張士杰,王 丹
(1.河南科技大學(xué) 信息工程學(xué)院,河南 洛陽 471023;2.解放軍91292部隊(duì),河北保定 074000)
修正Kalman濾波多帶UWB信道估計(jì)改進(jìn)方法*
張士杰1,2,**,王 丹1
(1.河南科技大學(xué) 信息工程學(xué)院,河南 洛陽 471023;2.解放軍91292部隊(duì),河北保定 074000)
針對(duì)多帶超寬帶(UWB)系統(tǒng)中修正Kalman濾波算法復(fù)雜度高的缺陷,提出一種低復(fù)雜度的修正Kalman濾波改進(jìn)方法。該方法中UWB信道采用自回歸模型(AR)建模,利用導(dǎo)頻跟蹤時(shí)變信道衰減因子,通過Kalman濾波和頻域分段最小均方誤差(MMSE)算法同時(shí)跟蹤信道的時(shí)域相關(guān)性和頻域相關(guān)性,提高了系統(tǒng)性能,降低了計(jì)算復(fù)雜度。仿真結(jié)果表明,和修正的Kalman濾波方法相比,在估計(jì)精度損失很小的情況下,所提方法極大降低了計(jì)算復(fù)雜度,提高了系統(tǒng)整體的估計(jì)性能。
多帶UWB;信道估計(jì);Kalman濾波;AR模型;導(dǎo)頻;計(jì)算復(fù)雜度
目前,超寬帶(UWB)技術(shù)和正交頻分復(fù)用(OFDM)技術(shù)相結(jié)合的OFDM-UWB技術(shù)兼具傳輸速率高、空間容量大、成本低、抗多徑衰落、頻譜利用率高等特點(diǎn),被廣泛應(yīng)用于無線通信領(lǐng)域。在OFDM-UWB系統(tǒng)中,接收端的相干解調(diào)需要利用信道信息,因此,OFDM-UWB系統(tǒng)的信道估計(jì)問題成為了近些年來研究的熱點(diǎn)之一[1-2]。
在OFDM-UWB信道環(huán)境中,信道信息的獲取通常采用基于訓(xùn)練序列的非盲信道估計(jì)方法,然而在時(shí)變信道中,噪聲和載波間干擾(ICI)會(huì)嚴(yán)重影響信道估計(jì)的準(zhǔn)確性。文獻(xiàn)[3]研究了準(zhǔn)靜態(tài)信道環(huán)境下基于導(dǎo)頻的LS信道估計(jì)方法,與盲估計(jì)算法相比,極大地降低了計(jì)算復(fù)雜度。文獻(xiàn)[4]提出了一種基于導(dǎo)頻的時(shí)頻二維MMSE的估計(jì)算法,提高了系統(tǒng)的估計(jì)精度,但是沒有考慮信道時(shí)域動(dòng)態(tài)特性。Kalman濾波理論的提出為估計(jì)衰落信道的時(shí)域動(dòng)態(tài)特性提供了有效的方法。文獻(xiàn)[5]提出一種Kalman濾波用于MIMO-OFDM系統(tǒng)快時(shí)變信道的盲信道估計(jì)方法,但是整體的計(jì)算過于復(fù)雜,實(shí)際應(yīng)用中難以實(shí)現(xiàn)。文獻(xiàn)[6]將導(dǎo)頻和Kalman濾波相結(jié)合,提出了基于導(dǎo)頻的Kalman信道估計(jì)算法,使Kalman濾波在實(shí)際中可用,但未考慮信道頻域相關(guān)性對(duì)信道估計(jì)性能的影響。在文獻(xiàn)[6]的基礎(chǔ)上,文獻(xiàn)[7]用Kalman濾波算法跟蹤信道的時(shí)域相關(guān)性,并根據(jù)MMSE準(zhǔn)則對(duì)信道估計(jì)進(jìn)行了進(jìn)一步的修正,減小了噪聲和ICI對(duì)信道估計(jì)的干擾,但是MMSE信道估計(jì)方法的計(jì)算量大,不利于實(shí)際系統(tǒng)中的應(yīng)用。
本文在文獻(xiàn)[7]的基礎(chǔ)上提出了一種修正Kalman濾波的信道估計(jì)方法來降低系統(tǒng)中噪聲和ICI的影響,并在保證計(jì)算精確性的前提下減少計(jì)算復(fù)雜度。系統(tǒng)利用導(dǎo)頻LS估計(jì)算法跟蹤信道變化,采用Kalman濾波得到信道信息,最后利用簡(jiǎn)化的MMSE準(zhǔn)則對(duì)估計(jì)結(jié)果進(jìn)行進(jìn)一步修正。理論分析和實(shí)驗(yàn)結(jié)果表明,這種低復(fù)雜度的修正Kalman濾波的信道估計(jì)方法減少了文獻(xiàn)[7]中利用MMSE準(zhǔn)則進(jìn)行頻域帶來的大量計(jì)算并且保證了系統(tǒng)的估計(jì)性能,使其在實(shí)際系統(tǒng)中能夠得到有效應(yīng)用。
OFDM-UWB系統(tǒng)模型如圖1所示,其中系統(tǒng)基帶部分采用了OFDM技術(shù),以有效對(duì)抗室內(nèi)密集多徑時(shí)延和提高頻譜利用率。
圖1 OFDM-UWB系統(tǒng)模型Fig.1 OFDM -UWB system model
發(fā)送端,二進(jìn)制數(shù)據(jù)經(jīng)過調(diào)制、串并變換和插入導(dǎo)頻后形成頻域的發(fā)送信號(hào)
其中,Sk為有用數(shù)據(jù)序列,Pk為導(dǎo)頻序列,N為子載波數(shù)。
頻域發(fā)送信號(hào)經(jīng)過快速傅里葉變換(IFFT)后形成時(shí)域信號(hào),為了消除符號(hào)間干擾(ISI)需要在兩個(gè)符號(hào)間加入循環(huán)前綴(CP),最后將時(shí)域信號(hào)發(fā)送出去。時(shí)域信號(hào)經(jīng)過衰落信道之后到達(dá)接收端,接收端經(jīng)過和發(fā)送端相反的處理過程得到頻域信號(hào):
其中,N為子載波數(shù),Wk表示均值為零、方差為的高斯白噪聲,Hk為信道頻域相應(yīng),Hf-k表示子載波f對(duì)k的干擾系數(shù),
超寬帶信道是廣義平穩(wěn)非相關(guān)散射(WSSUS)信道,而WSSUS信道可以用AR模型來描述,其證明過程非常復(fù)雜,具體的證明過程可以參見文獻(xiàn)[8-9]。信道頻響的動(dòng)態(tài)變化用P階(AR)模型可以描述為
其中,Hn,k為第 n個(gè) OFDM符號(hào)的第k個(gè)子載波的頻響,αt,k為信道狀態(tài)轉(zhuǎn)移系數(shù),Vn,k為均值為零、方差為σ2
v的高斯白噪聲。
從式(2)可以看出,信道中存在高斯白噪聲(AWGN)和ICI的影響,隨著信道時(shí)變性的增強(qiáng),ICI會(huì)嚴(yán)重影響信道估計(jì)珟HPn的準(zhǔn)確性。下面介紹一種低復(fù)雜度修正的Kalman濾波算法來降低AWGN和ICI影響,提高系統(tǒng)估計(jì)性能。
本文針對(duì)修正Kalman濾波計(jì)算復(fù)雜度高這一缺陷,提出一種低復(fù)雜度的修正Kalman濾波算法,為MMSE算法在實(shí)際系統(tǒng)中的應(yīng)用提供解決方案。下面介紹具體實(shí)現(xiàn)步驟。
(1)信道采用一階AR過程建模,首先在單個(gè)導(dǎo)頻子載波上進(jìn)行Kalman濾波。
導(dǎo)頻符號(hào)采用梳狀導(dǎo)頻模式,導(dǎo)頻分布滿足采樣定理,在頻域方向上以Nf個(gè)子載波等間隔放置,且第一個(gè)導(dǎo)頻符號(hào)位于OFDM符號(hào)的第一個(gè)子載波上。對(duì)導(dǎo)頻位置的LS估計(jì)為
(2)利用基于MMSE準(zhǔn)則的頻域分段方法對(duì)濾波結(jié)果進(jìn)行修正。在頻域上,MMSE信道估計(jì)與子載波之間相關(guān)性有關(guān),且相關(guān)性隨子載波之間距離的增大而降低。因此,可對(duì)系統(tǒng)帶寬進(jìn)行等間隔分段,分為窄帶寬度NC=N/Nsub的Nsub個(gè)窄帶,分別進(jìn)行MMSE信道估計(jì),雖然這樣會(huì)降低MMSE估計(jì)的精度,但是損失部分估計(jì)精度換取系統(tǒng)整體計(jì)算量大幅度減小是有必要的[12]。在分段窄帶內(nèi)進(jìn)行修正Kalman信道估計(jì),根據(jù)MMSE準(zhǔn)則修正Kalman估計(jì)結(jié)果為
表1 兩種方法運(yùn)算量(復(fù)數(shù)運(yùn)算次數(shù))對(duì)比Table 1 The computation comparison between two methods(number of plural calculations)
兩種方法信道估計(jì)運(yùn)算量主要涉及以下幾個(gè)運(yùn)算。
(1)計(jì)算導(dǎo)頻位置自相關(guān)矩陣
全帶寬:NP×NP維矩陣求逆;
圖3 幾種信道估計(jì)方法的MSE性能比較Fig.3 MSE performance comparison between several channel estimation methods
基于Matlab 2010軟件平臺(tái),在室內(nèi)UWB信道環(huán)境中對(duì)上述提出的低復(fù)雜度的修正Kalman濾波信道估計(jì)算法的性能進(jìn)行計(jì)算機(jī)仿真。采用IEEE802.15.3a 標(biāo)準(zhǔn)信道模型 CM1,系統(tǒng)帶寬為3.168 ~4.752 GHz,子帶寬度為528 MHz,子載波數(shù)為128,OFDM符號(hào)數(shù)為256,調(diào)制方式為QPSK。室內(nèi)信道的時(shí)變性一般較慢,選取信道衰落因子為α=0.998。假設(shè)信道之間是獨(dú)立同分布,對(duì)于任何一條多徑信道,單獨(dú)產(chǎn)生100個(gè)信道樣本,且信道樣本隨機(jī)提取。
圖2和圖3給出了基于導(dǎo)頻的LS信道估計(jì)算法、Kalman濾波算法、修正Kalman濾波算法和窄帶寬度為NC=1/4N低復(fù)雜度修正Kalman濾波算法的誤碼率(BER)和均方誤差(MSE)性能比較。從圖中可以看出,BER曲線的距離密度較小,但是和MSE曲線的變化趨勢(shì)是一致的。在MSE對(duì)比中,當(dāng)信噪比為20 dB時(shí),低復(fù)雜度修正的Kalman濾波算法估計(jì)精度優(yōu)于LS算法估計(jì)約20 dB,相對(duì)于傳統(tǒng)的Kalman濾波算法也有約8 dB的優(yōu)勢(shì);然而低復(fù)雜度修正Kalman濾波算法的估計(jì)精度略低于全頻帶的估計(jì)精度約1 dB,這是由于頻域分段進(jìn)行MMSE均衡時(shí)忽略了不同分段子載波之間的相關(guān)性導(dǎo)致的。
圖4和圖5給出了窄帶帶寬分別為NC=1/4N、NC=1/8N的低復(fù)雜度修正Kalman濾波算法和傳統(tǒng)Kalman濾波、修正Kalman濾波的性能對(duì)比。從圖中可以看出,隨著窄帶寬度的減小,子載波之間的相關(guān)性估計(jì)變差,BER曲線和MSE曲線性能下降。當(dāng)信噪比為20 dB時(shí),從MSE曲線可以明顯看出,窄帶寬度為NC=1/4N時(shí),MSE性能相對(duì)于修正Kalman濾波下降約1 dB,而當(dāng)窄帶寬帶為NC=1/8N時(shí),下降了約1.2 dB。但由理論分析可知,隨著窄帶寬度的減小,系統(tǒng)計(jì)算復(fù)雜度變?yōu)楹?jiǎn)化前(1/Nsub)3。損失極小的估計(jì)精度,能夠使系統(tǒng)的整體性能有極大提高,有利于更好地應(yīng)用于實(shí)際工程當(dāng)中。
圖4 不同分段簡(jiǎn)化算法的BER性能比較Fig.4 BER performance comparison between different segments simplification algorithms
圖5 不同分段簡(jiǎn)化算法的MSE性能比較Fig.5 MSE performance comparison between different segments simplification algorithms
本文提出了一種適用于時(shí)間頻率選擇性衰落信道的低復(fù)雜度修正Kalman濾波算法,首先利用Kalman濾波進(jìn)行時(shí)域信道估計(jì),然后運(yùn)用分段MMSE準(zhǔn)則對(duì)時(shí)域估計(jì)進(jìn)行頻域修正,從而有效抑制了噪聲和ICI的影響,跟蹤了信道的時(shí)頻變化。理論分析和仿真結(jié)果證明,這種基于Kalman濾波的低復(fù)雜度算法的估計(jì)性能優(yōu)于傳統(tǒng)的Kalman濾波方法,且與修正的Kalman濾波算法[7]相比,在估計(jì)精度損失不大的情況下,極大地降低了計(jì)算的復(fù)雜度,有效提高了系統(tǒng)的整體性能。本文提出的方法雖然能夠降低系統(tǒng)的計(jì)算復(fù)雜度,但是信道估計(jì)性能也受到了損失。如何在保證估計(jì)精度的前提下,尋求更簡(jiǎn)單的計(jì)算方法還需要進(jìn)行深入研究。
[1]Aiello R.Ultra- wideband wireless systems[J].IEEE Microwave Magazine,2003,4(2):36 -47.
[2]Snow C,Lampe L,Schober R.Performance analysis of multiband OFDM for UWB communication[C]//Proceedings of 2005 IEEE International Conference on Communications.Seoul,South Korea:IEEE,2005:2573 -2578.
[3]Manton J H.Optimal training sequences and pilot tones for OFDM systems[J].IEEE Communications Letters,2001,5(4):151 -153.
[4]Foersher J R.A Channel model for ultra wideband indoor communication[J].Proceedings of the IEEE,2006(7):31-35.
[5]Sheikh I,Khan N M,Rapajic P B.Kalman filter based channel estimation in OFDM multi-user single-inputmulti-output system[C]//Proceedings of 2004 IEEE Eighth International Symposium on Spread Spectrum Techniques and Applications.Sydney,Australia:IEEE,2004:802-806.
[6]Chen W,ZHANG Rui-feng.Kalman-filter Channel estimator for OFDM systems in time and frequency-selective fading environment[C]//Proceedings of 2004 IEEE International Conference on Acoustics,Speech,and Signal Processing.Montreal,Quebec,Canada:IEEE,2004:377 -380.
[7]SONG Xiao- jin,SONG Tie- cheng,SHEN Lian - feng,et al.Improved kalman filter channel estimation method for OFDM systems in fast time - varying environment[J].Journal of Southeast University,2005,21(4):27 -29.
[8]Turin W,Jana R,Ghassemzadeh S S,et al.Autoregressive modeling of an indoor UWB Channel[C]//Proceedings of 2002 IEEE Conference on Ultra Wideband Systems and Technologies.Baltimore,MD,USA:IEEE,2002:71 -74.
[9]Ghassemzadeh S S,Jana R,Rice C W,et al.Measurement and modeling of an ultra-wide bandwidth indoor Channel[J].IEEE Transactions on Communications,2004,52(10):1786 -1796.
[10]Muneer P,Sameer S M.Doubly-selective Channel estimation for OFDM systems using Bernstein basis polynomials and Kalman-tracking[C]//Proceedings of 2012 Annual IEEE India Conference(INDICON).India:IEEE,2012:603 -607.
[11]Venkatesh C,Madheswaran M.Performance analysis of multiband OFDM system over ultra wide band channels using kalman filter[J].Wireless Personal Communications,2013,68(3):1121 -1134.
[12]劉殷卉.OFDM系統(tǒng)分段最小均方誤差信道估計(jì)與多層專用導(dǎo)頻設(shè)計(jì)的研究[D].北京:北京郵電大學(xué),2010.
LIU Yin-h(huán)ui.Studies on Segment Minimum Menan Square Error Channel Estimation and Multi-layer Dedicated Reference Signal Design for OFDM Systems[D].Beijing:Beijing University of Posts and Telecommunications,2010.(in Chinese)
An Improved Channel Estimation M ethod Based on M odified Kalman Filtering for MB UWB Systems
ZHANG Shi- jie1,2,WANG Dan1
(1.Information Engineering College,Henan University of Science and Technology,Luoyang 471023,China;2.Unit 91292 of PLA,Baoding 074000,China)
For the defect that the modified Kalman filter has high computational complexity in multiband ultra-wideband(MB UWB)system,a low complexity modified Kalman filter channel estimation method is proposed.UWB channel is modeled as an autoregressive(AR)process and pilot is adopted to track the time - varying channel fading factors.The system performance is improved and the computational complexity is reduced by using Kalman filter and frequency-domain block minimum mean-square error(MMSE)algorithm to track time domain and frequency domain correlation.The simulation results show that,compared with the modified Kalman filter method,the proposed method can reduce the computational complexity greatly in condition of low loss estimated accuracy.
MB UWB;channel estimation;Kalman filter;AR model;computational complexity
The National Natural Science Foundation of China(No.61101167);The Aeronautical Science Foundation of China(No.20110142002);The Science and Technique Foundation of Henan Province(No.112102210431);Scientific Research Foundation for the Doctoral Program of Henan University of Science and Technology(09001409);The Youth Science Foundation of Henan University of Science and Technology(2010QN0019)
**
jie.112@163.com Corresponding author:jie.112@163.com
TN911.7
A
1001-893X(2014)05-0632-05
10.3969/j.issn.1001 -893x.2014.05.020
張士杰,王丹.修正 Kalman濾波多帶 UWB 信道估計(jì)改進(jìn)方法[J].電訊技術(shù),2014,54(5):632 -636.[ZHANG Shi-jie,WANG Dan.An Improved Channel Estimation Method Based on Modified Kalman Filtering for MB UWB Systems[J].Telecommunication Engineering,2014,54(5):632 -636.]
2013-10-18;
2014-02-24
date:2013-10-18;Revised date:2014-02-24
國(guó)家自然科學(xué)基金資助項(xiàng)目(61101167);航空科學(xué)基金項(xiàng)目(20110142002);河南省科技攻關(guān)計(jì)劃項(xiàng)目(112102210431);河南科技大學(xué)博士科研啟動(dòng)基金資助項(xiàng)目(09001409);河南科技大學(xué)青年科學(xué)基金資助項(xiàng)目(2010QN0019)
張士杰(1986—),男,河北石家莊人,碩士研究生,助理工程師,主要研究方向?yàn)橥ㄐ拧⒊瑢拵r(shí)變信道估計(jì);
ZHANG Shi- jie was born in Shijiazhuang,Hebei Province,in 1986.He is now a graduate student and also an assistant engineer.His research concerns wireless communications andUWB system time-varying channel estimation.
Email:jie.112@163.com
王 丹(1979—),女,遼寧大石橋人,2009年于上海交通大學(xué)獲博士學(xué)位,現(xiàn)為副教授、碩士生導(dǎo)師,主要研究方向?yàn)橥ㄐ判盘?hào)處理和計(jì)算機(jī)檢測(cè)技術(shù)。
WANG Dan was born in Dashiqiao,Liaoning Province,in 1979.She received the Ph.D.degree from Shanghai Jiaotong U-niversity in 2009.She is now an associate professor and also the instructor of graduate students.Her research concerns communications signal processing and computer detection.