胡杭君,侯仰青,孫寶忠
(東華大學(xué) 紡織學(xué)院,上海 201620)
三維角鏈鎖碳纖維機(jī)織物拉伸應(yīng)變率效應(yīng)和失效機(jī)理
胡杭君,侯仰青,孫寶忠
(東華大學(xué) 紡織學(xué)院,上海 201620)
三維角鏈鎖碳纖維機(jī)織物準(zhǔn)靜態(tài)拉伸力學(xué)性能采用MTS 810型材料測(cè)試系統(tǒng)測(cè)試,而其在不同高應(yīng)變率下的拉伸力學(xué)性能使用自行設(shè)計(jì)分離式霍普金森拉桿裝置進(jìn)行測(cè)試.通過比較不同應(yīng)變率下的織物拉伸力學(xué)性能,分析應(yīng)變率對(duì)三維結(jié)構(gòu)織物拉伸性能的影響.試驗(yàn)結(jié)果表明三維角鏈鎖碳纖維織物是應(yīng)變率敏感材料,其拉伸彈性模量和失效強(qiáng)度隨應(yīng)變率增加而減小,而斷裂應(yīng)變隨著應(yīng)變率增加而增加.三維角鏈鎖碳纖維機(jī)織物拉伸力學(xué)性能的應(yīng)變率效應(yīng)可由應(yīng)力波在織物特殊結(jié)構(gòu)中傳遞來解釋.此外,通過分析試驗(yàn)數(shù)據(jù)建立材料沖擊拉伸力學(xué)參數(shù)與應(yīng)變率之間的回歸方程,結(jié)果表明擬合曲線與試驗(yàn)結(jié)果具有很好的一致性.
三維角鏈鎖碳纖維機(jī)織物;應(yīng)變率效應(yīng);動(dòng)態(tài)拉伸力學(xué)性能;應(yīng)力波;回歸方程
三維角鏈鎖機(jī)織物由伸直緯紗在厚度方向接結(jié)多層經(jīng)紗構(gòu)成,該織物結(jié)構(gòu)增強(qiáng)復(fù)合材料比層壓復(fù)合材料具有更高的抗分層性能和沖擊阻抗.準(zhǔn)確表征三維角鏈鎖織物拉伸應(yīng)變率效應(yīng)可對(duì)復(fù)合材料沖擊性能精確設(shè)計(jì)提供數(shù)據(jù)依據(jù).
對(duì)纖維和纖維束沖擊拉伸目前已有不少研究,如超高相對(duì)分子質(zhì)量聚乙烯纖維[1-2]、玻璃纖維[3-4]、對(duì)位芳香族聚酰胺纖維[5-8]、碳纖維[3,9]和玄武巖纖維[10]等,除碳纖維外,上述纖維在應(yīng)變率為0.001~3 000s-1范圍內(nèi)的力學(xué)性能均表現(xiàn)出不同的應(yīng)變率相關(guān)性.
由纖維束經(jīng)一定交織形成具有穩(wěn)定結(jié)構(gòu)的織物,是實(shí)現(xiàn)纖維材料最終用途的重要方式.二維平紋織物是研究織物沖擊拉伸性能的主要織物種類.如文獻(xiàn)[11]采用分離式霍普金森拉桿測(cè)試Twaron CT 716織物在應(yīng)變率為0.01~550s-1范圍內(nèi)的拉伸力學(xué)性能,結(jié)果表明,Twaron織物對(duì)應(yīng)變率敏感,織物的拉伸強(qiáng)度和拉伸模量均隨應(yīng)變率增加而降低,同時(shí)通過建立材料黏彈性本構(gòu)模型來揭示材料拉伸破壞機(jī)理.文獻(xiàn)[12]測(cè)試Kevlar 49和Zylon織物在低應(yīng)變率下拉伸力學(xué)性能,研究表明這兩種織物在不同低應(yīng)變率下對(duì)應(yīng)變率具有相關(guān)性.文獻(xiàn)[13]測(cè)試Kevlar 49平紋織物在應(yīng)變率為25~170 s-1范圍內(nèi)的拉伸力學(xué)性能,結(jié)果發(fā)現(xiàn)Kevlar 49平紋織物拉伸力學(xué)性能參數(shù)(楊氏模量、拉伸強(qiáng)度、失效應(yīng)變和斷裂韌性)均隨應(yīng)變率增加而增大.文獻(xiàn)[14]采用分離式霍普金森拉桿系統(tǒng)測(cè)試Kevlar 49平紋織物在應(yīng)變率為0.000 1~1 500s-1范圍內(nèi)的拉伸力學(xué)響應(yīng),研究結(jié)果顯示Kevlar 49平紋織物拉伸模量對(duì)應(yīng)變率不敏感,失效強(qiáng)度對(duì)應(yīng)變率是否敏感需進(jìn)一步通過試驗(yàn)進(jìn)行驗(yàn)證.
本文采用MTS 810型材料測(cè)試系統(tǒng)測(cè)試三維角鏈鎖碳纖維機(jī)織物在準(zhǔn)靜態(tài)下拉伸力學(xué)性能,并使用自行設(shè)計(jì)分離式霍普金森拉桿裝置測(cè)試三維角鏈鎖碳纖維機(jī)織物動(dòng)態(tài)拉伸力學(xué)性能,通過比較不同高應(yīng)變率下織物拉伸力學(xué)性能,且由試驗(yàn)數(shù)據(jù)建立織物拉伸力學(xué)參數(shù)與應(yīng)變率間的回歸方程,分析織物拉伸力學(xué)性能的應(yīng)變率效應(yīng),從而揭示織物結(jié)構(gòu)對(duì)拉伸破壞的影響和失效機(jī)理.
三維角鏈鎖機(jī)織物示意圖如圖1所示.由圖1可知,織物由經(jīng)紗和緯紗兩個(gè)系統(tǒng)構(gòu)成,其中,緯紗平行排列無(wú)屈曲,經(jīng)紗以一定角度沿材料結(jié)構(gòu)的厚度方向襯入.每一層中,相鄰兩根經(jīng)紗的屈曲波動(dòng)狀態(tài)相反,由此形成對(duì)材料厚度方向上任意兩相鄰緯紗層強(qiáng)有力的束縛作用,從而維持織物整體結(jié)構(gòu)的穩(wěn)定性.以此織物結(jié)構(gòu)作為增強(qiáng)體相形成的樹脂基復(fù)合材料具有高強(qiáng)、高模、高層間剪切強(qiáng)度,以及大面積區(qū)域承受加載、吸收能量等諸多優(yōu)勢(shì).三維角鏈鎖碳纖維機(jī)織物由日本東麗?(Toray)T300 3K碳纖維束織造,纖維束和織物參數(shù)分別如表1和2所示.織物的表面圖和截面圖如圖2所示.用于測(cè)試的試樣尺寸為100mm×10mm×1.8mm(長(zhǎng)×寬×厚).
圖1 三維角鏈鎖機(jī)織物示意圖Fig.1 Schematic diagram of 3-D angle-interlock woven fabric
表1 T300 3K碳纖維束性能參數(shù)Table 1 Properties of T300 3Kcarbon fiber tow
表2 三維角鏈鎖碳纖維機(jī)織物參數(shù)Table 2 Specifications of 3-D angle-interlock woven carbon fabric
圖2 三維角鏈鎖碳纖維機(jī)織物照片F(xiàn)ig.2 Photographs of 3-D angle-interlock woven carbon fabric
三維角鏈鎖碳纖維機(jī)織物沿緯向準(zhǔn)靜態(tài)拉伸在MTS 810型材料測(cè)試儀(如圖3所示)上完成,其中,拉伸速度為2mm/min(應(yīng)變率為0.001s-1),測(cè)試夾持長(zhǎng)度為10mm.
圖3 MTS 810型材料測(cè)試儀Fig.3 Photograph of MTS 810material test system
三維角鏈鎖碳纖維機(jī)織物在高應(yīng)變率下沿緯向拉伸試驗(yàn)在自行設(shè)計(jì)分離式霍普金森拉桿裝置(如圖4所示)上完成.圖5為分離式霍普金森桿示意圖,它簡(jiǎn)單揭示了整個(gè)動(dòng)態(tài)拉伸過程和數(shù)據(jù)采集方法.動(dòng)態(tài)沖擊過程中因應(yīng)力波傳遞到應(yīng)變片而使應(yīng)變片產(chǎn)生變形,從而記錄下兩列電阻-時(shí)間信號(hào),經(jīng)超動(dòng)態(tài)應(yīng)變儀放大、轉(zhuǎn)換,并由數(shù)據(jù)采集卡采集,最終得到兩個(gè)電壓-時(shí)間信號(hào).基于一維應(yīng)力波理論、應(yīng)變均勻性假設(shè),可得到織物試樣應(yīng)力、應(yīng)變和應(yīng)變率方程[15]如式(1)~(3)所示.
圖4 自行設(shè)計(jì)的分離式霍普金森拉桿裝置圖Fig.4 Photograph of self-designed split Hopkinson tension bar apparatus
圖5 分離式霍普金森拉桿示意圖Fig.5 Sketch diagram of split Hopkinson tension bar apparatus
三維角鏈鎖碳纖維機(jī)織物在準(zhǔn)靜態(tài)下沿緯向拉伸載荷-位移曲線如圖6所示.由圖6可以看出,三維角鏈鎖碳纖維機(jī)織物在準(zhǔn)靜態(tài)下拉伸力學(xué)性能基本呈線性趨勢(shì).從載荷-位移曲線中可以計(jì)算得出,三維角鏈鎖碳纖維機(jī)織物在準(zhǔn)靜態(tài)下拉伸模量為67.4MPa,失效載荷為8.2kN,斷裂應(yīng)變?yōu)?.9%.通過對(duì)圖6中載荷-位移曲線積分得到三維角鏈鎖碳纖維機(jī)織物在準(zhǔn)靜態(tài)下拉伸吸收能量-位移曲線,如圖7所示.由圖7可以看出,在拉伸初始階段,織物拉伸吸收能量增加緩慢;隨著位移的增加,拉伸吸收能量增加逐漸加快.織物在準(zhǔn)靜態(tài)下的拉伸斷裂吸收能量為4.75J.圖8為三維角鏈鎖碳纖維機(jī)織物在應(yīng)變率為0.001s-1下拉伸后斷裂形態(tài)圖.由圖8可以看出,織物在準(zhǔn)靜態(tài)拉伸斷裂后,經(jīng)紗沒有明顯的移動(dòng)或變形.
圖6 準(zhǔn)靜態(tài)下三維角鏈鎖碳纖維機(jī)織物載荷-位移曲線Fig.6 Load-displacement curve of 3-D angle-interlock woven carbon fabric under quasi-static
圖7 準(zhǔn)靜態(tài)下三維角鏈鎖碳纖維機(jī)織物拉伸吸收能量-位移曲線Fig.7 Energy absorption-displacement curve of 3-D angleinterlock woven carbon fabric under quasi-static
圖8 準(zhǔn)靜態(tài)下三維角鏈鎖碳纖維機(jī)織物拉伸斷裂形態(tài)圖Fig.8 Tensile fracture morphology of 3-D angle-interlock woven carbon fabric under quasi-static
圖9為三維角鏈鎖碳纖維機(jī)織物在4種不同高應(yīng)變率下沿緯向拉伸載荷-位移曲線.由圖9可以看出,三維角鏈鎖碳纖維機(jī)織物在不同高應(yīng)變率下拉伸具有不同的彈性模量、失效強(qiáng)度和斷裂應(yīng)變.三維角鏈鎖碳纖維機(jī)織物在不同高應(yīng)變率下拉伸吸收能量-位移曲線如圖10所示.由圖10可以看出,當(dāng)織物拉伸達(dá)到相同位移時(shí),其所吸收的能量隨應(yīng)變率增加而減小,且當(dāng)織物拉伸斷裂時(shí),拉伸斷裂過程中織物所吸收的總能量也隨應(yīng)變率增加而減小.產(chǎn)生該現(xiàn)象的原因是三維角鏈鎖機(jī)織物由5層伸直緯紗和4層屈曲經(jīng)紗組成,在沖擊拉伸過程中,由于每層緯紗與經(jīng)紗間相互接觸及交織狀況都不相同,因而不同層緯紗不會(huì)同時(shí)斷裂.應(yīng)力波會(huì)首先傳播到緯紗上,接著部分應(yīng)力波會(huì)通過交織點(diǎn)傳遞到經(jīng)紗上,使經(jīng)紗產(chǎn)生宏觀運(yùn)動(dòng),如圖11所示.隨著應(yīng)變率的增大,經(jīng)緯紗之間的相互作用加劇,不同緯紗斷裂不同時(shí)性也增大,從而使織物拉伸失效強(qiáng)度減小.根據(jù)織物結(jié)構(gòu)在厚度方向的對(duì)稱性可知,織物表面兩層緯紗會(huì)首先斷裂,其次中間3層緯紗開始斷裂,但要詳細(xì)揭示瞬時(shí)沖擊拉伸斷裂過程需高速攝影儀輔助.
圖9 不同高應(yīng)變率下三維角鏈鎖碳纖維機(jī)織物拉伸載荷-位移曲線Fig.9 Load-displacement curves of 3-D angle-interlock woven carbon fabric under different high strain rates
圖10 不同高應(yīng)變率下三維角鏈鎖碳纖維機(jī)織物拉伸吸收能量-位移曲線Fig.10 Energy absorption-displacement curves of 3-D angle-interlock woven carbon fabric under different high strain rates
與準(zhǔn)靜態(tài)相比,三維角鏈鎖碳纖維機(jī)織物在高應(yīng)變率加載下的拉伸彈性模量、失效應(yīng)力和斷裂應(yīng)變都要大很多.通過比較準(zhǔn)靜態(tài)和高應(yīng)變率下拉伸載荷-位移曲線及斷裂形態(tài)可知,織物在準(zhǔn)靜態(tài)加載和動(dòng)態(tài)加載下拉伸斷裂機(jī)理不同.當(dāng)織物在準(zhǔn)靜態(tài)下被拉伸時(shí),產(chǎn)生的應(yīng)力波較小,整個(gè)拉伸過程中只有微弱的應(yīng)力波傳遞到經(jīng)紗上,經(jīng)緯紗之間相互作用較小,因此經(jīng)紗的位移很小,如圖8所示.而在高應(yīng)變率加載下,織物拉伸產(chǎn)生的應(yīng)力波較強(qiáng),傳播速度較快,經(jīng)緯紗之間相互作用較強(qiáng),織物在厚度方向上通過經(jīng)紗連接,使緯紗之間產(chǎn)生相互聯(lián)系,從而使織物能承受更大的載荷.整個(gè)織物中不同紗線或相同紗線的不同位置處于不同應(yīng)力狀態(tài),導(dǎo)致在部分紗線開始斷裂時(shí),應(yīng)力波還會(huì)繼續(xù)在織物上傳遞.且經(jīng)緯紗交織點(diǎn)和接觸區(qū)域有很強(qiáng)應(yīng)力波的透射和反射,因此,經(jīng)紗將產(chǎn)生較大位移,整個(gè)織物結(jié)構(gòu)完全發(fā)生破壞,如圖11所示.
圖12為三維角鏈鎖碳纖維機(jī)織物在高應(yīng)變率(1 100~2 150s-1)下拉伸力學(xué)性能(彈性模量、失效應(yīng)力和斷裂應(yīng)變)與應(yīng)變率關(guān)系圖.由圖12可知,織物拉伸斷裂應(yīng)變隨應(yīng)變率的增加而增加,而拉伸彈性模量和失效應(yīng)力隨應(yīng)變率的增加而減小.因此,三維角鏈鎖碳纖維機(jī)織物動(dòng)態(tài)拉伸力學(xué)性能對(duì)應(yīng)變率敏感,但已有研究表明碳纖維束為應(yīng)變率不敏感材料[16-17],其原因可以歸咎于織物具有特殊三維結(jié)構(gòu).在厚度方向上,織物的每一層都有經(jīng)緯紗之間的相互作用,所以在高速拉伸過程中,應(yīng)變波可以通過經(jīng)緯紗接觸點(diǎn)在厚度方向上傳遞.通過分析試驗(yàn)數(shù)據(jù)可知,彈性模量、失效應(yīng)力和斷裂應(yīng)變與應(yīng)變率有顯著的關(guān)系,因此,通過線性擬合可以得到織物拉伸力學(xué)參數(shù)與應(yīng)變率之間的回歸方程,回歸方程如下:
式中:εmax為斷裂應(yīng)變;σmax為失效應(yīng)力;E為彈性模量;為應(yīng)變率.
由圖12可以看出,回歸方程與試驗(yàn)結(jié)果有很好的一致性.
圖12 不同高應(yīng)變率下三維角鏈鎖碳纖維機(jī)織物力學(xué)性能-應(yīng)變率關(guān)系曲線Fig.12 Mechanical properties-strain rate curves of 3-D angleinterlock woven carbon fabric under different high strain rates
(1)三維角鏈鎖碳纖維機(jī)織物在高應(yīng)變率下對(duì)應(yīng)變率敏感,其拉伸彈性模量和失效應(yīng)力隨應(yīng)變率增加而減小,而斷裂應(yīng)變隨應(yīng)變率的增加而增大.當(dāng)織物在高應(yīng)變率加載拉伸達(dá)到相同位移時(shí),織物所吸收能量隨著應(yīng)變率的增加而減小,且當(dāng)織物拉伸斷裂時(shí),拉伸斷裂過程中所吸收的總能量也隨應(yīng)變率的增加而減小.
(2)準(zhǔn)靜態(tài)下三維角鏈鎖碳纖維機(jī)織物拉伸彈性模量、失效應(yīng)力、斷裂應(yīng)變和拉伸斷裂時(shí)所吸收的總能量均比在高應(yīng)變率加載下要小,說明織物在準(zhǔn)靜態(tài)下和高應(yīng)變率下具有不同的拉伸失效機(jī)理,這可以通過三維角鏈鎖機(jī)織物特殊結(jié)構(gòu)以及應(yīng)力波在經(jīng)緯紗接觸區(qū)域和交織點(diǎn)處反射和透射來解釋.
(3)通過分析試驗(yàn)數(shù)據(jù)建立了拉伸力學(xué)參數(shù)與應(yīng)變率間的回歸方程,且回歸曲線與試驗(yàn)結(jié)果有很好的一致性.該研究工作可以擴(kuò)展至三維織物復(fù)合材料高應(yīng)變率加載條件下的動(dòng)態(tài)響應(yīng)設(shè)計(jì).
參 考 文 獻(xiàn)
[1]CANSFIELD D L M,WARD I M,WOODS D W,et al.Tensile strength of ultra high modulus linear polyethylene filaments[J].Polymer Communications,1983,24(5):130-131.
[2]SCHWARZ P,NETRAVALI A,SEMBACH S.Effects of strain rate and gauge length on the failure of ultra-h(huán)igh strength polyethylene fibers [J].Textile Research Journal,1986,56(8):502-508.
[3]WAGNER H D,ARONHIME J,MAROM G.Dependence of the tensile strength of pitch-based carbon and para-aramid fibers on the rate of strain [C]//Proceeding of the Royal Society Series A,Mathematical and Physical Sciences.London,1990,428(1875):493-510.
[4]AMANIAMPONG G,BURGOYNE C J.Statistical variability in the strength and failure strain of aramid and polyester yarns[J].Journal of Material Science and Technology,1994,29(9):5141-5152.
[5]FARSI D B,NEMES J A,BOLDUC M.Study of parameters affecting the strength of yarns [J].Journal of Physics IV France,2006,134:1183-1188.
[6]TAN V B C,ZENG X S,SHIM V P W.Characterization and constitutive modeling of aramid fibers at high strain rates[J].International Journal of Impact Engineering,2008,35(11):1303-1313.
[7]WANG Y,XIA Y M.The effects of strain rate on the mechanical behavior of Kevlar fiber bundles:An experimental and theoretical study[J].Composites:Part A,1998,11(29):1411-1415.
[8]WANG Y,XIA Y M.Dynamic tensile properties of E-glass,Kevlar 49and polyvinyl alcohol fiber bundles[J].Journal of Materials Science Letters,2000,19(7):583-586.
[9]ZHOU Y X,WANG Y,XIA Y M,et al.Tensile behavior of carbon fiber bundles at different strain rates [J].Materials Letters,2010,64(3):246-248.
[10]ZHU L T,SUN B Z,GU B H.Constitutive equations of basalt filament tows under quasi-static and high strain rate tension[J].Materials Science and Engineering:A,2010,527(13/14):3245-3252.
[11]SHIM V P W,LIM C T,F(xiàn)OO K J.Dynamic mechanics properties of fabric armor[J].International Journal of Impact Engineering,2001,25(1):1-15.
[12]NAIK D, SANKARAN S, MOBASHER B, et al.Development of reliable modeling methodologies for fan blade out containment analysis part I:Experimental studies [J].International Journal of Impact Engineering,2009,36(1):1-11.
[13]ZHU D,MOBASHER B,RAJAN S D.Dynamic tensile testing of Kevlar 49fabrics[J].ASCE Journal of Materials in Civil Engineering,2011,23(3):230-239.
[14]SEIDT J D,MATRKA T A,GILAT A,et al.Tensile behavior of Kevlar 49woven fabrics over a wide range of strain rates[J].Dynamic Behavior of Materials,2011,99(1):187-193.
[15]汪洋,夏源明.桿-桿型沖擊拉伸試驗(yàn)裝置一維試驗(yàn)原理有效性的論證[J].實(shí)驗(yàn)力學(xué),1997,12(1):126-134.
[16]ZHOU Y X,DAI Z Q,XIA Y M.Tensile mechanical behavior of T300and M40Jfiber bundles at different strain rate [J].Journal of Materials Science,2001,36(4):919-922.
[17]ZHOU Y X,WANG Y,XIA Y M.Experimental study on tensile behavior of carbon fiber and carbon fiber reinforced aluminum at different strain rate [J].Applied Composite Materials,2007,14(1):17-31.
Strain Rate Effect and Failure Mechanism of 3-D Angle-Interlock Woven Carbon Fabric
HUHang-jun,HOUYang-qing,SUNBao-zhong
(College of Textiles,Donghua University,Shanghai 201620,China)
The tensile tests of 3-D angle-interlock woven carbon fabric (3DAWF)were explored under quasi-static(0.001 s-1)loading using a MTS810 material test system,while high speed(up to 2 150 s-1)tests of 3DAWF were conducted using a self-designed split Hopkinson tension bar(SHTB)apparatus.The stress-strain response at various strain rates were obtained,which manifested that 3DAWF was significantly strain rate sensitive.Specifically,the elastic modulus and the maximum stress both decreased with increasing of the strain rate,while the maximum strain increased as the strain rate increased.The strain rate effect of 3DAWF could be reasonably explained by the propagation of the stress wave in this particular fabric architecture.Moreover,a regression formula was established between the mechanical parameters and the strain rate which showed a good agreement with the experimental data.
3-D angle-interlock woven carbon fabric;strain rate effect;dynamic tensile property;stress wave;regression formula
V 258+.3
A
1671-0444(2013)06-0720-06
2012-07-23
胡杭君(1988—),男,浙江金華人,碩士研究生,研究方向?yàn)槿S紡織結(jié)構(gòu)復(fù)合材料的力學(xué)性能.E-mail:2100142@m(xù)ail.dhu.edu.cn
孫寶忠(聯(lián)系人),男,副教授,E-mail:sunbz@dhu.edu.cn