亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        含席夫堿配體的四方壓縮高自旋Mnバ配合物的合成、晶體結(jié)構(gòu)及磁性質(zhì)

        2013-09-15 03:03:44崔林芳李興鰲汪聯(lián)輝
        關(guān)鍵詞:席夫堿郵電大學(xué)納米技術(shù)

        王 石 崔林芳 李興鰲 汪聯(lián)輝 黃 維

        (南京郵電大學(xué)信息材料與納米技術(shù)研究院,南京 210046)

        Most of manganeseバcomplexes are known in high-spin (HS)elongated octahedral pattern,presenting interest for building magnets at molecular level[1]or in extended assemblies[2],since in elongated form the Mnバunits show favorable magnetic anisotropy,with D<0 parameter for the Zero-Field-Splitting(ZFS)Hamiltonian.By contrary,the compressed Mnバcomplexeshaving D>0 and anon-magnetic ground state with Sz=0,are apparently not suitable for molecular magnetism applications,but such species present a high interest being rare[3-6].

        Other rare varieties of Mnバion are related with its occurrence in low-spin (LS)and spin-crossover(SCO)systems.The pseudo-octahedral 3dnconfigurations able for SCO manifestation (4≤n≤7)are in their vast majority Fe(Ⅱ) and Feバ coordination compounds[7],to a lesser extent Co(Ⅱ)and only in a few cases of Cr(Ⅱ) or Mnバ[8-9].

        Hexadentate Schiff base ligands with a trans-(N4O2)set of donors usually stabilize manganeseバin its HSstate[10].Challenging thecustomary status Morgan et al.reported the prototypic gradual SCO phenomenon of Mnバhexadentate Schiff base complexes[11-12].Recently,we reported also a Mnバhexadentate Schiff base complex,[Mn(5-Br-sal-N-1,5,8,12)]ClO4(5-Brsal-N(1,5,8,12)is a hexadentate Schiff base ligand obtained from N,N′-bis(3-aminopropyl)ethylenediamine and 5-bromo-2-hydroxy-benzaldehyde), with SCO behavior and a detailed theoretical analysis[13].The ligands of this class are determining,at relatively minor structural changes of their peripheral substituents,a versatile magnetic behavior of the complexes,since the exerted ligand field is at the critical limit in the balance of effects deciding HSor LSforms,or the SCO behavior.

        Continuing our efforts in this line,we considered other manganeseバcomplexes based on a longer and more flexible hexadentate Schiff base ligand.Compared to the ligand 3-MeO-sal-N-1,5,8,12 reported before[11],which determined SCO transition behavior,the ligand 3-MeO-sal-N-1,5,9,13 (Scheme 1)stabilizes the HS form.It has one more CH2group (i.e.a(chǎn) central propylenediamine moiety instead of an ethylenediamine sequence),determining a specific balance of coordination effects and steric demands.Herein,we report the preparation,crystal structure and magnetic properties of complex,[Mn(3-MeO-sal-N-1,5,9,13)]ClO4·H2O(1).

        1 Experimental

        1.1 Materials and physical measurements

        N,N′-bis(3-aminopropyl)-1,3-propanediamine,2-hydroxy-3-methoxy benzaldehyde and manganese perchlorate hexahydrate were purchased from Aldrich.All solvents were of AR grade and used without further purification.Elemental analyses for C,H and N were performed on a Perkin-Elmer 240C analyzer.Variable-temperature magnetic susceptibility data were collected using a Quantum Design MPMS SQUID magnetometer.The experimental susceptibilities were corrected for the diamagnetism of the constituent atoms(Pascal′s constants).

        1.2 Synthesis of[MnⅢ(3-MeO-sal-N(1,5,9,13)]ClO4H 2O(1)

        Complex 1 was synthesized by adding a methanol(6 mL)solution of 2-hydroxy-3-methoxy benzaldehyde(60.8 mg,0.4 mmol)into a methanol(6 mL)solution of N,N′-bis(3-aminopropyl)-1,3-propanediamine(37.7 mg,0.2 mmol),and the mixture was heated to reflux for 30 min.A methanol(6 mL)solution of Mn(ClO4)2·6H2O (72.4 mg,0.2 mmol)was added,and the mixture was stirred at room temperature for 30 min.The resulting solution was allowed to stand in air at room temperature for about several hours to yield wellformed dark-brown crystals.Yield:51%.Anal.Calcd.for C25H36ClMnN4O9(%):C,47.89;H,5.79;N,8.94.Found(%):C,47.65;H,6.01;N,8.70.(Caution!Although no problems have been encountered in the present work,perchlorates are potentially explosive and should be treated in small quantities with care.)

        1.3 Structure determination

        Crystal data was collected by a Bruker SMARTAPEX diffractometer employing graphite-monochromated Mo Kα radiation (λ=0.071 073 nm)at 296 K.The data integration and reduction were undertaken with SAINT[14].The structure was solved by the direct method using SHELXS-97 and all the non-hydrogen atoms were refined anisotropically on F2by the fullmatrix least-squarestechniqueusingthe SHELXL-97[15].All the hydrogen atoms (except for those bound to amine N atoms and water molecule)were placed in calculated positions with fixed isotropic thermal parameters.The hydrogen atoms of water molecule and amine N atoms were located from difference maps and constrained to ride on their parent O and N atoms.A summary of the crystallographic details of the X-ray analyses is given in Table 1 and selected bond lengths and angles are given in Table 2.

        Table 1 Crystal data for complex 1

        Table 2 Selected bond distances(nm)and bond angles(°)for compound 1

        CCDC:926103.

        2 Results and discussion

        2.1 Description of the structure

        At 296 K,complex 1 crystallizesin the monoclinic space group P21/c with discrete mononuclear[MnIII(3-MeO-sal-N(1,5,9,13))]+cation,uncoordinated perchlorate anion and one crystallizing water molecule.Manganeseバ ion is coordinated to 3-MeO-sal-N(1,5,9,13)ligand in a pseudo octahedral environment characterized by a {N4O2}donor set(Fig.1).The two phenolic oxygen atoms are in a trans configuration and four nitrogen atoms placed in an approximate equatorial plane.

        The two coordinating ONN ligand halves are facial.A pseudo-two-fold rotation axis through the Mn center bisects the C-C-C angle of the propanediamine moiety at the middle of the ligand.This generates pairs of cis amine(N2 and N3),cis imine(N1 and N4)and trans phenolate(O2 and O4)donors.The Mn-N and Mn-O distances(Mn1-O2:0.188 0(2),Mn1-O4:0.187 0(2);Mn1-N2:0.223 4(3),Mn1-N3:0.226 4(3);Mn1-N1:0.212 4(3),Mn1-N4:0.214 5(3)nm)are in good agreement with those observed in other HSmanganeseバ (S=2)hexadentate Schiff base complexes[10-13].In complex 1,hydrogen bonds link the adjacent cation,anion,crystallzing water molecule forming a onedimensional(1D)zigzag chain along the a axis(Table 3 and Fig.2).

        Table 3 Hydrogen bond lengths and bond angles

        Importantly,the presence of two short Mn-O and long Mn-N bonds are consistent with Jahn-Teller effects.Since in the chemistry of manganeseバ the common perspective is that the occurrence of the Jahn-Teller effect leads to axial elongation[16],the tetragonally compresed cases are regarded as intriguing and rare[17].In compound 1 the compression occurs along the O-Mn-O axis.The primary reason is the relative strength of the coordinating donors,the phenoxo groups benefiting from the supplement of favorable electrostatic factors.At the same time,a role in the compressed pattern seems determined by steric demands of the ligands with this topology[13].

        2.2 Magnetic properties

        The magnetic properties of compound 1 were investigated over a temperature range from 1.8 to 300 K with a SQUID magnetometer in an applied magnetic field of 2 000 Oe.The dependence of χmT vs T is depicted in Fig.3.The χmT value of 2.95 cm3·mol-1·K at room temperature is consistent with the spin-only value for HSMnバ,approximately(3.00 cm3·mol-1·K for g=2 and S=2).As temperature was decreased,the χmT value remain almost constant between 300~50 K.The deep decrease ofχmT values below 25 K was observed and the χmT curve falls to a value of 1.08 cm3·mol-1·K.Despite cation-anion-crystallzing water hydrogen bonds being present,in the crystal packing the Mnバcations are well separated from each other and no effective intermolecular antiferromagetic interactions exist.Therefore,this behavior can be mainly attributed to manganeseバZFSwith positive D parameter.

        To assess the ZFS,magnetization data were collected on compound 1 at a variety of fields in the temperature range 1.8~10 K (see Fig.4).The seven isofield data sets were fitted using ANISOFIT[18]to give the following set of parameters:D=5.16 cm-1,E=0.12 cm-1and g=2.002.We note the positive value of the D parameter,associated with the compressed octahedral pattern and the quasi-tetragonal nature,with relatively small E parameter.

        [1]Sessoli R,Tsai H L,Schake A R,et al.J.Am.Chem.Soc.,1993,115:1804-1816

        [2]Miyasaka H,Saitoh A,Abe S.Coord.Chem.Rev.,2007,251:2622-2664

        [3]Mantel C,Hassan A K,Pecaut J,et al.J.Am.Chem.Soc.,2003,125:12337-12344

        [4]Goldsmith C R,Cole A P,Stack T D P.J.Am.Chem.Soc.,2005,127:9904-9912

        [5]Triller M U,Pursche D,Hsieh W Y,et al.Inorg.Chem.,2003,42:6274-6283

        [6]Romain S,Duboc C,Neese F,et al.Chemistry,2009,15:980-988

        [7]Murray K S.Eur.J.Inorg.Chem.,2008:3101-3121

        [8]Garcia Y,Gütlich P.Topics in Current Chemistry:Vol.234.Gülich P,Goodwin H A Ed.,Berlin:Springer-Verlag,2004:49-62

        [9]Liu Z,Liang S,Di X,et al.Inorg.Chem.Commun.,2008,11:783-786

        [10]Bera M,Biradha K,Ray D.Inorg.Chim.Acta,2004,357:3556-3562

        [11]Morgan G G,Murnaghan K D,MullerBunz H,et al.Angew.Chem.Int.Ed.,2006,45:7192-7195

        [12]Pandurangan K,Gildea B,Murray C,et al.Chem.Eur.J.,2012,18:2021-2029

        [13]Wang S,Ferbinteanu M,Marinescu C,et al.Inorg.Chem.,2010,49:9839-9851

        [14]SMART,SAINT,and XPREP,Area Detector Control and Data Integration and Reduction Software;Bruker Analytical X-ray Instruments Inc.:Madison,WI,1995.

        [15]Sheldrick G M.SHELX97,Programs for Crystal Structure Analysis,University of G?ttingen,G?ttingen,Germany,1998.

        [16]Tregenna-Piggott PL W.Inorg.Chem.,2008,47:448-453

        [17]Scheifele Q,Piplinger C,Neese F,et al.Inorg.Chem.,2008,47:439-447

        [18]Shores M P,Sokol JJ,Long JR.J.Am.Chem.Soc.,2002,124:2279-2292

        猜你喜歡
        席夫堿郵電大學(xué)納米技術(shù)
        《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
        西安郵電大學(xué)設(shè)計(jì)作品
        包裝工程(2022年10期)2022-05-27 05:17:12
        懂納米技術(shù)的變色龍
        《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
        納米技術(shù)在食品科學(xué)工程中的體系構(gòu)建
        納米技術(shù)浮選技術(shù)研究進(jìn)展
        重慶郵電大學(xué)學(xué)報(bào)( 自然科學(xué)版》2016年第28卷第1-6期總第114-125期
        席夫堿基雙子表面活性劑的制備及緩蝕應(yīng)用
        稀土釤鄰香草醛縮甘氨酸席夫堿配合物的合成及表征
        含吡啶的大環(huán)席夫堿錳(Ⅱ)配合物:合成、表征及抗菌性質(zhì)
        国产精品女同二区五区九区| 国产在线精品一区二区不卡| 欧美成人免费观看国产| 国产精品三级av一区二区| 日韩少妇人妻精品中文字幕| 欧洲多毛裸体xxxxx| 亚洲日韩精品欧美一区二区一 | 农村欧美丰满熟妇xxxx| 久久综合第一页无码| 中文字幕人妻熟女人妻洋洋| 国产片精品av在线观看夜色| 性色av一区二区三区| 欧美亚洲国产人妖系列视| 亚洲av男人免费久久| 亚洲深深色噜噜狠狠网站| 台湾无码av一区二区三区| a级福利毛片| 日本女优爱爱中文字幕| 亚洲中文字幕日产无码| 国产午夜亚洲精品午夜鲁丝片| 精品在免费线中文字幕久久| 国产一区二区三区小向美奈子| 欧美黑人又粗又大xxxx| 在线播放亚洲第一字幕| 偷拍熟女亚洲另类| 国产精品国产自产拍高清| 亚洲人成77777在线播放网站| 99热精品成人免费观看| 国内精品久久人妻性色av| 插上翅膀插上科学的翅膀飞| 欧美大屁股xxxxhd黑色| 成人在线免费视频亚洲| 色视频不卡一区二区三区| 亚洲日韩欧美一区、二区| 国产尤物AV尤物在线看| 亚洲精品一区二区三区蜜臀| 亚洲成av人片在线观看| 国产精品久久久久久无码| 国产极品视觉盛宴在线观看| 国产91成人精品高潮综合久久| 97精品国产97久久久久久免费|