January 2014;revised 17 February 2014;accepted 19 March 2014 Available online 31 July 2014

        *Corresponding author.

        E-mail address:zhaohch@mail.njust.edu.cn(H.C.ZHAO).

        Peer review under responsibility of China Ordnance Society.

        http://dx.doi.org/10.1016/j.dt.2014.07.005 2214-9147/Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

        Copyright?2014,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

        免费又黄又爽又猛的毛片| 日本女优激情四射中文字幕| 免费av网站大全亚洲一区| 亚洲精品~无码抽插| 国产乱色精品成人免费视频| 2021年最新久久久视精品爱| 国产精品亚洲一区二区三区正片 | 看国产亚洲美女黄色一级片| 变态调教一区二区三区女同| 久久精品国产成人| 天天操夜夜操| 无码精品一区二区三区免费16| 亚洲精品视频一区二区三区四区| 中文字幕av高清人妻| 国产精品www夜色视频| 亚洲av无码成人黄网站在线观看| 国产永久免费高清在线观看视频| 男女性生活视频免费网站| 亚洲人成在久久综合网站| 免费a级毛片无码av| 国产av一区二区三区日韩 | 亚洲美女av二区在线观看| 91精品国产乱码久久中文| 国产乱人伦av在线a麻豆| 亚洲va中文字幕无码久久不卡 | 风韵少妇性饥渴推油按摩视频| 成人免费毛片aaaaaa片| 亚洲国产成人精品91久久久| 亚洲高清av一区二区| 美女在线一区二区三区视频| 国产精品女人呻吟在线观看| 乌克兰少妇xxxx做受6| 日本少妇爽的大叫高潮了| 人妖在线一区二区三区| 日韩精品无码一区二区| 欧美成年黄网站色视频| 一区二区三区国产97| 成h视频在线观看免费| 国产特黄级aaaaa片免| 天天做天天躁天天躁| 97久久成人国产精品免费|