亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Synthesis,Structure and Fungicidal Activity of Organotin 1H-Tetrazolyl-1-acetates

        2013-09-29 02:23:54GANXianXueTANGLiangFuDepartmentofChemistryandChemicalEngineeringYibinUniversityYibinSichuan644007ChinaDepartmentofChemistryStateKeyLaboratoryofElementoOrganicChemistryNankaiUniversityTianjin30007China
        關(guān)鍵詞:四唑乙酸酯宜賓

        GAN Xian-XueTANG Liang-Fu(Department of Chemistry and Chemical Engineering,Yibin University,Yibin,Sichuan 644007,China)(Department of Chemistry,State Key Laboratory of Elemento-Organic Chemistry,Nankai University,Tianjin 30007,China)

        Synthesis,Structure and Fungicidal Activity of Organotin 1H-Tetrazolyl-1-acetates

        GAN Xian-Xue1TANG Liang-Fu*,2
        (1Department of Chemistry and Chemical Engineering,Yibin University,Yibin,Sichuan 644007,China)(2Department of Chemistry,State Key Laboratory of Elemento-Organic Chemistry,Nankai University,Tianjin 300071,China)

        Four new organotin 1H-tetrazolyl-1-acetates,namely{[(CHN4)CH2CO2Sn(n-Bu)2]2O}2(1)and{[(CHN4)CH2CO2SnEt2]2O}2·0.5C6H6(2)as well as((CHN4)CH2CO2)2SnR2(R=n-Bu(3)or Et(4),(CHN4)CH2CO2=1H-tetrazol-1-acetate),have been synthesized by the reaction of R2SnO with 1H-tetrazolyl-1-acetic acid in a 1∶1 or 1∶2 molar ratio.These complexes have been characterized by IR and NMR spectroscopy,and their structures have been further confirmed by X-ray crystal diffraction.Preliminary in vitro tests for fungicidal activity show that these complexes displaysomedegreeofantifungalactivitiesto GibberellazeaeandRhizoctoniacerealis.CCDC:783970,2;783971,3.

        organotin carboxylate;1H-tetrazolyl-1-acetic acid;X-ray structure;fungicidal activity

        0 Introduction

        In spite of the toxicity and environmental effects partially limiting their application, organotin carboxylateshave been extensively used in the industrial,agricultural and pharmaceutical fields owing to their remarkable structural diversity[1-2],catalytic activity[3]as well as significant biological activity[4-7],for example as pesticidal,antibacterial,antitumor agents and wood preservatives.Carboxylic acids containing heteroatoms have proved their value in the capability of affecting the coordination modes of tin atom as well as decent bioactivities,and therefore attracted a great deal of attention.A large number of organotin carboxylates containing heteroatoms have been synthesized and characterized in recent years[7-11].Furthermore,organotin derivatives from S-or N-functionalized carboxylic acids have displayed fascinating structural features and excellent antibacterial activities[12-15].Taking into consideration of the important bioactivity of tetrazolyl derivatives and their variable coordination modes[15-18],four new organotin 1H-tetrazolyl-1-acetates,namely{[(CHN4)CH2CO2Sn(n-Bu)2]2O}2(1)and{[(CHN4)CH2CO2SnEt2]2O}2·0.5C6H6(2)as well as((CHN4)CH2CO2)2SnR2(R=n-Bu(3)or Et(4),(CHN4)CH2CO2=1H-tetrazol-1-acetate),were synthesized in this paper by the reaction of R2SnO (R=n-Bu or Et)with 1H-tetrazolyl-1-acetic acid,and their antifungal activities were tested in vitro.

        1 Experimental

        NMR spectra were recorded on a Bruker 400 spectrometer,and the chemical shifts are reported in ppm with respect to the reference(internal SiMe4for1H NMR and13C NMR spectra,external SnMe4for119Sn NMR).IR spectroscopic data were obtained from a Shimadzu FTIR 8400S spectrometer as KBr pellets.Elemental analyses were carried out on an Elementar Vairo EL analyzer.Melting points were measured with an X-4 digital micro melting-point apparatus and were uncorrected.All the chemicals used are commercially available and were used as received without further purification.

        1.1 Synthesis of complex 1

        The mixture of 1H-tetrazolyl-1-acetic acid(0.26 g,2 mmol)and(n-Bu)2SnO(0.50 g,2 mmol)in anhydrous benzene(50 mL)was stirred and heated at reflux for 8 h.After cooling to room temperature,a white solid precipitated out, which was filtered off and recrystallized from acetone/benzene to yield white needle crystals of 1.Yield:0.52 g(71%),m.p.180~182℃.1H NMR(DMSO-d6,ppm),δ:0.84(t,J=7.2 Hz,3H,CH3),0.92(t,J=7.3 Hz,3H,CH3),1.26~1.60(m,12H,CH2CH2CH2),5.19 (s,2H,CH2),9.30 (s,1H,CHN4).13C NMR (DMSO-d6,ppm), δ:13.3,13.4,25.7,26.2,26.5,26.6,26.9,27.0(butyl carbons),49.6(CH2),144.6(CHN4),169.6(COO).119Sn NMR (DMSO-d6,ppm),δ:-178.9,-214.3.IR (cm-1):νas(COO)1674.2,1612.5,νs(COO)1 404.2,1 375.3.Anal.calc.for C44H84N16O10Sn4(%):C,35.90;H,5.75;N,15.22.Found(%):C,35.69;H,5.68;N,15.66.

        1.2 Synthesis of complex 2

        This complex was obtained similarly using Et2SnO instead of(n-Bu)2SnO as described above for 1.Yield:83%,m.p.215 ℃ (dec.).1H NMR(DMSO-d6,ppm),δ:1.12~1.42(m,10H,CH2CH3),5.20(s,2H,CH2),9.32(s,1H,CHN4).IR(cm-1):νas(COO)1 647.2,1 616.4,νs(COO)1 406.1,1 383.0.Anal.calc.for C31H55N16O10Sn4(%):C,28.94;H,4.31;N,17.42.Found(%):C,28.47;H,3.83;N,17.57.

        1.3 Synthesis of complex 3

        This complex was obtained similarly as described above for 1,but in a 2∶1 (acid:tin)molar ratio.Yield:76%,m.p.199~201℃.1H NMR (DMSO-d6,ppm),δ:0.84(t,J=7.3 Hz,3H,CH3),1.21~1.26,1.39~1.48(m,m,2H,4H,CH2CH2CH2),5.23 (s,2H,CH2),9.31(s,1H,CHN4).13C NMR (DMSO-d6,ppm),δ:13.5,25.7,26.5,29.6(butyl carbons),49.5 (CH2),144.7(CHN4),169.6(COO).IR(cm-1): νas(COO)1 620.2, νs(COO)1 398.4.Anal.calc.for C14H24N8O4Sn(%):C,34.52;H,4.97;N,23.00.Found(%):C,34.59;H,4.58;N,23.36.

        1.4 Synthesis of complex 4

        This complex was obtained similarly using Et2SnO instead of(n-Bu)2SnO as described above for 1,but in a 2∶1(acid∶tin)molar ratio.Yield:86%,m.p.188~190 ℃.1H NMR (DMSO-d6,ppm),δ:1.13(t,J=7.8 Hz,6H,CH3),1.42 (q,J=7.8 Hz,4H,CH2CH3),5.22 (s,4H,CH2),9.32(s,2H,CHN4).13C NMR(DMSO-d6,ppm),δ:9.5(CH2CH3),23.5(CH2CH3),49.5(CH2),144.7(CHN4),170.0(COO).119Sn NMR (DMSO-d6,ppm),δ:-304.2.IR(cm-1):νas(COO)1 614.4, νs(COO)1 392.6.Anal.calc.for C10H16N8O4Sn(%):C,27.87;H,3.74;N,26.00.Found(%):C,27.52;H,3.80;N,26.28.

        1.5 Structure determination of complexes 2 and 3

        Colorless crystals of complexes 2 and 3 suitable for X-ray analyses were obtained by slowly cooling their hot acetone/benzene solutions.In complex 2,0.5 molecule of benzene was observed.Intensity data were collected on a Bruker SMART CCD using graphite monochromated Mo Kα radiation (λ=0.071 03 nm by the ω/2θ scan technique,and a semi-empirical absorption correction was applied.The structures were solved by direct methods and refined by full-matrix least-squares on F2.All non-hydrogen atomswere refined with anisotropic displacement parameters.The highest peak in complex 3 is located near the Sn(1)center by a distance of 0.081 nm.A summary of the fundamental crystal data is listed in Table 1.

        CCDC:783970,2;783971,3.

        Table 1 Crystallographic data and refinement parameters of complexes 2 and 3

        2 Results and discussion

        2.1 Synthesis and characterization

        Reaction of R2SnO (R=n-Bu or Et)with 1H-tetrazolyl-1-acetic acid(CHN4CH2CO2H)in a 1:1 molar ratio yielded dimeric tetranuclear complexes{[(CHN4)CH2CO2Sn(n-Bu)2]2O}2(1)and{[(CHN4)CH2CO2SnEt2]2O}2·0.5C6H6(2).While monomeric complexes((CHN4)CH2CO2)2SnR2(R=n-Bu (3)and Et(4),respectively)were obtained by the reaction of R2SnO with 1H-tetrazolyl-1-acetic acid in a 1∶2 molar ratio(Scheme 1).These four complexes have been characterized by IR and NMR spectroscopy as well as elemental analyses.

        Scheme 1 Reaction of R2SnO(R=n-Bu or Et)with 1H-tetrazolyl-1-acetic acid

        The IR spectra of complexes 1 and 2 display two types of carbonyl absorption bands,implying that the carboxylate groups possibly coordinate to the tin atom in different manners[19-20].The corresponding differences Δ[νas(COO-)-νsCOO-)](298.9 and 208.2 cm-1in 1 as well as 264.2 and 208.3 cm-1in 2,respectively)reflect the monodentate and bidentate coordination modes of the carboxylate groups[20].The NMR spectra of complexes 1 and 2 support the suggested centrosymmetric dimeric structure.For example,two sets of butyl signals of1H and13C NMR spectra were observed in complex 1,suggesting them attached to different tin atoms.At the same time,its119Sn spectrum has also confirmed the presence of endo-and exo-cyclic tin atoms.A pair of resonances of equal intensities were observed at-178.9 and-214.3 ppm in this complex,which are comparable with the previously reported valuesfordimericdistannoxanes[12].On the other hand,the IR spectra of complexes 3 and 4 show that the difference between asymmetric and symmetric stretching vibrations of the carboxylate groups is 221.8 cm-1,very close to the corresponding value of sodium 1H-tetrazolyl-1-acetate(228 cm-1)[15],indicating that the carboxylate groups in these two complexes possibly act as bidentate ligands[20].

        2.2 Crystal structures of complexes 2 and 3

        The molecular structures of complexes 2 and 3 have also been confirmed further by X-ray crystallography.As shown in Fig.1,complex 2 has a tetranuclear distannoxane structure,similar with that of{[(2-PySCH2CO2)SnEt2]2O}2[12].Unlike those in triorganotin derivatives[15],the tetrazolyl nitrogen atoms do not coordinate to the tin atoms in complex 2.Each tin atom adopts a five-coordinate distorted trigonal bipyramidal geometry with two oxygen atoms occupying the axial positions.The axial O-Sn-O angles(O(1)-Sn(1)-O(3)173.8(2)°and O(4)-Sn(2)-O(5A)168.9(2)°,Table 2)deviate from the linearity.The crystallographically unique carboxylic ligands show different coordination modes.One carboxylic ligand acts as a monodentate ligand by the carboxylate oxygen,while the other is a bridging bidentate ligand by two oxygen atoms of the carboxylgroup to two tin atoms.Some weak intramolecular Sn…O interactions are observed in this complex.The intramolecular distances of Sn(1)…O(2)and Sn(2)…O(1A)are 0.274 5(8)and 0.286 0(6)nm,significantly shorter than the sum of the van der Waal′s radii for the Sn and O atoms of 0.357 nm[21],but comparable to the corresponding Sn…O distances in{[(2-PySCH2CO2)SnEt2]2O}2[12].In addition,some weak intermolecular C-H…N hydrogen bonding interactions have been observed in the crystal packing,such as C(1)-H(1)…N(4B)and C(4)-H(4)…N(8B)(H(1)…N(4B)/C(1)…N(4B)distances:0.259 2(11)/0.342 2(16)nm,and H(4)… N(8B)/C(4)… N(8B)distances:0.236(1)/0.3226(16)nm;symmetry operation B:x,1.5-y,-0.5+z).These weak interactions play important roles in stabilizing the crystal framework.

        Fig.1 Molecular structure of complex 2

        Table 2 Selected bond length(nm)and angles(°)of complexes 2 and 3

        The molecular structure of 3 is presented in Fig.2.The tin atom adopts a six-coordinate distorted octahedral geometry.The Sn(1)-O(1)(0.253 1(5)nm)and Sn(1)-O(4)(0.254 1(5)nm)bond distances are significantly longer than the Sn(1)-O(2)(0.214 8(5)nm)and Sn(1)-O(3)(0.215 8(5)nm)bond distances,suggesting that the carboxylate groups act as anisobidentate ligands,consistent with the results of the IR analyses.Like that in complex 2,there is no direct interaction between the tetrazolyl nitrogen atoms and thetin atom in complex3.A seriesofweak intermolecular C-H…N hydrogen bonding interactions still exist in the crystal packing of complex 3(Fig.3).The C(3)-H(3)… N(6A)and C(6)-H(6)… N(2A)distances(symmetry operation A:0.5-x,0.5+y,0.5+z)are 0.253 5(7)/0.333 6(10)nm(H(3)…N(6A)/C(3)…N(6A))and 0.264 3(7)/0.346 9(11)nm(H(6)…N(2A)/C(6)…N(2A)),respectively.Furthermore,the non-bond Sn(1)…O(3B)and Sn(1)…O(2B)distances(symmetry operation B:x,-1+y,z) are 0.344 8(5)nm and 0.346 1(4)nm,respectively,shorter than the sum of the van der Waal′s radii for the Sn and O atoms[21],indicating the presence of some weak interactions among these atoms.This complex forms a supermolecular structure through these weak intermolecular C-H…N and Sn…O interactions.

        Fig.2 Molecular structure of complex 3

        Fig.3 Crystal packing diagram of complex 3

        2.3 Antifungal activity

        The fungicidal activities in vitro of four complexes were evaluated according to the fungi growth inhibition method[15],and the data are summarized in Table 3.Although these complexes show relatively lower activities than triorganotin 1H-tetrazolyl-1-acetates[15],they exhibit some degree of antifungal activities to Gibberella zeae and Rhizoctonia cerealis.Moreover,the activities of the butyltin derivatives(complexes 1 and 3)seem higher than those of the ethyltin derivatives(complexes 2 and 4).Similar results have been observed previously[12].

        Table 3 Fungicidal activities of complexes

        Continued Table 3

        [1]Chandrasekhar V,Nagendran S,Baskar V.Coord.Chem.Rev.,2002,235:1-52

        [2]Tiekink E R T.Appl.Organometal.Chem.,1991,5:1-23

        [3]DU Zhi-Ping(杜治平),LIU Liang(劉亮),WANG Gong-Ying(王公應(yīng)),etal.ChineseJ.Inorg.Chem.(WujiHuaxueXuebao),2009,25:2225-2228

        [4]Hadjikakou S K,Hadjiliadis N.Coord.Chem.Rev.,2009,253:235-249

        [5]Baul T S B.Appl.Organometal.Chem.,2008,22:195-204

        [6]WANG Yan-Hua(王艷華),YE Zhang-Ji(葉章基),JIN Xiao-Hong(金曉鴻),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2008,24:145-148

        [7]DENGYi-Fang(鄧奕芳),CHEN Man-Sheng(陳滿生),ZHANG Chun-Hua(張春華),etal.ChineseJ.Inorg.Chem.(WujiHuaxue Xuebao),2009,25:2229-2232

        [8]Ma C,Wang Q,Zhang R.Inorg.Chem.,2008,47:7060-7061

        [9]Chandrasekhar V,Thirumoorthi R.Organometallics,2009,28:2096-2106

        [10]Hong M,Hin H D,Chen S W,et al.J.Organomet.Chem.,2010,695:653-662

        [11]Ruisi G,Canfora L,Bruno G,et al.J.Organomet.Chem.,2010,695:546-551

        [12]GAN Xian-Xue(甘賢雪),WANG Xi(王希),ZHANG Hai-Ke(張海科),etal.ChineseJ.Inorg.Chem.(WujiHuaxueXuebao),2008,24:1504-1509

        [13]Li F L,Dai B,Song H B,et al.Heteroatom Chem.,2009,20:411-417

        [14]ZHANG Xiao-Yan(張 曉 燕 ),YANG Guang(楊 光),ZHANG Jun(張俊),et al.Chem.J.Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao),2010,31:1162-1166

        [15]Xie Y F,Yu Y,Fan Z J,et al.Appl.Organometal.Chem.,2010,24:1-7

        [16]He F,Tong M L,Yu X L,et al.Inorg.Chem.,2005,44:559-565

        [17]Dong W W,Zhao J,Xu L.Cryst.Growth Des.,2008,8:2882-2886

        [18]Yu Q,Zhang X,Bian H,et al.Cryst.Growth Des.,2008,8:1140-1146

        [19]Khan M I,Baloch M K,Ashfaq M.J.Organomet.Chem.,2004,689:3370-3378

        [20]Szorcsik A,Nagy L,Sletten J,et al.J.Organomet.Chem.,2004,689:1145-1154

        [21]Szorcsik A,Nagy L,Deák A,et al.J.Organomet.Chem.,2004,689:2762-2769

        有機(jī)錫四唑乙酸酯的合成、結(jié)構(gòu)與抗真菌活性

        甘賢雪1唐良富*,2

        (1宜賓學(xué)院化學(xué)化工系,宜賓 644007)(2南開大學(xué)化學(xué)系,元素有機(jī)化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300071)

        通過(guò)四唑乙酸與二丁基氧化錫(或二乙基氧化錫)反應(yīng),合成了4個(gè)新的有機(jī)錫四唑乙酸酯。它們的結(jié)構(gòu)通過(guò)紅外,核磁以及X-射線單晶衍射分析得到確證。生物活性測(cè)試表明,它們對(duì)小麥赤霉病菌以及禾谷絲核菌等具有一定的抑制活性。

        有機(jī)錫羧酸酯;四唑乙酸;晶體結(jié)構(gòu);抗真菌活性

        O614.43+2

        :A

        :1001-4861(2011)02-0387-06

        2010-07-16。收修改稿日期:2010-09-13。

        國(guó)家自然科學(xué)基金資助項(xiàng)目(No.20721062)。

        *通訊聯(lián)系人。 E-mail:lftang@nankai.edu.cn;會(huì)員登記號(hào):S060015703M。

        猜你喜歡
        四唑乙酸酯宜賓
        脲衍生物有機(jī)催化靛紅與乙酰乙酸酯的不對(duì)稱Aldol反應(yīng)
        分子催化(2022年1期)2022-11-02 07:11:08
        The New Trends in Graphic Notation After 1945
        宜賓面塑的保護(hù)、傳承與創(chuàng)新探討
        宜賓(外四首)
        宜賓豆腐乳毛霉分離及應(yīng)用
        超聲波強(qiáng)化制備高取代度大米淀粉乙酸酯
        四唑基聚合物的研究進(jìn)展
        環(huán)保增塑劑環(huán)氧腰果酚乙酸酯增塑PVC研究
        雙[2-(5-硝基-2H-四唑基)-2,2-二硝乙基]硝胺的合成與量子化學(xué)計(jì)算
        1,1′-二羥基-5,5′-聯(lián)四唑-5-氨基四唑鹽的合成及性能預(yù)估
        少妇一区二区三区乱码| 朋友的丰满人妻中文字幕| 国产精品办公室沙发| 国产日韩精品中文字无码| 国内精品伊人久久久久av| 2020国产精品久久久久| 免费蜜桃视频在线观看| 日韩麻豆视频在线观看| 国产毛片黄片一区二区三区| 极品尤物一区二区三区| 天天躁日日躁狠狠躁欧美老妇| 午夜福利92国语| 免费看一级a女人自慰免费| 如何看色黄视频中文字幕| 国语对白三级在线观看| 免费人成视网站在线剧情| 日本怡春院一区二区三区| 亚洲男人天堂| 99国产精品丝袜久久久久| 一区视频在线观看免费播放.| 国产丝袜美腿在线播放| 国产女主播白浆在线观看| 欧美在线视频免费观看| 国产免费视频一区二区| 男女射黄视频网站在线免费观看 | 亚洲国产婷婷六月丁香| 国产亚洲精品久久久久久| 国产福利午夜波多野结衣| 久久99精品久久久66| 成人爽a毛片免费网站中国| 丰满少妇在线播放bd| 国产激情无码一区二区| 97一区二区国产好的精华液 | 国产不卡在线视频观看| 色偷偷噜噜噜亚洲男人| 亚洲精品亚洲人成在线下载| 在线亚洲妇色中文色综合| 精品国产综合区久久久久久| 国产高潮刺激叫喊视频| 国产日产高清欧美一区| 丝袜美腿网站一区二区|