亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        狗牙根和雙穗雀稗根中質(zhì)外體屏障結(jié)構(gòu)發(fā)育過(guò)程的比較研究

        2013-12-31 00:00:00張霞楊朝東寧國(guó)貴
        湖北農(nóng)業(yè)科學(xué) 2013年20期

        摘要:狗牙根(Cynodon dactylon)和雙穗雀稗(Paspalum distichum)幼嫩期根中質(zhì)外體屏障結(jié)構(gòu)包括內(nèi)側(cè)的內(nèi)皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層;外側(cè)的外皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。成熟根中質(zhì)外體屏障結(jié)構(gòu)包括內(nèi)側(cè)的內(nèi)皮層細(xì)胞壁的凱氏帶、栓質(zhì)層、木質(zhì)層和靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細(xì)胞;外側(cè)的仍為外皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。不同點(diǎn)在于雙穗雀稗幼嫩期根表皮細(xì)胞有擴(kuò)散狀栓質(zhì)層,而且內(nèi)皮層木質(zhì)化較遲;狗牙根靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細(xì)胞沉積很早。

        關(guān)鍵詞:狗牙根(Cynodon dactylon);雙穗雀稗(Paspalum distichum);質(zhì)外體屏障結(jié)構(gòu);組織化學(xué);時(shí)空發(fā)育

        中圖分類(lèi)號(hào):S688.4 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2013)20-4991-04

        The Developmental Comparison of Apoplastic Barriers in Cynodon dactylon and Paspalum distichum Roots

        ZHANG Xia1,YANG Chao-dong1,NING Guo-gui2

        (1.College of Gardening and Horticulture, Yangtze University,Jingzhou 434025,Hubei,China;

        2.College of Horticulture and Forestry Sciences, Huazhong Agricultural University,Wuhan 430070,China)

        Abstract: The apoplastic barriers of the Cynodon dactylon and Paspalum distichum roots are consisted of two layers at young development stage. The inner layer is the endodermis with Casparian walls, suberin lamellae and lignified secondary cell walls. The outer is the exodermis with Casparian walls, suberin lamellae and lignified. The apoplastic barriers of the matured roots of the two species also had two layers with the inner endodermis of Casparian walls, suberin lamellae, lignified secondary cell walls, the suberized and lignified cortex cell walls adjacent to endodermis and the outer exodermis of Casparian walls, suberin lamellae and lignified. The difference is the epidermis cell of the Paspalum distichum having diffused suberin in young roots and the endodermis is lignified very later. The suberized and lignified cortex cell walls adjacent to endodermis of the Cynodon dactylon is lignified very early.

        Key words: Cynodon dactylon; Paspalum distichum; apoplastic barriers; histochemistry; spatio-temporal development

        濕地植物和水生植物也稱(chēng)為“防水植物”,質(zhì)外體屏障結(jié)構(gòu)防止水環(huán)境中過(guò)多水分、離子對(duì)植物造成危害,體內(nèi)氧氣擴(kuò)散到環(huán)境中去[1,2]。通氣組織為濕地植物各組織器官儲(chǔ)藏、輸導(dǎo)氧氣的重要結(jié)構(gòu),使植物受到洪水脅迫后繼續(xù)進(jìn)行正常生命活動(dòng)而存活[3]。試驗(yàn)證實(shí)植物體內(nèi)氧氣常在根的根尖和側(cè)根穿過(guò)皮層的部位,根莖的莖尖和鱗葉部位有釋放,稱(chēng)之為徑向氧損失(ROL)[4,5],而且細(xì)胞膜的水通道蛋白既是水分子通道,也是氧氣的通道[6,7];然而,濕地植物水稻、蘆葦根中的質(zhì)外體屏障結(jié)構(gòu)能阻擋徑向氧的釋放[4,5,8-14],以及限制根中水、離子的自由移動(dòng)[10-17],這表明質(zhì)外體屏障結(jié)構(gòu)是濕地植物的重要保護(hù)裝置。

        植物根中質(zhì)外體屏障包括常見(jiàn)的內(nèi)、外皮層細(xì)胞初生壁的凱氏帶,次生壁的栓質(zhì)層和木質(zhì)層[2,9-20],還有根內(nèi)皮層及其鄰近皮層細(xì)胞,根外皮層和表皮細(xì)胞層[16,20],有可能因?yàn)楦膬?nèi)、外皮層來(lái)源于根尖同一初始子細(xì)胞(CEEID),成熟時(shí)它們有相似的質(zhì)外體屏障結(jié)構(gòu)組成[21]。盡管對(duì)狗牙根等植物體中的質(zhì)外體屏障分布有所研究[20],但對(duì)如狗牙根(Cynodon dactylon)、雙穗雀稗(Paspalum distichum)和牛鞭草(Hemarthria altissima)等忍耐6個(gè)月以上長(zhǎng)期淹沒(méi)植物[22-26]的根中各細(xì)胞層不同發(fā)育時(shí)期凱氏帶、栓質(zhì)層和木質(zhì)層的沉積變化過(guò)程鮮有報(bào)道。

        1 材料與方法

        用于解剖的狗牙根和雙穗雀稗采自湖北荊州陸生新鮮植株,F(xiàn)AA固定備用。在立體解剖鏡下,用雙面刀片距根尖5、15、25和80 mm分別切片。蘇丹紅7B染色切片檢測(cè)細(xì)胞壁栓質(zhì)化[27];硫氫酸黃連素-苯氨藍(lán)對(duì)染切片確定細(xì)胞壁凱氏帶和木質(zhì)化[18,28],其中凱氏帶呈現(xiàn)生動(dòng)黃色,而木質(zhì)化細(xì)胞壁呈現(xiàn)呆滯濃厚黃色;鹽酸-間苯三酚對(duì)染切片檢驗(yàn)細(xì)胞壁木質(zhì)化為細(xì)胞壁組織化學(xué)研究?jī)?nèi)容,在明場(chǎng)和熒光下的顯微照相參照文獻(xiàn)[20]的技術(shù)和方法。有關(guān)組織化學(xué)名詞的現(xiàn)代含義和解釋參照文獻(xiàn)[2]。

        2 結(jié)果與分析

        2.1 狗牙根根中質(zhì)外體屏障發(fā)育過(guò)程

        狗牙根根中離根尖5 mm的內(nèi)、外皮層初生壁凱氏帶已出現(xiàn),2層細(xì)胞的外皮層凱氏帶呈“H”或者“Y”形態(tài)(圖1A);內(nèi)、外皮層次生壁也已有栓質(zhì)層沉積,除內(nèi)皮層上的通道細(xì)胞外(圖1B);但是內(nèi)、外皮層次生壁木質(zhì)化還不明顯(圖1C)。距離根尖15 mm根中的內(nèi)、外皮層凱氏帶、栓質(zhì)層進(jìn)一步增強(qiáng),內(nèi)、外皮層細(xì)胞次生壁已經(jīng)明顯木質(zhì)化,靠近內(nèi)皮層的1~2層皮層細(xì)胞壁也木質(zhì)化(圖1D、1E、1F)。距離根尖25 mm時(shí)的最大變化為靠近內(nèi)皮層的1~2層皮層細(xì)胞壁也已經(jīng)木質(zhì)化(圖1G、1H、1I),即此時(shí)靠近內(nèi)皮層的1~2層皮層細(xì)胞壁既栓質(zhì)化又木質(zhì)化。在老根區(qū)域(距根尖80 mm),內(nèi)、外皮層次生壁完全栓質(zhì)化和木質(zhì)化,靠近內(nèi)皮層的1~2層皮層細(xì)胞壁也完全栓質(zhì)化和木質(zhì)化(圖1J、1K、1L)。

        狗牙根幼嫩期根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層;外側(cè)的外皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。成熟根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層,和靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細(xì)胞;外側(cè)的仍為外皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。

        2.2 雙穗雀稗根中質(zhì)外體屏障發(fā)育過(guò)程

        雙穗雀稗根中離根尖5 mm的內(nèi)、外皮層初生壁凱氏帶已出現(xiàn),2層細(xì)胞的外皮層凱氏帶呈“H”或者“Y”形態(tài),表皮細(xì)胞壁有擴(kuò)散狀栓質(zhì)化(圖2A);內(nèi)、外皮層次生壁也已有栓質(zhì)層沉積(圖2B);外皮層次生壁開(kāi)始木質(zhì)化(圖2C)。距離根尖15 mm根中的內(nèi)、外皮層凱氏帶、栓質(zhì)層進(jìn)一步增強(qiáng),此時(shí)還是僅有外皮層次生壁木質(zhì)化(圖2D、2E、2F)。距離根尖25 mm時(shí)外皮層次生壁木質(zhì)化進(jìn)一步增強(qiáng),但內(nèi)皮層次生壁尚未木質(zhì)化 (圖2G、2H、2I)。在老根區(qū)域(距根尖80 mm),內(nèi)、外皮層次生壁完全栓質(zhì)化和木質(zhì)化,靠近內(nèi)皮層的1~2層皮層細(xì)胞壁完全栓質(zhì)化和木質(zhì)化(圖2J、2K、2L)。

        雙穗雀稗幼嫩期根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層;外側(cè)的外皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層、有擴(kuò)散狀栓質(zhì)層的表皮細(xì)胞。成熟根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層、靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細(xì)胞;外側(cè)由外皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層組成。

        3 小結(jié)與討論

        狗牙根和雙穗雀稗幼嫩期根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層;外側(cè)的外皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。成熟根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層、靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細(xì)胞;外側(cè)為外皮層細(xì)胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。兩者根中質(zhì)外體屏障的不同點(diǎn)在于雙穗雀稗幼嫩期根表皮細(xì)胞有擴(kuò)散狀栓質(zhì)層,而且內(nèi)皮層木質(zhì)化較遲。狗牙根靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細(xì)胞沉積很早。

        與水稻、玉米和香蒲研究結(jié)果比較,內(nèi)、外皮層細(xì)胞壁質(zhì)外體屏障發(fā)育順序基本是先有初生壁的凱氏帶,后有次生壁的栓質(zhì)化和木質(zhì)化,通常外皮層的質(zhì)外體屏障先發(fā)育完全。在有外界水或者其他脅迫條件下,次生壁的栓質(zhì)化和木質(zhì)化比對(duì)照組的發(fā)育早而且快速,并且可以誘導(dǎo)出木質(zhì)層[10,12-14,18]??梢?jiàn)不同植物根中質(zhì)外體屏障結(jié)構(gòu)的發(fā)育過(guò)程有所不同,而且容易受到環(huán)境的脅迫誘導(dǎo)和提前發(fā)育。

        參考文獻(xiàn):

        [1] BAILEY-SERRES J, LEE S C, BRINTON E. Waterproofing crops: effective flooding survival strategies[J]. Plant Physiology,2012,160(4):1698-1709.

        [2] 楊朝東,張 霞,劉國(guó)鋒,等.植物根中質(zhì)外體屏障結(jié)構(gòu)和生理功能研究進(jìn)展[J]. 植物研究,2013,33(1):114-119.

        [3] JUSTIN S H, ARMSTRONG W. The anatomical characteristics of roots and plant response to soil flooding[J]. New Phytologist,1987,106(3):465-495.

        [4] ARMSTRONG J, JONES R E, ARMSTRONG W. Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways[J]. New Phytologist,2006,172(4):719-731.

        [5] ARMSTRONG W, COUSINS D, ARMSTRONG J, et al. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: A micro-electrode and modelling study with Phragmites australis[J]. Annals of Botany,2000,86(3):687-703.

        [6] CHEN LM, ZHAO J, MUSA-AZIZ R,et al. Cloning and characterization of a zebrafish homologue of human AQP1: A bifunctional water and gas channel[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2010,299(5):1163-1174.

        [7] WANG Y, COHEN J, BORON W F, et al. Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics[J]. Journal of Structural Biology,2007, 157(3):534-544.

        [8] COLMER T D, GIBBERD M R, WIENGWEERA A, et al. The barrier to radial oxygen loss from roots of rice(Oryza sativa L.) is induced by growth in stagnant solutions[J]. Journal of Experimental Botany,1998,49(325):1431-1436.

        [9] SOUKUP A,ARMSTRONG W, SCHREIBER L,et al. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, phragmites australis and glyceria maxima[J]. New Phytologit,2007,173(2):264-278.

        [10] RANATHUNGE K, LIN J, STEUDLE E, et al. Stagnant deoxygenated growth enhances root suberization and lignifications but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots[J]. Plant, Cell and Environment,2011,34(8):1223-1240.

        [11] SHIONO K, OGAWA S, YAMAZAKI S, et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths[J]. Annals of Botany,2011,107(1):89-99.

        [12] KOTULA L, RANATHUNGE K, SCHREIBER L, et al. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice grown in aerated or deoxygenated solution[J]. Journal of Experimental Botany,2009, 60(7):2155-2167.

        [13] KOTULA L, RANATHUNGE K, STEUDLE E. Apoplastic barriers effectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration[J]. New Phytologist,2009, 184(4):909-917.

        [14] ABIKO T, KOTULA L, SHIONO K, et al. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize(Zea mays ssp. mays)[J].Plant,Cell Environment,2012,35(9):1618-1630.

        [15] ENSTONE D E, PETERSON C A, MA F. Root endodermis and exodermis: structure, function, and responses to the environment[J]. Journal Plant Growth Regulation,2002,21(4):335-351.

        [16] HOSE E, CLARKSON D T, STEUDLE E, et al. The exodermis: a variable apoplastic barrier[J]. Journal of Experimental Botany,2001,52(365):2245-2264.

        [17] SCHREIBER L. Transport barriers made of cutin, suberin and associated waxes[J]. Journal of Trends in Plant Science,2010,15(10):546-553.

        [18] SEAGO J L, PETERSON C A, ENSTONE D E,et al. Development of the endodermis and hypodermis of Typha glauca Godr. and T. angustifolia L. roots[J]. Canada Journal Botany, 1999,77(1):122-134.

        [19] WADUWARA C I, WALCOTT S E, PETERSON C A. Suberin lamellae of the onion root endodermis: Their pattern of development and continuity[J]. Canada Journal Botany,2008,86(6):623-632.

        [20] YANG C, ZHANG X, ZHOU C, et al. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China[J]. Flora,2011,206(7):653-661.

        [21] PAULUZZI G, DIVOL F, PUIG J, et al. Surfing along the root ground tissue gene network[J]. Development Biology,2012,365(1):14-22.

        [22] 王海鋒,曾 波,李 婭,等.長(zhǎng)期完全水淹對(duì)4種三峽庫(kù)區(qū)岸生植物存活及恢復(fù)生長(zhǎng)的影響[J].植物生態(tài)學(xué)報(bào),2008,32(5):977-984.

        [23] 譚淑端,張守君,張克榮,等.長(zhǎng)期深淹對(duì)三峽庫(kù)區(qū)三種草本植物的恢復(fù)生長(zhǎng)及光合特性的影響[J].武漢植物學(xué)研究,2009,27(4):391-396.

        [24] 孫 榮,袁興中,劉 紅,等.三峽水庫(kù)消落帶植物群落組成及物種多樣性[J].生態(tài)學(xué)雜志,2011, 30(2):208-214.

        [25] 王建超,朱 波,汪 濤.三峽庫(kù)區(qū)典型消落帶淹水后草本植被的自然恢復(fù)特征[J].長(zhǎng)江流域資源與環(huán)境,2011,20(5):603-610.

        [26] LIAO J, JIANG M, LI L. Effects of simulated submergence on survival and recovery growth of three species in water fluctuation zone of the Three Gorges reservoir[J].Acta Ecologica Sinica,2010,30(4):216-220.

        [27] BRUNDRETT M C, KENDRICK B, PETERSON C A. Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol[J]. Biotech Histochem,1991,66(3):111-116.

        [28] BRUNDRETT M C, ENSTONE D E, PETERSON C A. A berberine-aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue[J]. Protoplasma,1988,146(2-3):133-142.

        亚洲精品乱码久久久久久蜜桃图片| 日韩在线视频不卡一区二区三区| 阿v视频在线| 国产美女胸大一区二区三区| 日韩不卡一区二区三区色图| 中文字幕丰满人妻av| 亚洲第一最快av网站| 欧美极品美女| 手机在线中文字幕国产| 午夜视频一区二区三区播放| 天堂网av一区二区三区在线观看| 美女扒开大腿让男人桶| 中文 在线 日韩 亚洲 欧美| 国产精品一区二区久久精品| 亚洲专区路线一路线二天美| 国产免费激情小视频在线观看| 亚洲一区二区三区精彩视频| 人妻夜夜爽天天爽三区丁香花 | 欧美日韩色另类综合| 亚洲国产cao| 亚洲一区二区三区在线观看| 日本午夜理论一区二区在线观看| 国产日产亚洲系列最新 | 国产第一页屁屁影院| 亚州五十路伊人网| 亚洲综合中文一区二区| av区无码字幕中文色| 最好看的最新高清中文视频| 欧美成人在线A免费观看| 国产无套粉嫩白浆内精| 久久一道精品一区三区| 免费又黄又爽又色的视频| 吸咬奶头狂揉60分钟视频| 欧美人与动牲交片免费播放| 久久精品中文字幕有码| 婷婷五月六月激情综合色中文字幕| 特级毛片a级毛片100免费播放 | 日本护士吞精囗交gif| 四虎在线播放免费永久视频| 国产一区二区丁香婷婷| 国产自拍在线观看视频|