亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        四溴代對苯二甲酸及2,2′-聯(lián)吡啶構(gòu)筑的銅配位聚合物的合成、晶體結(jié)構(gòu)及熱穩(wěn)定性

        2013-08-20 00:57:24劉建鋒呂旭燕高玲玲胡拖平
        無機化學學報 2013年1期
        關(guān)鍵詞:中北大學聯(lián)吡啶對苯二甲

        劉建鋒 劉 艷 呂旭燕 高玲玲 胡拖平

        (中北大學理學院,化學實驗室,太原 030051)

        0 Introduction

        1 Experimental

        1.1 Synthesis of complex

        A H2O solution (5 mL) of H2TBTA (10 mg, 0.02 mmol) and 2,2′-bipy (10 mg, 0.064 mmol) was placed at the bottom of a straight glass tube, upon which a solution of Cu(NO3)2·3H2O (20 mg, 0.08 mmol) in methanol (5 mL) was carefully layed. Upon slow evaporation of the solvents, blue block crystals suitable for X-ray diffraction were yielded after 5 d in 65% yield. IR (KBr pellet, cm-1): 3 398 (s),1 610(vs),1 517(s),1 425(s),1 391(s),1 318(s),1 085(m), 839(m),772(w), 725(m), 559(m). Anal. Calcd. for C18H12CuN2O6Br4(%): C, 29.37; H, 1.63; N, 3.80. Found(%): C,30.11; H, 1.671; N, 4.86.

        1.2 Structure determination

        Crystallographic data for complex (size: 0.15 mm×0.14 mm×0.10 mm) were collected on a Bruker Smart APEXII CCD diffractometer equipped with a graphite-monothematic Mo Kα radiation (λ=0.071 073 nm) at room temperature. Semi-empirical absorption correction was applied (SADABS) and the program SAINT was used to reduce the data[19]. The structures was solved by direct methods using the SHELXS program of SHELXTL[20]package and refined by fullmatrix least-squares techniques with SHELXL. The metal atoms in the complex were located from E-maps,and other non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on F2using SHELX-97[21]. The organic hydrogen atoms were generated geometrically and refined as riding. A summary of the crystallographic data and structure refinement of complex is listed in Table 1. The selected bond lengths and bond angels are listed in Table 2.

        CCDC: 870487.

        Table 1 Crystal data and structure refinement for complex

        Table 2 Selected bond lengths (nm) and bond angles (°) for complex

        2 Results and discussion

        2.1 IR spectrum of the complex

        In the IR spectrum of complex, the broad peak centered at 3 398 cm-1indicates the O-H characteristic stretching vibrations of uncoordinated water molecular.The asymmetric stretching vibrations(νas(COO)) and its symmetric stretching vibrations (νs(COO)) of H2TBTA appear at 1610 and at 1 391 cm-1, respectively. Their difference Δν(νas(COO-)-νs(COO-)=220 cm-1)between the asymmetric stretching vibrations and the symmetric stretching vibrations shows that carboxylic acid ligand adopts a monodentate mode. The very characteristic bands ν(C=N), ν(C=C) and δ(C-H) of 2,2′-bipy ligand moved from 1 419,1 457 and 758 cm-1to 1 517,1 425 and 772 cm-1indicate 2,2′-bipy ligand coordinated with Cu(Ⅱ)ion[22].

        2.2 Crystal structure of the complex

        Fig.1 Asymmetric unit of complex

        Complex crystallizes in orthorhombic system,Pna21space group. The scheme of the asymmetric unit of complex is in Fig.1. The asymmetric unit of complex consists of one Cu(Ⅱ)ion, one TBTA2-anion,one 2,2′ -bipy molecule, one coordinated and one uncoordinated water molecules. The central Cu(Ⅱ)ion is five-coordinated by two oxygen atoms from two coordinated TBTA2-anions, respectively, two nitrogen atoms from one 2,2′-bipy molecule and one oxygen atom from coordinated water molecule. The carboxylate groups of H2TBTA ligand are deprotonated and coordinate by the monodentate mode. The adjacent Cu (Ⅱ)centers are connected by the TBTA2-anions bridge to afford a 1D chain motif (Cu…Cu=0.822 4 nm) (Fig.2).

        Fig.2 1D polymeric chain in complex

        In the 1D chain, one pyridine of 2,2′-bipy is parallel to the plane of benzene ring of TBTA2-.Moreover, the 1D chain is stabilized through weak π…π interactions between benzene ring of TBTA2-and 2,2′-bipy. The distance of center to center, Cg(1) …Cg(2), is 0.391 4(5) nm and the dihedral angle is 8.9370° (Cg(1) is the ring C(12)-C(13)-C(14)-C(15)-C(17)-C(18) from TBTA2-, Cg(2)is the ring N(2)-C(1)-C(2)-C(3)-C(4)-C(5) of 2,2′-bipy). The perpendicular distance of Cg(1) on Cg(2) is 0.3512 6(3) nm (Fig.3).

        The H-bonding interactions between uncoordinated water molecule and coordinated water molecule and between uncoordinated water molecule and H2TBTA ligand firmly fix the uncoordinated water molecule on 1D chain. In addition, the H-bonding interactions between the hydrogen atoms of 2,2′-bipy and the oxygen atoms of coordinated water and H2TBTA molecules further stabilize the 1D chain (Fig.3). The adjacent 1D arrays are further extended to 2D supramolecular framework by weak H-bonding interactions (O(1)-H(1A)…O(6)v,v-1/2+x, -3/2-y, z;O(2)-H(2B)…O(4)vi,vi-1/2+x, -1/2-y, z). The data of all H-bonding interactions are listed in Table 3.

        Table 3 Hydrogen bond lengths and bond angles for complex

        Fig.3 π-π interaction and H-bonding interactions of complex

        2.3 Thermogravimetric analysis

        Fig.4 Thermogravimetric analyses for complex

        Thermogravimetric analysis has been measured for complex (Fig.4). The complex is stable up to 203℃, The weight loss of 70.06% from 203 to 508 ℃corresponds to the loss of coordinated TBTA2-,coordinated and uncoordinated water molecules(Calcd. 70.12%). The weight loss of 20.27% from 508 to 657 ℃dues to the removal of coordinated 2,2′-bipy molecules (Calcd.21.24%).No weight loss is observed after 657 ℃, and the resulting residue is copper oxide(CuO) (Obsd. 9.68 %, Calcd. 10.82%).

        2.4 Powder X-ray diffraction

        The results of powder X-ray diffraction (PXRD)analysis of the complex are shown in Fig.5. The PXRD analysis confirms the product to be singlephase. The stimulated PXRD pattern based on the crystal structure analysis allow identification via a comparison of the experimental and computed powder diffraction patterns.

        Fig.5 PXRD patterns for complex (a) simulated PXRD pattern; (b) experimental PXRD pattern

        [1] Moulton B, Zaworotko M J. Chem. Rev., 2001,101:1629-1658

        [2] Kitagawa S, Kitaura R, Noro S I. Angew. Chem., Int. Ed.Engl., 2004,43:2334-2375

        [3] Evans O R, Lin W. Acc. Chem. Res., 2002,35:511-522

        [4] Spencer E C,Howard J A K,Yaghi O M,et al.Chem.Commun.,2006:278-280

        [5] Eddaoudi M, Kim J, Rosi N, et al. Science, 2002,295:469-472

        [6] Bourne S A, Lu J J, Mondal A, et al. Angew. Chem., Int. Ed.Engl., 2001,40:2111-2117

        [7] Vodak D T, Braun M E, Kim J, et al. Chem. Commun., 2001:2534-2535

        [8] Chen S C, Zhang Z H, Huang K L, et al. Cryst. Growth Des.,2008,8:3437-3445

        [9] Li C P, Tian Y L, Guo Y M. Inorg. Chem. Commun., 2008,11:1405-1408

        [10]Li C P, Tian Y L, Guo Y M. Polyhedron, 2009,28:505-510

        [11]Wang X L, Bi Y F, Lin H Y, et al. Cryst. Growth Des.,2007,7:1086-1091

        [12]Pan L, Liu H M, Kely S P, et al. Chem. Commun., 2003:854-855

        [13]Wang X L, Qin C, Wang E B, et al. Angew. Chem., Int. Ed.Engl., 2005,44:5824-5827

        [14]Gomez-Lor B, Gutierrez-Puebla E, Iglesias M, et al. Chem.Mater., 2005,17:2568-2573

        [15]Rafael A A, Zhu S R, Kevin K K, et al. Inorg. Chem.Commun., 2007,10(12):1527-1530

        [16]Lin Z Z, Chen L, Jiang F L, et al. Inorg. Chem. Commun.,2005,8:199-201

        [17]Wang Y Q, Cao R, Sun D F, et al. J. Mol. Struct., 2003,657:301-309

        [18]Li X J, Sun D F, Cao R, et al. Inorg. Chem. Commun.,2003,6:908-911

        [19]Sheldrick G M. SADABS 2.05, University of G?ttingen,Germany, 1996.

        [20]SHELXTL 6.10,Bruker Analytical Instrumentation,Madison,Wisconsin, USA, 2000.

        [21]Sheldrick G M. SHELXL97, Program for the Refinement of Crystal Structure, University of Gottingen, Germany, 1997.

        [22]SHI Zhi-Qiang(石智強), JI Ning-Ning(季寧寧), HE Guo-Fang(何 國 芳), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(8):1507-1512

        猜你喜歡
        中北大學聯(lián)吡啶對苯二甲
        《中北大學學報(社會科學版)》征稿啟事
        四氯對苯二甲腈含量分析方法
        中北大學信創(chuàng)產(chǎn)業(yè)學院入選首批現(xiàn)代產(chǎn)業(yè)學院
        科學導報(2021年91期)2021-01-11 07:02:14
        《中北大學學報(自然科學版)》征稿簡則
        有機相化學鍍鋁法制備Al/石墨烯復合材料粉末
        擴鏈劑對聚對苯二甲酸乙二醇酯流變性能和發(fā)泡性能影響
        中國塑料(2015年5期)2015-10-14 00:59:48
        純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
        功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
        咪唑-多聯(lián)吡啶釕配合物的合成、晶體結(jié)構(gòu)和性能研究
        基于四溴代對苯二甲酸構(gòu)筑的兩個Cu(Ⅱ)配位聚合物的合成與晶體結(jié)構(gòu)
        高清在线有码日韩中文字幕| 国产日韩亚洲中文字幕| 曰本极品少妇videossexhd| 自拍偷自拍亚洲精品播放| 一区二区日韩国产精品| 精品国产91久久综合| 国产精品视频一区二区三区,| 女同国产日韩精品在线| 超碰青青草手机在线免费观看| 国产av熟女一区二区三区密桃| 国产精品国产三级国产av品爱| 亚洲熟妇丰满多毛xxxx| 久久中文精品无码中文字幕下载| 色猫咪免费人成网站在线观看| www.91久久| 国产精品不卡在线视频| 蜜臀av一区二区三区免费观看| 一本丁香综合久久久久不卡网站| 亚洲国产av玩弄放荡人妇系列| 亚洲 欧美精品suv| 成人精品一级毛片| 欧美亚洲h在线一区二区| 亚洲女同av一区二区在线观看| 一区二区在线观看日本视频| 久久日日躁夜夜躁狠狠躁| 成人精品天堂一区二区三区| 中文字幕精品一二三四五六七八| 乱子真实露脸刺激对白| 亚洲中文字幕乱码免费| 亚洲中文字幕高清乱码毛片| 99精品久久精品一区| 亚洲成a∨人片在线观看不卡| 亚洲精品字幕在线观看| 亚洲国产午夜精品乱码| 精品久久久无码不卡| av国产免费在线播放| 精品人妻一区二区三区浪人在线| 亚洲av无码乱码在线观看裸奔 | 深夜爽爽动态图无遮无挡| 国产xxxxx在线观看| 国产精品短视频|