胡玉潔, 李 理, 李偉峰△, 黃文杰
(1廣州軍區(qū)廣州總醫(yī)院呼吸內(nèi)科,廣東 廣州 510010; 2南方醫(yī)科大學研究生學院,廣東 廣州 510515)
依那西普抑制博來霉素誘導的小鼠肺纖維化*
胡玉潔1,2, 李 理1, 李偉峰1△, 黃文杰1
(1廣州軍區(qū)廣州總醫(yī)院呼吸內(nèi)科,廣東 廣州 510010;2南方醫(yī)科大學研究生學院,廣東 廣州 510515)
目的觀察腫瘤壞死因子 α(TNF-α)拮抗劑依那西普對博來霉素誘導的肺纖維化小鼠的抑制纖維化作用,并探討依那西普治療肺纖維化的可能機制。方法將45只SPF級雌性昆明小鼠隨機分為3組:對照組(氣管內(nèi)霧化生理鹽水)、纖維化組(氣管內(nèi)博來霉素3 mg/kg溶于100 μL生理鹽水內(nèi)霧化)和依那西普干預組(氣管內(nèi)霧化博來霉素后,4 mg/kg依那西普溶于100 μL生理鹽水內(nèi)腹腔注射,每3 d注射1次)。處理后第28 d收集樣本,小鼠左肺置于10%中性甲醛固定,石蠟包埋切片后行HE與Masson染色;右肺堿水解法檢測組織羥脯氨酸(HYP)的含量;酶聯(lián)免疫法檢測血清TNF-α和轉化生長因子 β(TGF-β)的含量;提取肺組織總蛋白,Western blotting 檢測磷酸化ERK1/2、JNK和p38的表達。結果依那西普干預組肺組織病理損傷及氣道上皮下膠原沉積較纖維化組減輕,肺葉炎癥損傷評分和纖維化評分明顯下降(均P<0.01),肺組織HYP含量顯著降低(P<0.05),血清TNF-α 和TGF-β的濃度明顯減少(均P<0.01),肺組織ERK1/2、JNK和p38蛋白的磷酸化水平也顯著下降(P<0.01,P<0.05,P<0.01)。結論依那西普能顯著下調(diào)TNF-α 和TGF-β的水平,從而抑制ERK1/2、JNK和p38的活化,緩解博來霉素誘導的小鼠肺纖維化病變。
肺纖維化; 腫瘤壞死因子 α; 依那西普; 博來霉素; 絲裂原活化蛋白激酶類
肺間質(zhì)纖維化發(fā)病機制未明,缺乏有效的治療手段,糖皮質(zhì)激素和免疫抑制劑/細胞毒性藥物療效仍不明確,且毒副作用大,不利于長期治療。因此,尋找更加有效、安全的治療藥物成為當前肺纖維化研究的熱點。研究發(fā)現(xiàn),無論是在肺間質(zhì)纖維化患者還是纖維化動物模型,整個病程中均出現(xiàn)了腫瘤壞死因子 α(tumor necrosis factor α,TNF-α)持續(xù)性的高表達[1-2]。TNF-α的高表達能促進成纖維細胞的增殖、向肌成纖維細胞的轉化以及細胞外基質(zhì)的沉積[3-4],是重要的促肺纖維化因子之一[5-6]。絲裂原活化蛋白激酶(mitogen-activated protein kinases, MAPKs)是TNF-α下游信號轉導的關鍵環(huán)節(jié)[7],能參與TNF-α介導的炎癥反應和上皮-間質(zhì)轉化過程(epithelial-mesenchymal transition,EMT)[8],但對其在肺纖維化體內(nèi)實驗方面與TNF-α相關性的研究尚不多。本研究建立博來霉素(bleomycin,BLM)誘導的小鼠肺纖維化模型,以代表性的腫瘤壞死因子受體-抗體融合蛋白(TNFR-Fc)依那西普(etanercept,Et)競爭性地阻斷TNF-α與受體的結合,探討依那西普對TNF-α下游MAPKs通路的干預作用及其防治肺纖維化的可行性。
1材料
10周齡SPF級昆明雌性小鼠45只(購自南方醫(yī)科大學動物中心),平均體重28 g,飼養(yǎng)于廣州軍區(qū)廣州總醫(yī)院實驗動物中心。BLM每支15 mg,日本化藥株式會社產(chǎn)品。Et每支25 mg,美國恩利公司產(chǎn)品。動物喉鏡、小鼠固定操作臺與MicroSprayereTM霧化器(Penn-Century)。Masson三色染色試劑盒 (福州邁新生物技術公司)。BX51光學顯微鏡(Olympus)。羥脯氨酸(hydroxyproline,HYP)檢測試劑盒(南京建成生物工程研究所)。小鼠TNF-α和轉化生長因子 β(transforming growth factor -β, TGF-β)酶聯(lián)免疫試劑盒(武漢博士德生物研究所)。兔抗鼠磷酸化細胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase, ERK)1/2、磷酸化c-Jun N-末端激酶(c-Jun N-terminal kinase, JNK)、磷酸化p38和總JNK、總ERK1/2、總p38 Ⅰ抗(Cell Signaling Technology)?;瘜W發(fā)光劑(Millipore)。Multiskan GO全波長酶標儀 (Thermo Scientific)。
2方法
2.1纖維化動物模型的建立、分組和標本處理 實驗小鼠隨機分為對照組、BLM組和BLM+Et組,每組15只。小鼠腹腔注射水合氯醛麻醉后固定于操作臺,以動物喉鏡壓下小鼠舌根暴露聲門,霧化器從聲門插入氣管并霧化BLM溶液(3 mg/kg,100 μL),對照組霧化等體積生理鹽水;BLM+Et組小鼠霧化BLM后給予4 mg/kg Et溶于100 μL生理鹽水內(nèi)腹腔注射,每3 d注射1次,對照組與BLM組予相同體積生理鹽水腹腔注射。于處理后第28 d收集標本待測。
2.2肺組織病理學改變 小鼠左肺以10%中性甲醛固定后,石蠟包埋切片,常規(guī)行HE染色及Masson膠原染色,膠原染色按照Masson三色改良染色試劑盒產(chǎn)品說明書進行。參照Mikawa等[9]和Ashcroft等[10]法對肺病理損傷和纖維化程度進行評分。
2.3肺組織HYP含量測定 取出右肺,PBS洗去血跡,濾紙吸干后清除周圍的結締組織并充分剪碎,稱量100 mg肺組織,加入1 mL裂解液,95 ℃堿水解20 min。后續(xù)操作按產(chǎn)品說明書進行。HYP含量以微克/每克肺組織(μg/g)表示。
2.4血清TNF-α和TGF-β含量檢測 收集小鼠血液,靜置2 h后,4 ℃、5 000 r/min離心10 min,分離上層血清。ELISA檢測TNF-α 和TGF-β含量,按照產(chǎn)品說明書進行操作。
2.5肺組織磷酸化ERK1/2、JNK和p38 Western blotting 肺組織勻漿后抽提總蛋白,30 μg/well 蛋白上樣進行SDS-PAGE電泳,蛋白轉移至PVDF膜上。5%的脫脂奶粉20 mL室溫封閉1 h。TBST洗滌液洗膜3次,每次10 min。分別加入抗磷酸化ERK1/2、JNK、p38和總ERK1/2、JNK、p38抗體,4 ℃孵育過夜。TBST洗膜3次,每次10 min。加入HRP標記的II抗37 ℃孵育1 h。TBST洗膜3次,每次10 min?;瘜W發(fā)光試劑檢測蛋白印跡條帶,光密度掃描儀掃描膠片,Gel-Pro Analyzer軟件分析結果。
3統(tǒng)計學處理
用SPSS 13.0軟件進行統(tǒng)計分析。數(shù)據(jù)以均數(shù)±標準差(mean±SD)表示,數(shù)據(jù)均進行正態(tài)性檢驗。計量資料符合正態(tài)分布者通過單因素方差分析進行總體均數(shù)比較,兩兩比較采用LSD-t檢驗。顯著性水準α=0.05,雙側。
1HE染色及Masson染色小鼠肺臟病理改變
1.1小鼠肺臟HE染色及炎癥損傷評分 處理后第28 d,對照組肺組織結構清晰,肺泡無充血,無炎癥細胞浸潤,見圖1A;BLM組見肺泡內(nèi)出血,肺泡間隔內(nèi)成纖維細胞、上皮下肌成纖維細胞增多,炎癥細胞浸潤,肺泡間隔明顯破壞,肺組織大片實變,見圖1B;BLM+Et組肺泡結構完整,間隔稍有增厚,見圖1C。BLM組炎癥評分明顯高于對照組(6.80±0.40vs1.43±0.51,P<0.01)和BLM+Et組(6.80±0.40vs3.63±0.42,P<0.01), BLM+Et組與對照組比較差異有統(tǒng)計學意義(3.63±0.42vs1.43±0.51,P<0.01)。
Figure 1. Pathological changes of mouse lung tissues stained with hematoxylin and eosin (×200).A:control group;B:BLM group;C:BLM+Et group.
圖1小鼠肺組織HE染色
1.2小鼠肺臟Masson染色及纖維化評分 對照組肺組織無明顯炎癥細胞浸潤和膠原沉積,肺泡結構完整, 見圖2A;BLM組小鼠肺組織結構紊亂,間隔增厚,肺泡內(nèi)炎癥細胞浸潤,組織內(nèi)可見大量藍色膠原沉積,部分纖維化病灶呈片狀分布,見圖2B;BLM+Et組與BLM組比較肺泡結構基本完整,肺上皮下輕度炎癥細胞聚集,肺纖維化程度明顯好轉,少量藍色膠原沉積,見圖2C。對照組、BLM組和BLM+Et組小鼠纖維化評分分別為1.83±0.76、 7.13±0.32和3.73±0.32,BLM組評分顯著高于對照組和BLM+Et組(均P<0.01);BLM+Et組評分較對照組明顯增高,差異有統(tǒng)計學意義(P<0.01)。
Figure 2. Pathological changes of mouse lung tissues detected by Masson’s trichrome staining (×200).A:control group;B:BLM group;C:BLM+Et group.
圖2小鼠肺組織Masson染色
2肺組織HYP含量
BLM組小鼠肺組織HYP含量明顯高于對照組[(577.6±98.5) μg/gvs(322.3±30.0) μg/g,P<0.01]; BLM+Et組小鼠肺組織HYP含量較BLM組比較顯著下降[(395.6±71.7) μg/gvs(577.6±98.5) μg/g,P<0.05];BLM+Et組與對照組比較差異無統(tǒng)計學意義[(395.6±71.7) μg/gvs(322.3±30.0) μg/g,P>0.05]。
3血清TNF-α含量
BLM處理后,BLM組小鼠血清內(nèi)TNF-α表達顯著高于對照組(P<0.01),Et干預后,小鼠血清內(nèi)TNF-α含量顯著下降(P<0.01),與對照組比較差異無統(tǒng)計學意義(P>0.05),見表1。
4血清TGF-β含量
BLM處理后,BLM組小鼠血清內(nèi)TGF-β表達顯著高于對照組(P<0.01),Et干預后,BLM+Et組小鼠血清內(nèi)TGF-β的表達較BLM組顯著下降(P<0.01),與對照組比較差異無統(tǒng)計學意義(P>0.05),見表1。
表1各組小鼠血清內(nèi)TNF-α和TGF-β含量的測定
Table 1. The levels of TNF-α and TGF-β in mouse serum (ng/L.Mean±SD.n=15)
GroupTNF-αTGF-βControl54.2±34.2**504.7±74.1**BLM136.9±15.5763.9±160.7BLM+Et92.4±16.7**493.5±20.8**
**P<0.01vsBLM group.
5Et對磷酸化JNK、ERK1/2和p38蛋白表達的影響
BLM組小鼠肺組織內(nèi)JNK、ERK1/2和p38的磷酸化水平均顯著高于對照組(均P<0.01),給予Et干預后,p-ERK1/2、p-JNK和p-p38的表達較對照組高但比BLM組明顯降低(P<0.01,P<0.05,P<0.01),見圖3。
Figure 3. The phosphorylated and total JNK,ERK1/2 and p38 protein expression in mouse lung tissues induced by BLM.Mean±SD.n=6.*P<0.05,**P<0.01vsBLM group.
圖3BLM誘導的磷酸化JNK、ERK1/2和p38蛋白及總蛋白的表達
TNF-α不僅介導抗腫瘤和免疫調(diào)節(jié)反應,還能調(diào)節(jié)成纖維細胞的增殖、分化和細胞外基質(zhì)的沉積[3-4],參與組織損傷的修復和結締組織代謝的調(diào)節(jié)。研究證實,TNF-α轉基因小鼠高表達TNF-α,并出現(xiàn)纖維化[3],而轉染了psTNFR-I的小鼠肺纖維化的癥狀較空載體組明顯改善[11]。Piguet等[12-13]報道rsTNFR-β能明顯改善BLM或二氧化硅誘導的小鼠體內(nèi)TNF-α mRNA水平的表達,早期抑制TNF-α的過度表達能明顯減輕小鼠肺纖維化的病變。以上研究均證實阻斷TNF-α信號通路可能是治療肺纖維化的有效途徑。
但是,目前TNF-α拮抗劑與組織纖維化的關系尚存在爭議。體外實驗中,TNF-α 促進肝脂細胞增殖的同時能抑制膠原蛋白的合成,在一定程度上抑制肝纖維化的進程[14]。單用甲氨蝶呤治療3年后的風濕性關節(jié)炎患者在聯(lián)用英利昔單抗后出現(xiàn)了嚴重的間質(zhì)性肺纖維化,認為英利昔單抗能加重甲氨蝶呤的肺毒性效應[15]。本研究對BLM致纖維化小鼠給予Et腹腔注射,發(fā)現(xiàn)小鼠血清TNF-α的表達受到顯著抑制,肺部炎癥損傷和纖維化病變明顯減輕,Masson染色示氣道下膠原沉積顯著減少,肺組織內(nèi)代表膠原纖維代謝的產(chǎn)物HYP含量也明顯降低,提示Et能有效抑制BLM誘導的小鼠肺纖維化。
MAPKs是細胞內(nèi)的一類絲氨酸/蘇氨酸蛋白激酶,MAPKs信號轉導通路將細胞外刺激信號轉導至細胞內(nèi),引起細胞的增殖、分化、轉化和凋亡等生物學效應。研究證實,MAPKs的活化參與了纖維性病變的過程[16-17],ERK1/2、JNK和p38是主要的MAPK通路。TNF-α刺激人皮膚成纖維細胞能誘導MAPKs的活化,ERK1/2的活化又能促進TNF-α的自分泌,上調(diào)TNF-α的表達[7],從而介導TNF-α調(diào)節(jié)的成纖維細胞增殖和EMT過程。EMT是纖維化病灶中成纖維細胞的主要來源之一[18]。p38和JNK的活化也參與了EMT過程,有研究認為單獨的p38不能完全誘導EMT,需要與其它MAPKs通路聯(lián)合作用[7]。本實驗中,BLM+Et組明顯抑制了BLM誘導的TNF-α高表達和隨后ERK1/2、p38和JNK的磷酸化,表明MAPKs通路參與了TNF-α誘導小鼠肺纖維化,并起協(xié)同作用。
TGF-β是目前已發(fā)現(xiàn)的與肺纖維化發(fā)生和形成最為親密的因子,能通過Smad2、MAPKs和RhoA[19-21]等多種信號通路參與肺纖維化的進程,ERK1/2[22]、JNK[23]和p38[21]的活化是TGF-β促進成纖維細胞的增殖、分化和膠原沉積的重要通路。Sime等[3]認為TGF-β參與TNF-α調(diào)節(jié)的纖維性病變,而與TNF-α調(diào)控的單純免疫炎癥性疾病關系不大。白細胞介素1β、TNF-α等炎癥因子能刺激TGF-β I型受體和Smad蛋白的表達[24]。本研究發(fā)現(xiàn),BLM氣道霧化后,TGF-β表達明顯增高,而Et干預則顯著抑制了TGF-β的表達,與之前Sullivan等[25]的研究結果相符。BLM致肺纖維化小鼠體內(nèi)TNF-α的高表達誘導了TGF-β表達的增高,這可能與TNF-α促進TGF-β受體表達上調(diào)[24]和ERK1/2活化有關[25]。本研究中Et可能通過抑制TNF-α的表達及下游ERK1/2的活性,降低了肺纖維的小鼠體內(nèi)TGF-β的表達。反過來,TGF-β表達上調(diào)又能促進MAPKs通路的磷酸化[21-23],形成相互作用的環(huán)路。Et通過抑制TGF-β的表達,從而阻斷TGF-β下游與纖維化相關的信號級聯(lián)反應。
本研究證實,Et能明顯抑制BLM誘導的小鼠肺纖維化。Et一方面能直接阻斷MAPKs信號通路,另一方面通過下調(diào)TGF-β的表達,抑制MAPKs通路的活化和纖維化的進程。眾所周知,類風濕性關節(jié)炎容易累及肺臟,表現(xiàn)為肺間質(zhì)纖維化,Et在治療類風濕性關節(jié)炎的同時也能控制肺間質(zhì)纖維化的發(fā)生、發(fā)展,這為臨床治療肺纖維化提供了新思路。
[1] Ortiz LA, Lasky J, Hamilton RF Jr,et al. Expression of TNF and the necessity of TNF receptors in bleomycin-induced lung injury in mice[J]. Exp Lung Res,1998, 24(6):721-743.
[2] 靳長俊, 辛洪濤, 林殿杰,等.芪丹顆粒劑對大鼠肺纖維化模型的干預作用及對TGF-β1、TNF-α表達的影響[J].中國病理生理雜志,2006,22(4):814-817,820.
[3] Sime PJ, Marr RA, Gauldie D, et al.Transfer of tumor necrosis factor-α to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-β1 and myofibroblasts[J]. Am J Pathol,1998,153(3):825-832.
[4] Chuang MJ, Sun KH,Tang SJ,et al. Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells[J]. Cancer Sci, 2008,99(5):905-913.
[5] Oikonomou N, Harokopos V, Zalevski J,et al .Soluble TNF mediates the transition from pulmonary inflammation to fibrosis[J].PLoS One,2006,1(1):e108.
[6] Mukhopadhyay S, Hoidal JR, Mukherjee TK.Role of TNFα in pulmonary pathophysiology[J]. Respir Res, 2006, 7:125.
[7] Vietor I, Schwenger P, Li W,et al. Tumor necrosis factor-induced activation and increased tyrosine phosphorylation of mitogen-activated protein (MAP) kinase in human fibroblasts[J]. J Biol Chem, 1993,268(25): 18994-18999.
[8] Grund EM, Kagan D, Tran CA, et al.Tumor necrosis factor-α regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor κB in fuman endometriotic epithelial cells[J].Mol Pharmacol ,2008,73(5):1394-1404.
[9] Mikawa K, Nishina K, Takao Y, et al. ONO-1714, a nitric oxide synthase inhibitor, attenuates endotoxin-induced acute lung injury in rabbits[J]. Anesth Analg, 2003, 97(6):1751-1755.
[10] Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale[J]. J Clin Pathol, 1988, 41(4):467-470.
[11] Przybyszewska M, Miloszewska J, Rzońca S,et al.Soluble TNF-α receptor I encoded on plasmid vector and its application in experimental gene therapy of radiation-induced lung fibrosis[J].Arch Immunol Ther Exp,2011, 59(4):315-326.
[12] Piguet PF,Vesin C. Treatment by human recombinant soluble TNF receptor of pulmonary fibrosis induced by bleomycin or silica in mice[J]. Eur Respir J, 1994, 7(3): 515-518.
[13] Piguet PF, Collart MA, Grau GF, et al. Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis[J]. J Exp Med,1989, 170(3):655-63.
[14] Armendariz-Borunda J, Katayama K, Seyer JM. Transcriptional mechanisms of type I collagen gene expression are differentially regulated by interleukin-1 beta, tumor necrosis factor alpha, and transforming growth factor beta in Ito cells[J]. J Biol Chem,1992,267(20):14316-14321.
[15] Villeneuve E, St-Pierre A, Haraoui B.Interstitial pneumonitis associated with infliximab therapy[J]. J Rheumatol, 2006, 33(6):1189-1193.
[16] Tsukagoshi H, Kawata T, Shimizu Y,et al. 4-Hydroxy-2-nonenal enhances fibronectin production by IMR-90 human lung fibroblasts partly via activation of epidermal growth factor receptor-linked extracellular signal-regulated kinase p44/42 pathway[J]. Toxicol Appl Pharmacol,2002,184(3): 127-135.
[17] Chen J, Chen JK, Nagai K,et al. EGFR signaling promotes TGFβ-dependent renal fibrosis[J]. J Am Soc Nephrol, 2012,23(2):215-224.
[18] Willis BC,duBois RM,Borok Z. Epithelial origin of myofibroblasts during fibrosis in the lung[ J ]. Proc Am Thorac Soc, 2006, 3(4): 377-382.
[19] Bhowmick NA, Ghiassi M, Aakre M, et al.Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism[J]. Mol Biol Cell,2001,12(1):27-36.
[20] Li JH, Zhu HJ, Huang XR.Smad7 inhibits fibrotic effect of TGF-β on renal tubular epithelial cells by blocking Smad2 activation[J]. J Am Soc Nephrol,2002, 13(6): 1464-1472.
[21] Bhowmick NA, Zent R, Ghiassi M, et al. Integrin β1signaling is necessary for transforming growth factor-β activation of p38MAPK and epithelial plasticity[J]. J Biol Chem,2001, 276(50): 46707-46713.
[22] Ellenrieder V, Hendler SF, Boeck W, et al.Transforming growth factor β1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation[J].Cancer Res,2001, 61(10): 4222-4228.
[23] 林云靈,李維維,陳良龍.TGF-β1作用后老齡大鼠心肌成纖維細胞p38 MAPK 通路和 JNK 通路的變化[J].中國病理生理雜志,2012,28(8):1420-1423.
[24] Liu X.Inflammatory cytokines augments TGF-β1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TβR-I[J]. Cell Motill Cytoskeleton,2008,65(12):935-944.
[25] Sullivan DE, Ferris M, Pociask D, et al.Tumor necrosis factor-α induces transforming growth factor-β1expression in lung fibroblasts through the extracellular signal-regulated kinase pathway[J]. Am J Respir Cell Mol Biol,2005,32(4):342-349.
Etanerceptattenuatesbleomycin-inducedlungfibrosisinmice
HU Yu-jie1,2, LI Li1, LI Wei-feng1, HUANG Wen-jie1
(1DepartmentofRespiratoryMedicine,GuangzhouGeneralHospitalofGuangzhouMilitaryCommand,Guangzhou510010,China;2GraduateSchoolofSouthernMedicalUniversity,Guangzhou510515,China.E-mail:lwf980622@126.com)
AIM: To evaluate the effect of tumor necrosis factor α (TNF-α) antagonist etanercept on bleomycin-induced lung fibrosis in mice.METHODSForty-five Kunming female mice were randomly divided into 3 groups: the mice in control group were intraperitoneally injected with vehicle and intratracheally administered with saline aerosol, the mice in bleomycin group were intraperitoneally injected with vehicle and intratracheally administered with bleomycin (3 mg/kg) aerosol, and the mice in bleomycin+etanercept group were intraperitoneally injected with etanercept (4 mg/kg) every 3 d and intratracheally administered with bleomycin aerosol. All animals were sacrificed 28 d after treatments. The left lung was fixed in 10% neutral formalin and then stained with hematoxylin-eosin or Masson’s trichrome for the pathological examination. The tissues of right lung were sampled for measuring the content of hydroxyproline (HYP) by the method of alkaline hydrolysis. The serum concentrations of TNF-α and TGF-β were detected by ELISA. Total tissue protein was extracted for examination of ERK1/2, JNK and p38 by Western blotting.RESULTSEtanercept prevented the collagen accumulation under the airway epithelium and decreased the scores of lung inflammation and fibrosis induced by bleomycin with significantly reduced the levels of tissue HYP, serum TNF-α and serum TGF-β. The protein phosphorylations of ERK/JNK/p38 in the lung tissues were remarkably decreased compared with BLM group.CONCLUSIONEtanercept decreases the phosphorylations of ERK1/2/JNK/p38 via inhibiting the expression of TNF-α and TGF-β. Etanercept might be useful in the treatment of pulmonary fibrosis.
Pulmonary fibrosis; Tumor necrosis factor α; Etanercept; Bleomycin; Mitogen-activated protein kinases
R363
A
10.3969/j.issn.1000- 4718.2013.06.014
1000- 4718(2013)06- 1034- 05
2012- 11- 30
2013- 04- 09
廣東省自然科學基金資助項目(No.S2011010000511);廣東省科技計劃項目(No.2010B031600122)
△通訊作者Tel: 020-86653555; E-mail: lwf980622@126.com