肖云月,徐艷
隨著社會(huì)人口的老齡化,腦血管疾病已成為導(dǎo)致全球社會(huì)經(jīng)濟(jì)負(fù)擔(dān)較重的疾病之一。除大血管疾病外,近年來(lái)逐漸認(rèn)識(shí)到腦小血管?。╟erebral small vessel disease,CSVD)對(duì)健康的影響。CSVD約占缺血性卒中的1/4[1],導(dǎo)致許多老年人出現(xiàn)認(rèn)知、精神和肢體功能障礙,有CSVD的患者卒中風(fēng)險(xiǎn)增加1倍[2]。
CSVD是一類(lèi)基于神經(jīng)解剖上的血管性疾病的總稱(chēng),是指腦的小動(dòng)脈、穿支動(dòng)脈、毛細(xì)血管及小靜脈的各種病變所導(dǎo)致的臨床、認(rèn)知、影像學(xué)及病理表現(xiàn)的綜合征[3]。腦小血管構(gòu)成了腦組織血供的基本單位,對(duì)腦功能的維持起著重要作用。由于難以直接觀(guān)察CSVD的發(fā)生及變化,因此,臨床上多以影像學(xué)特征作為CSVD的觀(guān)察指標(biāo)。在影像學(xué)上CSVD的特征主要表現(xiàn)為腔隙性梗死(lacunar infarction,LI)、腦白質(zhì)高信號(hào)(white matter hyperintensities,WMH)、腦微出血(cerebral microbleed,CMB)、腦萎縮以及血管周?chē)g隙擴(kuò)大(enlarged perivascular spacess,EPVS)[2]?,F(xiàn)代影像技術(shù)的發(fā)展,加深了對(duì)CSVD的認(rèn)識(shí)。但CSVD的血管損傷往往先于腦實(shí)質(zhì)損傷,影像學(xué)改變并不能體現(xiàn)CSVD完整的病理生理變化過(guò)程,尤其是早期的變化。因此,明確CSVD的病理生理機(jī)制及影響對(duì)于其早期發(fā)現(xiàn)及防治具有重要意義。
1.1 內(nèi)皮細(xì)胞和血腦屏障的變化 CSVD相關(guān)的腦損害潛在的病理生理機(jī)制通常被認(rèn)為是缺血,這主要是由于小動(dòng)脈狹窄或閉塞所導(dǎo)致的,但小動(dòng)脈閉塞通常出現(xiàn)在CSVD病理改變的后期階段,不能反映其早期的病理改變[2]。部分學(xué)者認(rèn)為內(nèi)皮功能障礙和血腦屏障(blood brain barrier,BBB)破壞可能是CSVD早期的病理生理變化[4]。廣泛的腦血管內(nèi)皮損傷可能導(dǎo)致血管通透性增加,血管內(nèi)成分滲透到血管壁和周?chē)M織,引起血管壁損傷、炎癥反應(yīng);血管壁增生硬化,自動(dòng)調(diào)節(jié)功能受損;到后期階段,出現(xiàn)血管管腔狹窄和血管閉塞[2]。老年CSVD患者與健康老年人相比,其外周血中內(nèi)皮細(xì)胞活化標(biāo)志物血栓調(diào)節(jié)蛋白升高,因而認(rèn)為內(nèi)皮細(xì)胞可能參與CSVD的發(fā)病[5]。由于難以在人體中觀(guān)察CSVD早期的發(fā)病情況,研究者們不斷在各種動(dòng)物模型中進(jìn)行探索。卒中易感性自發(fā)性高血壓大鼠(stroke-prone spontaneously hypertensive rat,SHRSP)的病理改變與人類(lèi)CSVD的病理機(jī)制非常相似,被認(rèn)為是模擬人類(lèi)小血管疾病最合適的動(dòng)物模型[6]。Schreiber等[7]發(fā)現(xiàn)12周齡的SHRSP基底節(jié)、海馬和皮質(zhì)區(qū)毛細(xì)血管腔內(nèi)血管內(nèi)皮損傷處有紅細(xì)胞聚集(即微血管的早期損害表現(xiàn)),在紅細(xì)胞聚集處有血漿蛋白(包括IgG免疫球蛋白)沉積在血管壁,導(dǎo)致BBB通透性增加,BBB的多處滲漏加重了血管壁的持續(xù)性損傷,血管閉塞或壞死,從而導(dǎo)致周?chē)X組織囊性壞死。另一項(xiàng)以SHRSP為觀(guān)察對(duì)象的實(shí)驗(yàn)研究發(fā)現(xiàn)在高血壓形成之前(大約5周齡時(shí))就出現(xiàn)內(nèi)皮細(xì)胞緊密連接蛋白Claudin-5表達(dá)減少,內(nèi)皮細(xì)胞緊密連接蛋白結(jié)構(gòu)復(fù)雜,涉及多種蛋白質(zhì)的交互作用,是維持BBB完整性的關(guān)鍵成分,Claudin-5的減少可能誘發(fā)BBB的破壞,增加卒中風(fēng)險(xiǎn)[8]。一項(xiàng)臨床研究[9]納入腔隙綜合征或顱腦磁共振成像(magnetic resonance imaging,MRI)提示有腔隙性梗死病灶的24例患者隨訪(fǎng)6周,通過(guò)靜脈注射釓的MRI發(fā)現(xiàn)CSVD患者不但在腦白質(zhì)疏松區(qū)(white matter lesions,WML)存在BBB滲透性增加,在顱腦MRI未見(jiàn)白質(zhì)疏松的腦白質(zhì)區(qū)(normal-appearing white matter,NAWM)也存在BBB滲透性增加,并且認(rèn)為NAWM的BBB滲透性增加可能在WML的發(fā)病機(jī)制中發(fā)揮作用。同時(shí),Wardlaw等[10]納入97例牛津殘疾評(píng)分<2分的腔隙性或皮層卒中患者,靜脈注射釓后的MRI觀(guān)察首次卒中后基底節(jié)區(qū)、皮質(zhì)等的BBB通透性,隨訪(fǎng)3年評(píng)估功能預(yù)后,結(jié)果發(fā)現(xiàn)基底節(jié)區(qū)BBB通透性增加與CSVD差的功能預(yù)后(牛津殘疾評(píng)分3~6分)相關(guān)。這些進(jìn)一步證明內(nèi)皮細(xì)胞和BBB變化參與CSVD的發(fā)病,并且可能是CSVD早期的病理生理變化。
2.2 淀粉樣蛋白沉積的變化 散在的腦血管淀粉樣變性是CSVD血管病理改變的最常見(jiàn)的形式之一[11]。β淀粉樣蛋白(β-amyloid protein,Aβ)合成上調(diào),不溶性Aβ沉積的同時(shí)也造成散發(fā)性腦淀粉樣血管?。╯poradic cerebral amyloid angiopathy,CAA)的形成,其中CAA與缺血性損傷相關(guān),尤其是小血管病變[12]。動(dòng)物研究發(fā)現(xiàn)高血壓所致的年齡相關(guān)性Aβ清除下降,β淀粉樣蛋白前體(β-amyloid protein precursor,APP)表達(dá)增加以及神經(jīng)細(xì)胞tau蛋白過(guò)度磷酸化可能與CSVD的形成相關(guān)[13]。免疫組化和電子顯微鏡觀(guān)察顯示Aβ首先在血管平滑肌細(xì)胞周?chē)练e,隨著病變進(jìn)展,導(dǎo)致平滑肌細(xì)胞丟失。而平滑肌細(xì)胞丟失可能是遺傳性及散發(fā)性CSVD的病理機(jī)制之一[14]。研究發(fā)現(xiàn)[15],毛細(xì)血管缺乏平滑肌,淀粉樣蛋白沉積在基底膜和相鄰的神經(jīng)纖維中,引起毛細(xì)血管脆性增加和管腔狹窄,最終會(huì)導(dǎo)致小的缺血灶和微出血形成。
2.3 內(nèi)皮-少突膠質(zhì)細(xì)胞耦聯(lián)的變化 腦白質(zhì)病變是CSVD的重要組成部分,近年來(lái)內(nèi)皮-少突膠質(zhì)細(xì)胞耦聯(lián)在腦白質(zhì)病變中的作用引起學(xué)者的關(guān)注。少突膠質(zhì)細(xì)胞圍繞軸突形成髓鞘,有學(xué)者認(rèn)為髓鞘再生和微血管再生可能通過(guò)內(nèi)皮-少突膠質(zhì)耦聯(lián)的作用維持白質(zhì)穩(wěn)態(tài),促進(jìn)白質(zhì)損傷修復(fù)[16]。細(xì)胞培養(yǎng)研究發(fā)現(xiàn)人離體腦血管內(nèi)皮細(xì)胞分泌腦源性神經(jīng)營(yíng)養(yǎng)因子(brain derived neurotrophic factor,BDNF)和堿性成纖維細(xì)胞生長(zhǎng)因子(basic fibroblast growth factor,bFGF)支持SD(Sprague dawley)大鼠離體少突膠質(zhì)前體細(xì)胞(oligodendrocyte precursor cell,OPC)的存活和增殖,而暴露于硝普鈉引起的氧化應(yīng)激使BDNF和bFGF表達(dá)下調(diào),OPC增殖降低[17]。同時(shí),Pham等[18]在少突膠質(zhì)細(xì)胞培養(yǎng)系統(tǒng)中發(fā)現(xiàn)促炎細(xì)胞因子白細(xì)胞介素-1β(interleukin-1β,IL-1β)能促進(jìn)少突膠質(zhì)細(xì)胞分泌一種血管生成因子基質(zhì)金屬蛋白酶-9(matrix metalloproteinase-9,MMP-9)進(jìn)而引起腦血管內(nèi)皮細(xì)胞增殖,在局灶白質(zhì)損傷和脫髓鞘的C57BL6小鼠動(dòng)物模型中,進(jìn)一步發(fā)現(xiàn)在白質(zhì)損傷區(qū)出現(xiàn)IL-1β表達(dá)增加以及少突膠質(zhì)細(xì)胞分泌MMP-9增加,同時(shí)檢測(cè)到損傷區(qū)微血管密度增加,并且應(yīng)用MMP抑制劑可抑制微血管新生。以上表明內(nèi)皮與少突膠質(zhì)細(xì)胞或OPC之間通過(guò)分泌營(yíng)養(yǎng)因子相互滋養(yǎng),并且可能在促進(jìn)白質(zhì)修復(fù)中發(fā)揮作用。然而,MMP9的表達(dá)與BBB的破壞有關(guān)[19],近期Seo等[20]進(jìn)行的動(dòng)物研究顯示,在白質(zhì)損傷急性期,OPC釋放MMP9,增加內(nèi)皮通透性,誘導(dǎo)BBB破壞,加劇白質(zhì)損傷。因此,內(nèi)皮細(xì)胞-少突膠質(zhì)耦聯(lián)在白質(zhì)病變中的相互作用可能不僅僅是有利的。
2.4 其他 遺傳因素、缺血低灌注等也被認(rèn)為是導(dǎo)致CSVD的重要機(jī)制,可能與內(nèi)皮功能障礙、血腦屏障損傷、淀粉樣物質(zhì)沉積等共同參與CSVD的發(fā)生[21]。各種病理機(jī)制繼發(fā)的炎性反應(yīng)可能參與CSVD的發(fā)生。近期的一項(xiàng)meta分析[22]結(jié)果顯示腔隙性卒中患者外周血中的炎性標(biāo)志物:C反應(yīng)蛋白(C-reactive protein,CRP)、腫瘤壞死因子-α(tumour necrosis factor-alpha,TNF-α)、白細(xì)胞介素-6(interleukin-6,IL-6)明顯高于非卒中人群。α2巨球蛋白(α2-macroglobulin,α2MG)是IL-6的載體蛋白,Tomohisa等[23]納入159名急性缺血性卒中老年患者為試驗(yàn)組和77名正常老年人作為對(duì)照,在液體衰減反轉(zhuǎn)恢復(fù)(fluid attenuated inversion recovery,F(xiàn)LAIR)序列通過(guò)Fazakas量表評(píng)估白質(zhì)損傷程度,同時(shí)分別在卒中發(fā)生24 h內(nèi)、卒中后7 d和卒中后2個(gè)月采集靜脈血,通過(guò)比濁法測(cè)定血清α2 MG水平,結(jié)果顯示急性缺血性卒中患者血清α2 MG水平高于對(duì)照組[(230.2±73.7)mg/dl vs(205.0±55.8)mg/dl,P=0.009],血清α2 MG水平與年齡和白質(zhì)病變的嚴(yán)重程度呈正相關(guān)(R=0.048,P<0.001,R=0.058,P<0.001)。此外,納入年齡、高血壓、超敏C反應(yīng)蛋白(high-sensitivity C-reactive protein,hsCRP)及白細(xì)胞介素-6(interleukin-6,IL-6)水平等進(jìn)行多變量分析顯示,增加的血清α2 MG水平與白質(zhì)病變的嚴(yán)重程度獨(dú)立相關(guān)(標(biāo)準(zhǔn)偏回歸系數(shù)0.102,P=0.026),認(rèn)為血清α2 MG水平可能與白質(zhì)病變的嚴(yán)重程度相關(guān),并且可能反映CSVD慢性病理生理狀態(tài)。
CSVD可導(dǎo)致許多臨床表現(xiàn),包括靜灶腦血管?。o灶腔隙性腦梗死、腦微出血和部分白質(zhì)疏松)、各類(lèi)腔隙綜合征和VCI[24]。腔隙性腦梗死和腦白質(zhì)病變是VCI最常見(jiàn)的血管損傷[25],腦白質(zhì)損傷嚴(yán)重程度和腔隙性梗死數(shù)目是預(yù)測(cè)VCI的獨(dú)立危險(xiǎn)因子[26]。Huijts等[27]納入189例患CSVD風(fēng)險(xiǎn)較高的研究對(duì)象(高血壓患者和腔隙性腦梗死患者),通過(guò)顱腦MRI觀(guān)察基底節(jié)區(qū)及半卵圓區(qū)血管周?chē)g隙,通過(guò)神經(jīng)心理學(xué)評(píng)估認(rèn)知功能,同時(shí)在校正年齡、白質(zhì)損傷、性別等因素后對(duì)兩者的相關(guān)性進(jìn)行分析,結(jié)果發(fā)現(xiàn)基底節(jié)區(qū)的EPVS與所有認(rèn)知域呈負(fù)相關(guān),并且獨(dú)立于白質(zhì)損傷;在校正年齡后,與信息處理速度之間的相關(guān)性仍然顯著;而半卵圓區(qū)的EPVS與認(rèn)知沒(méi)有顯著的獨(dú)立相關(guān)性;認(rèn)為基底節(jié)區(qū)的EPVS可能與CSVD及其相關(guān)的認(rèn)知損害有聯(lián)系。同時(shí),有研究顯示腦微出血可能使輕度認(rèn)知功能障礙的患者轉(zhuǎn)變?yōu)榘V呆的風(fēng)險(xiǎn)增加2倍[28]。因此,CSVD的治療目標(biāo)之一是防止VCI的發(fā)生發(fā)展。
針對(duì)CSVD的病理生理機(jī)制,研究者們對(duì)CSVD及所致的VCI的防治進(jìn)行了許多探索。動(dòng)物研究發(fā)現(xiàn)松弛素能通過(guò)血腦屏障并增加腦小動(dòng)脈的密度,可能成為治療CSVD的藥物[29]。Bueche等[30]發(fā)現(xiàn)N-乙酰半胱氨酸能減少SHRSP腦小動(dòng)脈和毛細(xì)血管內(nèi)的血栓數(shù)目及梗死灶數(shù)目[30],然而最近有研究發(fā)現(xiàn)長(zhǎng)期給SHRSP服用N-乙酰半胱氨酸可能破壞BBB從而增加皮質(zhì)淀粉樣蛋白負(fù)荷[31],因此N-乙酰半胱氨酸對(duì)CSVD的影響還有待進(jìn)一步研究。維生素預(yù)防卒中(VITAmins to prevent stroke,VITATOP)研究發(fā)現(xiàn)[32]對(duì)于新發(fā)卒中或短暫性腦缺血發(fā)作(transient ischemic attack,TIA)的患者,每日補(bǔ)充B族維生素2年不會(huì)顯著延緩既定CSVD腦部病灶的進(jìn)展,但對(duì)基線(xiàn)上存在嚴(yán)重CSVD的MRI表現(xiàn)患者進(jìn)行亞組分析發(fā)現(xiàn)補(bǔ)充B族維生素與白質(zhì)高信號(hào)體積降低顯著相關(guān)(0.3 cm3vs 1.7 cm3; P=0.039),推測(cè)可能減少?lài)?yán)重CSVD的病灶進(jìn)展。白藜蘆醇是一種多酚類(lèi)化合物,對(duì)大血管具有顯著的抗老化保護(hù)作用,最近有動(dòng)物研究發(fā)現(xiàn)白藜蘆醇可能經(jīng)還原型煙酰胺腺嘌呤二核苷酸磷酸(Nicotinamide Adenine Dinucleotide Phosphate,NADPH)氧化酶衍生的活性氧途徑,恢復(fù)腦微血管內(nèi)皮功能,對(duì)老化大腦的認(rèn)知可能具有保護(hù)作用[33]。此外,有學(xué)者提出應(yīng)用血管活性藥物等促進(jìn)Aβ的清除也可能有助于防止認(rèn)知功能下降[34]。這些研究對(duì)于尋找CSVD及VCI的治療方法可能有重要意義。
近年來(lái)CSVD發(fā)病呈逐漸上升趨勢(shì),但其起病隱匿,發(fā)病機(jī)制尚未明確,對(duì)于急性卒中有效的治療措施,如抗血小板藥物的應(yīng)用、溶栓等對(duì)CSVD引起的卒中的作用十分有限。因此,更加深入地了解CSVD病理生理機(jī)制,從而尋找有效的方法阻斷或抑制其進(jìn)展對(duì)指導(dǎo)臨床實(shí)踐意義重大。
1 Thompson CS, Hakim AM. Living beyond our physiological means:small vessel disease of the brain is an expression of a systemic failure in arteriolar function:a unifying hypothesis[J]. Stroke, 2009,40:e322-e330.
2 Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease:insights from neuroimaging[J]. Lancet Neurol, 2013, 12:483-497.
3 Pantoni L. Cerebral small vessel disease:from pathogenesis and clinical characteristics to therapeutic challenges[J]. Lancet Neurol, 2010, 9:689-701.
4 Knottnerus IL, Ten Cate H, Lodder J, et al.Endothelial dysfunction in lacunar stroke:a systematic review[J]. Cerebrovasc Dis, 2009, 27:519-526.
5 Giwa MO, Williams J, Elderfield K, et al.Neuropathologic evidence of endothelial changes in cerebral small vessel disease[J]. Neurology, 2012,78:167-174.
6 Hainsworth AH, Markus HS. Do in vivo experimental models reflect human cerebral small vessel disease?A systematic review[J]. J Cereb Blood Flow Metab,2008, 28:1877-1891.
7 Schreiber S, Bueche CZ, Garz C, et al. Blood brain barrier breakdown as the starting point of cerebral small vessel disease?-New insights from a rat model[J]. Exp Transl Stroke Med, 2013, 5:4.
8 Bailey EL, Wardlaw JM, Graham D, et al.Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats:a blinded, controlled immunohistochemical study of 5- to 21-week-old rats[J]. Neuropathol Appl Neurobiol, 2011, 37:711-726.
9 Topakian R, Barrick TR, Howe FA, et al. Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis[J]. J Neurol Neurosurg Psychiatry, 2010,81:192-197.
10 Wardlaw JM, Doubal FN, Valdes-Hernandez M, et al. Blood-brain barrier permeability and long-term clinical and imaging outcomes in cerebral small vessel disease[J]. Stroke, 2013, 44:525-527.
11 Ogata J, Yamanishi H, Ishibashi-Ueda H. Cerebral small vessel disease:the pathological features of cerebral amyloid angiopathy[J]. Brain Nerve, 2013,65:879-885.
12 Haglund M, Passant U, Sj?beck M, et al. Cerebral amyloid angiopathy and cortical microinfarcts as putative substrates of vascular dementia[J]. Int J Geriatr Psychiatry, 2006, 21:681-687.
13 Schreiber S. Interplay between age, cerebral small vessel disease, parenchymal amyloid-beta, and Tau pathology:longitudinal studies in hypertensive strokeprone rats[EB/OL]. (2014-05-13)[2014-06-30].http://iospress.metapress.com/content/ch2g7h1517785jk5/?g enre=article&id=doi%3a10.3233%2fJAD-132618.
14 Onodera O. What is cerebral small vessel disease?[J].Rinsho Shinkeigaku, 2011, 51:399-405.
15 Thal DR, Capetillo-Zarate E, Larionov S, et al.Capillary cerebral amyloid angiopathy is associated with vessel occlusion and cerebral blood flow disturbances[J]. Neurobiol Aging, 2009, 30:1936-1948.
16 Jiang Q, Zhang ZG, Chopp M. MRI evaluation of white matter recovery after brain injury[J]. Stroke,2010, 41:S112-S113.
17 Arai K, Lo EH. An oligovascular niche:cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells[J]. J Neurosci, 2009, 29:4351-4355.
18 Pham LD, Hayakawa K, Seo JH, et al. Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury[J]. Glia, 2012, 60:875-881.
19 Jalal FY, Yang Y, Thompson J, et al. Myelin loss associated with neuroinflammation in hypertensive rats[J]. Stroke, 2012, 43:1115-1122.
20 Seo JH, Miyamoto N, Hayakawa K, et al.Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury[J]. J Clin Invest, 2013, 123:782-786.
21 唐杰, 付建輝. 腦小血管病的發(fā)病機(jī)制[J]. 國(guó)際腦血管病雜志, 2013, 21:293-298.
22 Wiseman S, Marlborough F, Doubal F, et al. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke:systematic review and meta-analysis[J]. Cerebrovasc Dis, 2014, 37:64-75.
23 Nezu T, Hosomi N, Aoki S, et al. Alpha2-macroglobulin as a promising biomarker for cerebral small vessel disease in acute ischemic stroke patients[J]. J Neurol, 2013, 260:2642-2649.
24 李偉, 李桂林, 王擁軍, 等. 腦小血管病[J]. 中華內(nèi)科雜志, 2010, 49:163-164.
25 Jellinger KA. Pathology and pathogenesis of vascular cognitive impairment-a critical update[J]. Front Aging Neurosci, 2013, 5:17.
26 Pavlovic AM. Baseline predictors of cognitive decline in patients with cerebral small vessel disease[EB/OL].(2014-06-02)[2014-06-30]. http://iospress.metapress.com/content/t0g313t7t43n1360/?genre=article&id=doi%3a10.3233%2fJAD-132606.
27 Huijts M, Duits A, Staals J, et al. Basal ganglia enlarged perivascular spaces are linked to cognitive function in patients with cerebral small vessel disease[J]. Curr Neurovasc Res, 2014, 11:136-141.
28 Loitfelder M, Seiler S, Schwingenschuh P, et al.Cerebral microbleeds:a review[J]. Panminerva Med,2012, 54:149-160.
29 Chan SL, Sweet JG, Cipolla MJ. Treatment for cerebral small vessel disease:effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension[J]. FASEB J, 2013,27:3917-3927.
30 Bueche CZ, Garz C, Kropf S, et al. NAC changes the course of cerebral small vessel disease in SHRSP and reveals new insights for the meaning of stases - a randomized controlled study[J]. Exp Transl Stroke Med, 2013, 5:5.
31 Bueche CZ. Impact of N-Acetylcysteine on cerebral amyloid-beta plaques and kidney damage in spontaneously hypertensive stroke-prone rats[EB/OL].(2014-06-02)[2014-06-30].http://iospress.metapress.com/content/4717231023w27887/?genre=article&id=d oi%3a10.3233%2fJAD-132615.
32 Cavalieri M, Schmidt R, Chen C, et al. B vitamins and magnetic resonance imaging-detected ischemic brain lesions in patients with recent transient ischemic attack or stroke:the VITAmins TO Prevent Stroke (VITATOPS) MRI-substudy[J]. Stroke, 2012,43:3266-3270.
33 Toth P, Tarantini S, Tucsek Z, et al. Resveratrol treatment rescues neurovascular coupling in aged mice:role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase[J]. Am J Physiol Heart Circ Physiol, 2014,306:H299-H308.
34 Ihara M. Management of cerebral small vessel disease for the diagnosis and treatment of dementia[J]. Brain Nerve, 2013, 65:801-809.
【點(diǎn)睛】
本文綜述腦小血管病的病理生理機(jī)制的研究進(jìn)展,以期為臨床實(shí)踐提供思路。