潘成強(qiáng),馬躍輝,李英芝,張清華
(東華大學(xué)a.纖維材料改性國(guó)家重點(diǎn)實(shí)驗(yàn)室;b.材料科學(xué)與工程學(xué)院,上海 201620)
文獻(xiàn)[1]發(fā)現(xiàn)碳納米管具有奇異的物理化學(xué)特性,如獨(dú)特的金屬或半導(dǎo)體導(dǎo)電性、極高的力學(xué)強(qiáng)度、儲(chǔ)氫能力、吸附能力等,隨后,一維納米材料引起人們的極大興趣.隨著研究的日益深入,TiO2,SiO2,Al2O3,V2O5,SnO2,ZnO,In2O3,CdO等氧化物的一維納米材料逐漸被合成出來[2-11],并且表現(xiàn)出特殊的光學(xué)、電學(xué)和化學(xué)性質(zhì),在催化劑、太陽(yáng)能電池、鋰電池、燃料電池、超級(jí)電容器、氣體傳感器等領(lǐng)域[12-20]具有廣闊的應(yīng)用前景.
銻摻雜氧化錫(ATO)是一種新型的淺色導(dǎo)電材料,既保持了傳統(tǒng)的低廉價(jià)格、良好的導(dǎo)電性能、光學(xué)性能、耐候性、化學(xué)穩(wěn)定性、抗輻射性能以及催化性能等優(yōu)點(diǎn),又具有大比表面積、高吸附能力等優(yōu)點(diǎn),越來越引起人們的廣泛關(guān)注.因材料的形貌結(jié)構(gòu)強(qiáng)烈地影響著其性質(zhì)[21-22],研究人員圍繞 ATO納米棒的控制合成開展了大量的研究工作,但主要借助于硬模板[23-27],去除模板的過程容易破壞產(chǎn)物的結(jié)構(gòu),該方法不適合大規(guī)模生產(chǎn).文獻(xiàn)[28-30]報(bào)道利用化學(xué)共沉淀法制備出直徑為10~40nm、長(zhǎng)度為60~500nm的ATO納米棒,納米棒分散均勻、可重復(fù)性好,但NaCl和SiO2的引入不僅為洗滌除雜帶來困難,而且影響了ATO的電導(dǎo)率.
本文利用水熱法,在軟模板的作用下成功地制備出分散均勻、低電阻率的ATO納米棒,對(duì)于理解一維半導(dǎo)體材料的合成機(jī)理、電學(xué)性質(zhì)等具有一定的理論價(jià)值,并具有廣闊的應(yīng)用前景.
SnCl4·5H2O (AR),SbCl3(AR),NaOH(AR)和十六烷基溴化銨(CTAB,AR)均購(gòu)自國(guó)藥集團(tuán)化學(xué)試劑有限公司;無水乙醇,上海政創(chuàng)實(shí)業(yè)有限公司.
ATO納米棒的合成是以CTAB為軟模板,通過水熱法制備而成.取3.0mmol的SnCl4·5H2O和0.15mmol的SbCl3溶解在體積比為1∶1的乙醇水溶液中,電磁攪拌至溶液變澄清.向上述溶液中加入1g NaOH,繼續(xù)攪拌30min,澄清溶液變得半透明.接著加入0.72g CTAB,攪拌至完全溶解.將混合溶液倒入含有四氟乙烯襯里的50mL不銹鋼高壓反應(yīng)釜中,置于烘箱中加熱數(shù)小時(shí),冷卻取出高壓反應(yīng)釜,過濾,用去離子水和無水乙醇洗滌數(shù)次,120℃干燥2h,得到ATO納米棒.
采用日本理學(xué)電機(jī)株式會(huì)社的Rigaku DMAX-2000型高功率多晶X射線衍射儀來對(duì)ATO納米棒進(jìn)行X光衍射.掃描范圍為20°~80°,電壓為40 kV,電流為300mA,光源為 CuKα射線,波長(zhǎng)為0.154 056nm.
采用日本Hitachi公司生產(chǎn)的S-4800型場(chǎng)發(fā)射掃描電子顯微鏡,觀察ATO納米棒的表面形貌.
ATO納米棒通過自制模具壓制成片材,采用美國(guó)Keithley公司的6517A測(cè)試電阻,根據(jù)式(1)計(jì)算得到電阻率ρ(Ω·cm).
其中:R為樣品電阻(Ω);w,t,l分別為樣品的寬度、厚度和長(zhǎng)度.
在SnCl4的濃度為0.02mol/L、反應(yīng)時(shí)間為10h條件下制備的ATO納米棒的XRD譜圖如圖1所示.由圖1可知,在2θ= 26.7°,34.0°,51.9°,38.0°,66.0°,71.4°和78.8°處分別出現(xiàn)了SnO2的(110),(101),(211),(200),(301),(202)和(321)晶面衍射峰,與金紅石型 SnO2(JCPDS 88-2348)晶面衍射峰一致,表明合成的ATO納米棒屬于金紅石型結(jié)構(gòu).衍射峰峰形尖銳、清晰可見,表明水熱法合成的ATO納米棒結(jié)晶度較高、晶形完整.摻雜Sb元素后,XRD衍射峰位置沒有發(fā)生改變,也沒有發(fā)現(xiàn)Sb2O3或者Sb2O5的特征衍射峰,表明Sb已經(jīng)完全摻雜在SnO2晶格中,沒有形成獨(dú)立的晶相或出現(xiàn)新的物相.
圖1 水熱法合成ATO納米棒的XRD譜圖Fig.1 XRD pattern of ATO nanorods prepared via hydrothermal method
當(dāng)SnCl4的濃度為0.015mol/L時(shí),在不同反應(yīng)時(shí)間下合成的ATO納米棒的SEM形貌如圖2所示.由圖2可以看出,ATO納米棒的形貌受反應(yīng)時(shí)間的影響十分明顯.在反應(yīng)物SnCl4的濃度不變的情況下,隨著反應(yīng)時(shí)間的延長(zhǎng),ATO納米棒的直徑逐漸增大.當(dāng)反應(yīng)時(shí)間為2h,產(chǎn)物顆粒幾乎全是松軟的橢圓形球體,很少有納米棒生成,如圖2(a)所示.當(dāng)反應(yīng)時(shí)間延長(zhǎng)到5h時(shí),部分橢圓形球體沿著長(zhǎng)軸和短軸方向同時(shí)生長(zhǎng),只是長(zhǎng)軸方向生長(zhǎng)的速度更大,并出現(xiàn)了大量的棒狀,平均直徑大約為80 nm,平均長(zhǎng)度為300nm左右,長(zhǎng)徑比約為3.75∶1,如圖2(b)所示.當(dāng)反應(yīng)時(shí)間達(dá)到10h時(shí),ATO納米棒已經(jīng)完全成形,外貌十分清晰,納米棒的平均直徑為80nm,平均長(zhǎng)度為800nm,長(zhǎng)徑比為10∶1,ATO呈納米棒簇,如圖2(c)所示.當(dāng)反應(yīng)時(shí)間延長(zhǎng)到20h時(shí),ATO納米棒的平均直徑仍為80nm左右,長(zhǎng)度也沒有增加,仍為800nm左右,ATO納米棒呈現(xiàn)很好的分散狀態(tài),如圖2(d)所示.由此可見,隨著反應(yīng)時(shí)間的延長(zhǎng),ATO納米棒的直徑幾乎不變,維持在80nm左右,長(zhǎng)度逐漸增大,說明反應(yīng)時(shí)間對(duì)ATO納米棒的直徑?jīng)]有明顯影響,但對(duì)長(zhǎng)度影響顯著;另外,隨著反應(yīng)時(shí)間的增長(zhǎng),ATO納米棒逐漸呈分散狀態(tài).
圖2 不同反應(yīng)時(shí)間下生成的ATO納米棒的SEM圖Fig.2 SEM images of ATO nanorods at various reaction time
在SnCl4的濃度為0.015mol/L、反應(yīng)時(shí)間為20 h時(shí)ATO納米棒直徑和長(zhǎng)度的正態(tài)分布如圖3所示.由圖3可知,ATO納米棒直徑多集中在80nm
左右,直徑在70nm以下和100nm以上的概率很??;納米棒的長(zhǎng)度多集中在800nm左右.
圖3 ATO納米棒直徑和長(zhǎng)度正態(tài)分布圖(cSnCl4=0.015mol/L,反應(yīng)時(shí)間為20h)Fig.3 Normal Distribution for diameter and length of ATO nanorods(cSnCl4=0.015mol/L,t=20h)
在反應(yīng)時(shí)間為10h不變的情況下,改變反應(yīng)物SnCl4濃度得到的ATO納米棒的掃描電鏡照片如圖4所示.由圖4可以看出,隨著SnCl4濃度增加,ATO納米棒尺寸逐漸增大.當(dāng)cSnCl4=0.015mol/L時(shí),ATO納米棒的平均直徑大約為80nm,長(zhǎng)度為800nm左右,長(zhǎng)徑比約為10∶1,ATO呈納米棒簇;當(dāng)cSnCl4=0.020mol/L時(shí),ATO納米棒的平均直徑增大為110 nm,長(zhǎng)度為1.1μm左右,長(zhǎng)徑比約為10∶1;當(dāng)cSnCl4=0.030mol/L時(shí),ATO 納米棒直徑增大為120 nm,長(zhǎng)度為1.2μm左右,長(zhǎng)徑比約為10∶1;當(dāng)cSnCl4=0.060mol/L時(shí),ATO 納米棒的平均直徑增大為900 nm,長(zhǎng)度增加到9μm左右,長(zhǎng)徑比約為10∶1.可見,隨著SnCl4濃度的升高,ATO納米棒的直徑和長(zhǎng)度都逐漸增大,但是長(zhǎng)徑比幾乎不變.SnCl4濃度對(duì)ATO納米棒的堆積形態(tài)沒有明顯影響,呈納米棒簇狀態(tài).
圖4 不同SnCl4濃度下生成的ATO納米棒的SEM圖Fig.4 SEM images of ATO nanorods at various concentrations of SnCl4
本文所合成的ATO納米棒的能譜(EDS)譜圖如圖5所示.由圖5可以看出,反應(yīng)產(chǎn)物中只有O,Sn,Sb 3種元素,沒有發(fā)現(xiàn)其他元素,說明Sb已經(jīng)完全摻雜在SnO2晶格中,這與XRD測(cè)試結(jié)果一致.同時(shí)也說明,水熱法可以制備出摻雜完好的ATO納米棒.
圖5 ATO納米棒的EDS譜圖Fig.5 EDS spectrum of ATO nanorods
ATO納米棒的電阻率隨反應(yīng)時(shí)間的變化如圖6所示.由圖6可知,ATO納米棒的電阻率受反應(yīng)時(shí)間影響不大,約為100Ω·cm.與共沉淀法比較,水熱法制備的ATO納米棒的電阻率稍高[31].因?yàn)樗疅岱ㄊ窃诘蜏叵路磻?yīng),生成的ATO納米棒沒有經(jīng)過高溫煅燒環(huán)節(jié),Sb在ATO中主要是以Sb3+離子形式存在,載流子較少,電導(dǎo)率偏低.
圖6 反應(yīng)時(shí)間對(duì)ATO納米棒電阻率的影響Fig.6 Dependence of resistivity of ATO nanorods on reaction time
ATO納米棒的電阻率隨SnCl4濃度的變化如圖7所示.由圖7可知,隨著SnCl4濃度的增大,ATO納米棒的電阻率變化不明顯,約在100~110Ω·cm之間,說明SnCl4濃度對(duì)ATO納米棒的電阻率幾乎沒有影響.
圖7 SnCl4濃度對(duì)ATO納米棒電阻率的影響Fig.7 Dependence of resistivity of ATO nanorods on SnCl4concentration
由水熱法合成一維金屬氧化物的報(bào)道顯示,表面活性劑CTAB在ATO納米棒形貌的形成過程中起重要的作用,只有在CTAB存在情況下才能生成納米棒,如Pb3O4納米棒[32]、SnO2納米棒[33]和 W 納米線[34]等.筆者認(rèn)為,水熱法合成ATO納米棒也有相似的機(jī)理.由于Sn(OH)4和Sb(OH)3均為兩性氫氧化物,當(dāng)SnCl4·5H2O和SbCl3溶解在過量的NaOH溶液中時(shí),生成了大量的陰離子Sn(OH和Sb(OH)4-,這兩種陰離子與表面活性劑陽(yáng)離子CTA+有很強(qiáng)的吸引作用.由于反應(yīng)介質(zhì)為乙醇和水的混合溶液,CTA+較均勻地分散在反應(yīng)介質(zhì)中,并且Sn(OH)26-和Sb(OH)4-層和CTA+層形成了彩虹結(jié)構(gòu),層與層之間相當(dāng)于微反應(yīng)器[32].隨著反應(yīng)溫度的升高和壓力的增大,Sn(OH)4和Sb(OH)3晶核生成并且逐漸長(zhǎng)大,由于兩側(cè)的硬度有差異,CTA+層會(huì)發(fā)生翹曲,并且向Sn(OH和Sb(OH層彎曲和纏繞,CTA+層進(jìn)而形成一微型“圓桶”,將Sn(OH和Sb(OH)4-包裹起來,并在圓桶里面繼續(xù)反應(yīng),生成了ATO納米棒.一旦微型圓桶形成后,其直徑很難再被改變,所以隨著反應(yīng)時(shí)間的繼續(xù)延長(zhǎng),ATO納米棒的直徑幾乎沒有變化.隨著反應(yīng)時(shí)間的延長(zhǎng),微型圓桶可以繼續(xù)延長(zhǎng),ATO納米棒的長(zhǎng)度自然增大.另一方面,當(dāng)SnCl4濃度逐漸增大時(shí),層與層之間包裹的內(nèi)容增多,微型圓桶的直徑逐漸增大,產(chǎn)物ATO納米棒的直徑也逐漸變大.
(1)以SnCl4·5H2O和SbCl3為原料、NaOH為沉淀劑,采用水熱法制備了ATO納米棒.隨著反應(yīng)時(shí)間的延長(zhǎng),ATO納米棒直徑不變,長(zhǎng)度逐漸增大,長(zhǎng)徑比逐漸增大;隨著SnCl4濃度的升高,ATO納米棒直徑和長(zhǎng)度均增大,長(zhǎng)徑比不變.
(2)水熱法得到的ATO納米棒電阻率較高,為100Ω·cm左右,且不隨反應(yīng)時(shí)間和SnCl4濃度變化而發(fā)生明顯的變化.
參 考 文 獻(xiàn)
[1]IIJIMA S.Helical microtubules of graphitic carbon [J].Nature,1991,354:56-58.
[2]HOYER P.Formation of a titanium dioxide nanotube array[J].Langmuir,1996,12(6):1411-1413.
[3]LIU Y T,LIU R H,LIU C B,et al.Enhanced photocatalysis on TiO2nanotube arrays modified with molecularly imprinted TiO2thin film [J].Journal of Hazardous Materials,2010,182(1/2/3):912-918.
[4]LAKSHMI B B,PATRISSI C J,MARTIN C R.Sol-gel template synthesis of semiconductor oxide micro-and nanostructures [J].Chemistry of Materials,1997,9(11):2544-2550.
[5]AN X H,MENG G W,WEI Q.SiO2nano-wires growing on hexagonally arranged circular patterns surrounded by TiO2films[J].Journal of Physical Chemistry B,2006,110 (1):222-226.
[6]ZHU W,WANG W Z,XU H L.Fabrication of ordered SnO2nanotube arrays via a template route[J].Materials Chemistry and Physics,2006,99(1):127-130.
[7]KIM H W,SHIM S H, LEE J W,et al. Bi2SnO7nanoparticles attached to SnO2nanowires and used as catalysts[J].Chemical Physics Letters,2008,456(4/5/6):193-197.
[8]TANG Y W,HU X Y,CHEN M J,et al.CdSe nanocrystal sensitized ZnO core-shell nanorod array films:Preparation and photovoltaic properties [J].Electrochimica Acta,2009,54(10):2742-2747.
[9]REN S,BAI Y F,CHEN J,et al.Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation[J].Materials Letters,2007,61(3):666-670.
[10]SHEN X P,LIU H J,F(xiàn)AN X, et al. Construction and photoluminescence of In2O3nanotube array by CVD-template method[J].Journal of Crystal Growth,2005,276 (3/4):471-477.
[11]CHANG Q,CHANG C,ZHANG X R,et al.Enhanced optical limiting properties in suspensions of CdO nanowires[J].Optics Communications,2007,274(1):201-205.
[12]AN H Q,ZHU B L,LI J X.Synthesis and characterization of thermally stable nanotubular TiO2and its photocatalytic activity[J].Journal of Physical Chemistry B,2008,112(48):18772-18775.
[13]LI Q Y,LU G X.Controlled synthesis and photocatalytic investigation of different-shaped one-dimensional titanic acid nanomaterials[J].Journal of Power Sources,2008,185(1):577-583.
[14]HE Z Y,LI Y G, ZHANG Q H, et al. Capillary microchannel-based microreactors with highly durable ZnO/TiO2nanorod arrays for rapid,high efficiency and continuousflow photocatalysis[J].Applied Catalysis B:Environmental,2010,93(3/4):376-382.
[15]KIM D, GHICOV A, ALBU S P. Bamboo-type TiO2nanotubes:Improved conversion efficiency in dye-sensitized solar cells [J].Journal of the American Chemical Society,2008,130(49):16454-16455.
[16]PARK H,YANG D J,KIM H G.Fabrication of MgO-coated TiO2nanotubes and application to dye-sensitized solar cells[J].Journal of Electroceramics,2009,23(2/3/4):146-149.
[17]WANG J,LIN Z Q.Dye-sensitized TiO2nanotube solar cells with markedly enhanced performance via rational surface engineering[J].Chemistry of Materials,2010,22(2):579-584.
[18]JOO J Y,LEE D Y,YOO M S,et al.ZnO nanorod-coated quartz crystals as self-cleaning thiol sensors for natural gas fuel cells[J].Sensors and Actuators B:Chemical,2009,138(2):485-490.
[19]LU W,QU L T,HENRY K,et al.High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes [J].Journal of Power Sources,2009,189(2):1270-1277.
[20]XU J Q,WANG D,QIN L P,et al.SnO2nanorods and hollow spheres:Controlled synthesis and gas sensing properties[J].Sensors and Actuators B:Chemical,2009,137(2):490-495.
[21]LI X G,LI A,HUANG M R.Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity [J].Chemistry A European Journal,2008,14(33):10309-10317.
[22]LIAO Y Z,ZHANG C,ZHANG Y,et al.Carbon nanotube/polyaniline composite nanofibers: Facile synthesis and chemosensors[J].Nano Letters,2011,11(3):954-959.
[23]WU F D,WU M H,WANG Y.Antimony-doped tin oxide nanotubes for high capacity lithium storage [J].Electrochemistry Communications,2011,13(5):433-436.
[24]WU J M.Characterizing and comparing the cathodoluminesence and field emission properties of Sb doped SnO2and SnO2nanowires[J].Thin Solid Films,2008,517(3):1289-1293.
[25]LEE P S,LIN Y H,CHANG Y S,et al.Growth and characterization of thermally evaporated ATO nanowires [J].Thin Solid Films,2010,519(5):1749-1754.
[26]ZHUKOVA A A,ABAKUMOV A M,ARBIOL J.Influence of antimony doping on structure and conductivity of tin oxide whiskers[J].Thin Solid Films,2009,518(4):1359-1362.
[27]WAN Q,DATTOII E N,LU W.Transparent metallic Sbdoped SnO2nanowires[J].Applied Physics Letters A,2007,90(22):2107-2111.
[28]胡勇,陳國(guó)建,陳雪梅,等.熱處理對(duì)摻銻二氧化錫納米棒結(jié)構(gòu)和導(dǎo)電性能的影響[J].硅酸鹽通報(bào),2004(5):94-98.
[29]胡勇,陳國(guó)建,陳雪梅,等.制備工藝對(duì)ATO納米棒形貌結(jié)構(gòu)的影響[J].化學(xué)世界,2004,45(8):395-399.
[30]胡勇,陳國(guó)建,陳雪梅,等.摻銻二氧化錫納米棒的制備及表征[J].華東理工大學(xué)學(xué)報(bào):自然科學(xué)版,2005,31(1):115-118.
[31]KRISHNAKUMAR T,JAYAPRAKASH R,PINNA N,et al.Structural,optical and electrical characterization of antimonysubstituted tin oxide nanoparticles [J].Journal of Physics and Chemistry of Solids,2009,70(6):993-999.
[32]CAO M H,HU C W,PENG G,et al.Selected-control synthesis of PbO2and Pb3O4single-crystalline nanorods[J].Journal of the American Chemical Society,2003,125(17):4982-4983.
[33]GUO C X,CAO M H, HU C W. A novel and lowtemperature hydrothermal synthesis of SnO2nanorods [J].Inorganic Chemistry Communications,2004,7(7):929-931.
[34]LI Y D,LI X L,DENG Z X,et al.From surfactant inorganic meso-structures to Tungsten nanowires [J].Angewandte Chemie International Edition,2002,41(2):333-335.