趙莉蕓,周純武,李靜
2012年北美放射學(xué)年會(RSNA)共收錄乳腺影像學(xué)摘要約339篇,其中大會發(fā)言133篇,科學(xué)展板82篇,教育展覽124篇。從成像技術(shù)方面,涉及MRI的文章約占30%,其次分別為超聲成像、數(shù)字X線攝影(digital mammography,DM)、數(shù)字合成乳腺X線體層成像(digital breast tomosynthesis,DBT)和乳腺分子影像(molecular breast imaging,MBI)。從研究內(nèi)容方面,主要集中在乳腺成像和診斷新技術(shù)的應(yīng)用、乳腺癌篩查、新輔助化療(neoadjuvant chemotherapy,NAC)療效評價和定位活檢等,筆者將從以上四個方面分別進行闡述,以期對今后乳腺影像學(xué)研究提供參考。
以X線攝影和超聲為代表的形態(tài)學(xué)成像是乳腺傳統(tǒng)的檢查方法,磁共振擴散、灌注及波譜等功能成像也正逐漸應(yīng)用于臨床;而MBI可從細胞、分子甚至基因水平反映活體的生理和病理過程,目前已成為乳腺影像學(xué)研究的新熱點。
2002年,Brem等[1]率先將乳腺專用伽馬成像(breast-specific gamma imaging,BSGI)應(yīng)用于臨床并取得成功。BSGI具有無痛、易于被患者接受、檢查時間短、比較經(jīng)濟等特點,因而適合于乳腺篩查。Coffey等[2]對364例X線表現(xiàn)正常的乳腺癌高危人群行BSGI,認為BSGI是常規(guī)乳腺篩查的有益補充,可使檢出率提高2.5%,尤其對于致密型乳腺。Velez等[3]研究顯示將BSGI引入傳統(tǒng)乳腺篩查中,可提高乳腺癌和高危病變檢出的敏感度,但特異度卻無明顯改變。除此之外,Rapelyea等[4]研究顯示,BSGI上表現(xiàn)為彌漫性放射性攝取增高的乳腺浸潤性導(dǎo)管癌,經(jīng)保乳手術(shù)后陽性切緣的發(fā)生率較高,往往需要再次手術(shù),因此術(shù)前BSGI可提示這類患者要擴大手術(shù)切除范圍。PET領(lǐng)域的研究主要集中在乳腺癌治療效果評價和預(yù)后預(yù)測方面。Koo等[5]回顧性分析了548例乳腺癌患者的PET-CT圖像,發(fā)現(xiàn)不同分子亞型的乳腺癌,其18F-FDG攝取也不同,三陰性乳腺癌FDG攝取最高(SUVmax 9.55±5.90),而Luminal A型者最低(SUVmax 4.62±3.42)。說明PET-CT可從分子水平反映疾病的生物學(xué)特性。Kiyoto等[6]分析了87例乳腺癌(90個病灶)患者NAC前后PET-CT上SUVmax,結(jié)果顯示ΔSUVmax>80.8%往往提示為完全病理緩解者(pathological complete response,pCR),且可獲得相對延長的無病生存(disease-free survival,DFS)。Nakajima等[7]對49例經(jīng)過乳腺切除和術(shù)后放療的患者行術(shù)前PET-CT檢查,認為治療前的SUV-max是這類患者預(yù)后的獨立預(yù)測指標(biāo)。
光學(xué)分子成像仍處于發(fā)展的初期,是分子影像領(lǐng)域新的研究方向。Ahn等[8]的研究認為,與單獨超聲檢查相比,擴散光學(xué)成像(optical diffusion imaging)聯(lián)合超聲可明顯提高乳腺病變診斷的準(zhǔn)確度和特異度,減少假陽性的產(chǎn)生。Choi等[9]對240例乳腺癌患者行術(shù)前擴散光學(xué)成像和PET-CT檢查,結(jié)果顯示擴散光學(xué)成像參數(shù)氧飽和度(SO2)與SUVmax存在相關(guān)性,SO2高者,SUVmax也相應(yīng)較高,NAC后pCR率也較高。Sklair-Levy等[10]采用一種新型紅外線 (RUTH) 成像技術(shù)獲得了乳腺超分辨率3D血管圖像,結(jié)果顯示乳腺浸潤性癌的血管密度評分高于正常乳腺,而大多數(shù)患者血管圖像中顯示的異常增多血管是人眼無法識別的;因此,認為這種快速、非侵入性的成像方式有望檢出早期乳腺癌。
擴散加權(quán)成像(diffusion weighted imaging,DWI)在乳腺MRI的應(yīng)用已較為廣泛,DWI與動態(tài)增強MRI聯(lián)合可提高乳腺癌診斷的準(zhǔn)確度、特異度和陽性預(yù)測值[11-13];DWI亦可鑒別乳腺浸潤性癌與導(dǎo)管原位癌[14]。Pediconi等[15]研究顯示DWI聯(lián)合T2 IDEAL序列評價乳腺癌NAC療效的敏感度和特異度等同于MRI動態(tài)對比增強,而前者不需注射對比劑。Schiani等[16]研究認為ADC值與乳腺癌預(yù)后因子(ER、PR、HER2和Ki-67)間存在相關(guān)性,Benveniste等[17]的研究結(jié)果則不然。
擴散張量成像(diffusion tensor imaging,DTI)已廣泛應(yīng)用于中樞神經(jīng)系統(tǒng),而在乳腺的應(yīng)用鮮有報道。由于乳腺導(dǎo)管的平均直徑(約60 μm)要比腦白質(zhì)纖維束(1~2 μm)大得多,因此需延長擴散時間來充分實現(xiàn)各向異性。Cho等[18]行6個方向擴散敏感梯度的乳腺DTI,結(jié)果顯示不同擴散時間獲得的各向異性指數(shù)FA和擴散特征值λ3有顯著性差異,因而證實延長擴散時間可增加乳腺組織對各向異性的敏感度,有望鑒別正常乳腺組織與惡性腫物及獲得乳腺導(dǎo)管結(jié)構(gòu)的擴散張量圖。Penn等[19]對36例患者行DTI檢查,發(fā)現(xiàn)ADC值聯(lián)合DMB(diffusion morphological blooming)有助于鑒別乳腺良惡性腫瘤,ROC曲線下面積達0.90(單獨應(yīng)用ADC值為0.77);而與對比增強MRI相比,DTI不需注射對比劑、費用更低。
SWE定量參數(shù)(如彈性評分、彈性指數(shù)等)的測定具有可重復(fù)性,常規(guī)超聲檢查聯(lián)合SWE可提高乳腺腫瘤診斷的準(zhǔn)確度和特異度,而不降低敏感度[20-24]。Evans等[25]分析了266例乳腺癌患者術(shù)前SWE,有17例表現(xiàn)為良性,其中5例為導(dǎo)管原位癌(5/11),12例為浸潤性癌(12/255),可見導(dǎo)管原位癌在SWE上更容易被誤診為良性病變,而SWE上表現(xiàn)為良性征象的浸潤性癌在組織學(xué)上多為Ⅰ級且易被X線檢出;而這些SWE誤診為良性的病例在常規(guī)超聲檢查中不易被誤診,因此二者聯(lián)合可提高病變診斷的準(zhǔn)確度。Chang等[26]研究了乳腺浸潤性癌SWE上彈性指數(shù)與腫瘤大小、受體狀態(tài)、組織學(xué)類型和分級之間的相關(guān)性,結(jié)果顯示Luminal A型乳腺癌的平均彈性指數(shù)最低,腫瘤體積較大、組織學(xué)分化較差和三陰性乳腺癌的平均彈性指數(shù)則較高。
X線攝影和超聲檢查是最基本的乳腺影像學(xué)篩查手段,MRI在乳腺篩查,特別是乳腺癌高危人群和致密型乳腺者篩查中的價值也逐漸被肯定。2007年美國癌癥協(xié)會的篩查指南建議乳腺癌高危人群需行每年一次MRI檢查作為乳腺X線篩查的補充。No等[27]研究顯示,許多患者和醫(yī)師由此夸大了MRI在乳腺篩查中的作用,從而使這些患者摒棄了每年一次的X線篩查。MRI是乳腺癌高危人群篩查的有益補充,而不可替代常規(guī)X線攝影。Schrading等[28]評估了乳腺MRI在一般人群篩查中的價值,結(jié)果顯示對于X線和超聲無法發(fā)現(xiàn)的乳腺癌,MRI的額外檢出率為5.4‰,因此認為MRI用于一般人群的乳腺篩查亦是非常必要的。另外兩項研究結(jié)果顯示,MRI可作為常規(guī)X線的有益補充而用于乳腺癌病史患者的篩查,其檢出率分別為4.4%[29]和2.1%[30]。Kaiser等[31]研究認為,與單獨行乳腺X線篩查相比,MRI檢查的費用盡管較高,但從長遠考慮,則是一種經(jīng)濟的篩查策略。Johnson等[32]研究認為乳腺癌高危人群MRI篩查的召回率與讀片者的經(jīng)驗關(guān)系不大,而與X線篩查的召回率相關(guān),因此其客觀性相對較強。以往考慮到女性體內(nèi)激素水平隨月經(jīng)周期而出現(xiàn)波動,乳腺背景的強化程度亦隨激素水平的波動而發(fā)生變化,因此推薦MRI篩查應(yīng)安排在月經(jīng)周期的早期(即受檢者體內(nèi)激素水平最低時)進行。Dontchos等[33]回顧性分析了243名未絕經(jīng)婦女的319項MRI檢查,認為MRI的診斷結(jié)果不受月經(jīng)周期影響,因而婦女可選擇月經(jīng)周期的任何時段行乳腺MRI檢查。
數(shù)字合成體層成像技術(shù)用于乳腺X線檢查的時間并不長,DBT可呈現(xiàn)三維空間的影像信息,從而消除常規(guī)DM檢查中組織重疊造成的觀察障礙。Miravete等[34]回顧了5718名乳腺篩查者的普查數(shù)據(jù),結(jié)果顯示與傳統(tǒng)的DM篩查比較,引入DBT后的聯(lián)合篩查的檢出率可由原來的1.50%提高到2.33%,且對于不同密度的乳腺腺體的檢出率無明顯差別。Rose等[35]、Hass等[36]、Destounis等[37]的研究結(jié)果顯示DM聯(lián)合DBT篩查可減少召回率,尤其是對于致密型乳腺和<50歲的患者。盡管DBT是一種很有前景的篩查方式,但也存在一定局限性,如工作時間延長、射線劑量高于常規(guī)DM等。Kalra等[38]的研究結(jié)果顯示DM聯(lián)合DBT閱片時間約為傳統(tǒng)DM的2倍,這將會影響臨床工作的效率。Garrett等[39]利用先驗圖像壓縮感知算法(prior image constrained compressed sensing,PICCS)降低DBT檢查約60%的劑量,而其診斷效果與常規(guī)劑量DBT相當(dāng),且PICCS可提高低對比病灶的信噪比而不影響其重要細節(jié)的顯示。
NAC前后MRI參數(shù)(血流動力學(xué)參數(shù)、ADC值等)的改變評價乳腺癌NAC療效的價值已得到大量研究證實[40-42]。Arlinghaus等[43]對25例乳腺癌患者行化療前和NAC 1周期后MRI檢查,結(jié)果顯示NAC 1周期后ADC值的改變可早期預(yù)測pCR,因此有望提早幫助臨床醫(yī)師決定治療方案,避免不必要的化療。Li等[44]對28例乳腺癌患者NAC早期療效預(yù)測的研究亦顯示,NAC 1周期后動態(tài)增強定量參數(shù)Ktrans、Kep和Vp的改變可早期預(yù)測NAC的療效。然而,這些僅僅是小樣本研究,NAC 1周期的MRI參數(shù)能否預(yù)測NAC最終療效還需大宗病例和Meta分析的進一步證實。Telesca等[45]使用一種高弛豫率對比劑釓貝葡胺(Gd-BOPTA,莫迪司)行3.0 T增強 MRI評價乳腺癌NAC療效,結(jié)果顯示其測得的病灶最大徑與病理標(biāo)本的測量值呈正相關(guān)(r=0.746),因此認為這種方法可準(zhǔn)確評價乳腺癌NAC后殘余病灶的大小。由于Gd-BOPTA的弛豫率約為Gd-DTPA的2倍,因此1/2劑量即可達到同樣的強化效果,適用于灌注成像;且初步研究顯示[46],Gd-BOPTA還可用于肝腎功能不全者,從而拓展了其應(yīng)用范圍。另外,亦有學(xué)者報道了影響MRI評價乳腺癌NAC療效準(zhǔn)確性的一些因素。Ko等[47]的174例大樣本研究顯示,對于導(dǎo)管原位癌、分化程度較好、基線MRI表現(xiàn)為非腫塊樣強化或NAC后殘余病灶較大者,腫瘤大小評價NAC療效的準(zhǔn)確性較低。Drisis等[48]對91例乳腺癌患者行動態(tài)增強MRI檢查,發(fā)現(xiàn)定量參數(shù)評價和預(yù)測乳腺癌NAC療效的能力受分子亞型影響,對于三陰性和HER2陽性乳腺癌,其評價效能較高,對luminal型則較低。
導(dǎo)絲定位由于置入的導(dǎo)絲容易移位脫落,且手術(shù)陽性切緣率較高、患者易產(chǎn)生不適感及并發(fā)癥,近年來受到質(zhì)疑。Ananyhasivan等[49]采用放射性同位素引導(dǎo)隱匿性病灶定位(radio-guided occult lesion localization,ROLL)技術(shù)對乳腺腫瘤及前哨淋巴結(jié)進行術(shù)前定位,即在超聲或X線引導(dǎo)下將放射性同位素锝標(biāo)記硫膠體注入病灶內(nèi),術(shù)中用伽馬探針對病灶進行精確定位,結(jié)果顯示與導(dǎo)絲定位相比,ROLL是一種準(zhǔn)確、簡便、性價比高且容易被患者接受的定位方法。然而ROLL的手術(shù)陽性切緣率還需進一步評價。King等[50]采用放射性粒子125I植入定位(radioactive seed localization,RSL)技術(shù)對195名婦女行乳腺術(shù)前定位,結(jié)果顯示單獨采用RSL定位者手術(shù)陽性切緣率為10%,RSL和導(dǎo)絲聯(lián)合定位者為14%,兩者無統(tǒng)計學(xué)差異。因而,RSL是一種安全、有效、快速且并發(fā)癥較少的定位方法。
縱觀2012年RSNA乳腺影像學(xué)報道,MRI在乳腺疾病診斷和研究中具有廣闊前景,分子成像等新技術(shù)的興起將會開辟乳腺影像學(xué)研究的新局面;同時,尋找更好的、適合本國國情的早期發(fā)現(xiàn)和診斷乳腺癌的影像篩查手段,降低死亡率,仍是放射科醫(yī)師今后繼續(xù)努力的方向。
[References]
[1]Brem RF,Schoonjans JM,Kieper DA,et al.High-resolution scintimammography:a pilot study.J Nucl Med,2002,43(7):909-915.
[2]Coffey CM,Brem RF,Lieberman JH,et al.Breast-specific gamma imaging (BSGI) for the detection of mammographically occult breast cancer in high-risk women.Chicago:RSNA,2012:VSMI21-09.
[3]Velez MB,Kieper DA,Chang TS,et al.The role of molecular breast imaging in patient management in a community breast center.Chicago:RSNA,2012:VSMI21-10.
[4]Rapelyea JA,Vasnani RJ,Rechtman LR,et al.Predicting surgical treatment outcomes of invasive breast cancers with breast-specific gamma imaging (BSGI).Chicago:RSNA,2012:LL-BRS-MO3D.
[5]Koo HR,Moon WK,Cho N,et al.Relationship between quantitative FDG uptake on PET and immunohistochemical subtypes of breast cancers.Chicago:RSNA,2012:VSMI21-14.
[6]Kiyoto S,Sugawara Y,Hosokawa K,et al.FDG PET/CT can predict pathological complete response and clinical outcome after neoadjuvant chemotherapy in breast cancer patients.Chicago:RSNA,2012:SSA18-08.
[7]Nakajima N,Kataoka,M,Sugawara Y,et al.Prognostic value of pretreatment standardized uptake value (SUV) parameters in stage IIIII breast cancer treated with postmastectomy radiotherapy (PMRT).Chicago:RSNA,2012:MSRO32-03.
[8]Ahn HS,Yun BL,Kim SM,et al.Does adding optical diffusion imaging to us improve the differentiation between benign and malignant breast lesions? Observer performance study.Chicago:RSNA,2012:SSG01-03.
[9]Choi WJ,Kim HH,Kim H,et al.Optical diffusion breast imaging;correlation of parameters in optical imaging with maximum standardized uptake value in breast cancer patients.Chicago:RSNA,2012:VSMI21-02.
[10]Sklair-Levy M,Mayer A,Sella T,et al.Non-invasively detection of vascular map asymmetry in breast cancer using novel functional infrared imaging.Chicago:RSNA,2012:VSMI21-03.
[11]Pinker-Domenig K,Bickel H,Helbich TH,et al.BI-RADS?-based combination of CE-MRI and DWI obviates unnecessary breast biopsies.Chicago:RSNA,2012:VSBR51-09.
[12]Yoo,H,Shin HJ,Cha JH,et al.The diagnostic value of apparent diffusion coefficient and quantitative kinetic analysis for predicting malignancy in patients with newly diagnosed breast cancer.Chicago:RSNA,2012:LL-BRS-MO1A.
[13]Olson ML,Kurland B,Chai X.Detection and characterization of mammographically and clinically occult suspicious breast MRI lesions with diffusion weighted imaging at 3 T.Chicago:RSNA,2012:LL-BRS-TU5C.
[14]Bickel H,Pinker-Domenig K,Bogner W,et al.Diffusion-weighted imaging:a noninvasive biomarker for breast cancer invasiveness.Chicago:RSNA,2012:SSG01-07.
[15]Pediconi F,Vasselli F,Roselli,A,et al.Breast MRI at 3 T:role of unenhanced MRI (DWI combined with T2 IDEAL sequence) vs CEMRI in the assessment of response to neo-adjuvant chemotherapy.Chicago:RSNA,2012:VSBR51-08.
[16]Schiani E,Cristel G,Losio C,et al.Diffusion-weighted magnetic resonance imaging in breast cancer:a promising tool to predict tumor aggressiveness.Chicago:RSNA,2012:LL-BRS-MO2D.
[17]Benveniste AP,Dogan BE,Fox PS,et al.Is There a role for ADC values in predicting breast cancer prognostic factors? Chicago:RSNA,2012:LL-BRS-TU3C.
[18]Cho G,Moccaldi M,Moy L,et al.Observation of time-dependent DTI Anisotropy in breast fibroglandular tissue.Chicago:RSNA,2012:SSG01-09.
[19]Penn AI,Rockvile,Hruska CB,et al.Discrimination of benign from malignant breast lesions on DTI using novel feature obtained from ADC on lesion and ADC gradient in peri-tumor.Chicago:RSNA,2012:LL-BRS-SU5B.
[20]Au WF,Ghai S,Crystal P,et al.Quantitative shear wave elastography:performance in characterization of solid breast masses.Chicago:RSNA,2012:LL-BRS-TU1C.
[21]Lee SH,Moon WK,Cho N,et al.Two-view vs single-view shearwave elastography (SWE):a comparison of observer performance in differentiating benign from malignant solid breast masses.Chicago:RSNA,2012:LL-BRS-TU2D.
[22]Lee SH,Chang JM,Moon WK,et al.Added value of shear-wave elastography (SWE) color scoring system and quantitative elasticity values in evaluation of ultrasound (US) detected breast masses.Chicago:RSNA,2012:LL-BRS-WE6A.
[23]Gweon HM,Youk JH,Kim J,et al.Qualitative assessment in shearwave elastography for breast masses:comparative analysis of E value and color overlay pattern classifi cation.Chicago:RSNA,2012:LL-BRS-WE3C.
[24]Kim MY,Cho N,Yi A,et al.Complex cystic breast masses:role of sonoelastography in distinguishing benign from malignant lesions and in the biopsy decision.Chicago:RSNA,2012:VSBR41-17.
[25]Evans A,Whelehan P,Vinnicombe SJ,et al.What are the pathological characteristics of breast cancers misclassifi ed as benign by ultrasound shear wave elastography? Chicago:RSNA,2012:VSBR41-15.
[26]Chang JM,Lee,SH,Moon WK,et al.Stiffness values measured by shear-wave elastography correlated with aggressive breast cancer phenotype.Chicago:RSNA,2012:SSK01-09.
[27]No CJ,Sanders L,Chin JW,et al.The impact of breast cancer screening with MRI on patient adherence to annual mammography screening schedules in a high risk population in a community setting.Chicago:RSNA,2012:LL-BRS-TU2C.
[28]Schrading S,Schild HH,Kuhl CK.MRI screening of women at average risk of breast cancer.Chicago:RSNA,2012:SSJ02-02.
[29]Wooten K,Weinstock C,Stokum C,et al.Screening magnetic resonance imaging (MRI) as an adjunct to mammography (MG)in asymptomatic breast cancer survivors.Chicago:RSNA,2012:SSM02-02.
[30]Tsang Mui Chung M,Lourenco AP,Mainiero MB,et al.Screening breast mri in women with a personal history of breast cancer.Chicago:RSNA,2012:LL-BRS-WE2B.
[31]Kaiser CG,Reich C,Wasser K,et al.Economic aspects of MR-mammography in dense breasts.Chicago:RSNA,2012:LL-BRS-MO3B.
[32]Johnson KS,Soo MS,Holbrook AI,et al.Are screening MRI recall rates related to temperament or experience? Chicago:RSNA,2012:LL-BRS-TU1A.
[33]Dontchos B,Demartini WB,Rahbar H,et al.Infl uence of menstrual cycle timing on screening breast MRI performance in pre-menopausal women.Chicago:RSNA,2012:SSK01-07.
[34]Miravete PM,Sainz M,Garcia-Lallana A,et al.The role of additional digital tomosynthesis combined with digital mammography.Chicago:RSNA,2012:SSE02-02.
[35]Rose SL,Ice MF,Nordmann AS,et al.A comparison of recall rates between full field digital mammography (FFDM) and full field digital mammography plus tomosynthesis in a community setting.Chicago:RSNA,2012:SSE02-01.
[36]Hass B,Kalra VB,Raghu M,et al.Performance of digital breast tomosynthesis compared to conventional digital mammography for breast cancer screening.Chicago:RSNA,2012:SSE02-04.
[37]Destounis SV,Murphy PF,Seifent PJ,et al.Experience with combination 2D/3D breast tomosynthesis vs FFDM in the screening environment.Chicago:RSNA,2012:LL-BRS-MO3C.
[38]Kalra VB,Haas B,Butler RS,et al.Time for tomosynthesis:screening combined digital breast tomosynthesis vs.full-fi eld digital mammography interpretation time in clinical practice:a prospective study of 300 cases.Chicago:RSNA,2012:VSBR41-11.
[39]Garrett JW,Tang J,Burnside ES,et al.Dose reduction in digital breast tomosynthesis with prior image constrained compressed sensing(PICCS).Chicago:RSNA,2012:SSE02-03.
[40]Pinker-Domening K,Bickel H,Bogner W,et al.Assessment of response to neoadjuvant chemotherapy with high resolution MRI at 3 T:correlation with pathological response.Chicago:RSNA,2012:SSM02-05.
[41]Bickel H,Pinker-Domening K,Bogner W,et al.Assessment of response to neoadjuvant chemotherapy with diffusion weighted imaging at 3 T.Chicago:RSNA,2012:LL-BRS-TU5D.
[42]Budreau D,Giger ML,Lan L,et al.Breast MRI-based feature analysis in predicting neoadjuvant therapy response.Chicago:RSNA,2012:SSM01-04.
[43]Arlinghaus LR,Abramson RG,Chakravathy AB,et al.DW-MRI for predicting the response of locally advanced breast cancer to neoadjuvant chemotherapy.Chicago:RSNA,2012:LL-BRS-TH5A.
[44]Li X,Arlinghaus LR,Abramson RG,et al.Towards optimization of DCE-MRI analysis for predicting the response of breast cancer to neoadjuvant chemotherapy.Chicago:RSNA,2012:LL-BRS-WE3B.
[45]Telesca M,Pediconi F,Luciani ML,et al.Accuracy of 3 T magnetic resonance imaging with a high-relaxivity contrast agent in assessing treatment response in patients with advanced breast cancer undergoing neoadjuvant chemotherapy.Chicago:RSNA,2012:LL-BRS-WE4B.
[46]Davies BE,Kirchin MA,Bensel K,et al.Pharmacokinetics and safety of gadobenate dimeglumine (Multihance) in subjects with impaired liver function.Invest Radiol,2002,37(5):299-308.
[47]Ko ES,Han B,Shin JH,et al.Analysis of factors infl uencing accuracy of MRI for predicting response after neoadjuvant chemotherapy in locally advanced breast cancer.Chicago:RSNA,2012:LL-BRS-WE5A.
[48]Drisis S,Stathopoulos K,Capelan M,et al.The impact of breast cancer subtypes on DCE-MRI as a surrogate marker for locally advanced breast cancer.Chicago:RSNA,2012:SSM01-06.
[49]Ananyhasivan R,Parameshwaran R,Nagaraj C,et al.Radio-guided occult lesion localization (ROLL) for non-palpable breast lesions:the indian experience.Chicago:RSNA,2012:LL-BRS-MO4C.
[50]King V,Sung JS,Thornton C,et al.Safety and effi cacy of radioactive seed localization with I-125 prior to lumpectomy and/or excisional biopsy.Chicago:RSNA,2012:SST01-02.