亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        四溴代對苯二甲酸及2,2′-聯(lián)吡啶構(gòu)筑的銅配位聚合物的合成、晶體結(jié)構(gòu)及熱穩(wěn)定性

        2013-08-20 00:57:24劉建鋒呂旭燕高玲玲胡拖平
        無機化學學報 2013年1期
        關(guān)鍵詞:中北大學聯(lián)吡啶對苯二甲

        劉建鋒 劉 艷 呂旭燕 高玲玲 胡拖平

        (中北大學理學院,化學實驗室,太原 030051)

        0 Introduction

        1 Experimental

        1.1 Synthesis of complex

        A H2O solution (5 mL) of H2TBTA (10 mg, 0.02 mmol) and 2,2′-bipy (10 mg, 0.064 mmol) was placed at the bottom of a straight glass tube, upon which a solution of Cu(NO3)2·3H2O (20 mg, 0.08 mmol) in methanol (5 mL) was carefully layed. Upon slow evaporation of the solvents, blue block crystals suitable for X-ray diffraction were yielded after 5 d in 65% yield. IR (KBr pellet, cm-1): 3 398 (s),1 610(vs),1 517(s),1 425(s),1 391(s),1 318(s),1 085(m), 839(m),772(w), 725(m), 559(m). Anal. Calcd. for C18H12CuN2O6Br4(%): C, 29.37; H, 1.63; N, 3.80. Found(%): C,30.11; H, 1.671; N, 4.86.

        1.2 Structure determination

        Crystallographic data for complex (size: 0.15 mm×0.14 mm×0.10 mm) were collected on a Bruker Smart APEXII CCD diffractometer equipped with a graphite-monothematic Mo Kα radiation (λ=0.071 073 nm) at room temperature. Semi-empirical absorption correction was applied (SADABS) and the program SAINT was used to reduce the data[19]. The structures was solved by direct methods using the SHELXS program of SHELXTL[20]package and refined by fullmatrix least-squares techniques with SHELXL. The metal atoms in the complex were located from E-maps,and other non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on F2using SHELX-97[21]. The organic hydrogen atoms were generated geometrically and refined as riding. A summary of the crystallographic data and structure refinement of complex is listed in Table 1. The selected bond lengths and bond angels are listed in Table 2.

        CCDC: 870487.

        Table 1 Crystal data and structure refinement for complex

        Table 2 Selected bond lengths (nm) and bond angles (°) for complex

        2 Results and discussion

        2.1 IR spectrum of the complex

        In the IR spectrum of complex, the broad peak centered at 3 398 cm-1indicates the O-H characteristic stretching vibrations of uncoordinated water molecular.The asymmetric stretching vibrations(νas(COO)) and its symmetric stretching vibrations (νs(COO)) of H2TBTA appear at 1610 and at 1 391 cm-1, respectively. Their difference Δν(νas(COO-)-νs(COO-)=220 cm-1)between the asymmetric stretching vibrations and the symmetric stretching vibrations shows that carboxylic acid ligand adopts a monodentate mode. The very characteristic bands ν(C=N), ν(C=C) and δ(C-H) of 2,2′-bipy ligand moved from 1 419,1 457 and 758 cm-1to 1 517,1 425 and 772 cm-1indicate 2,2′-bipy ligand coordinated with Cu(Ⅱ)ion[22].

        2.2 Crystal structure of the complex

        Fig.1 Asymmetric unit of complex

        Complex crystallizes in orthorhombic system,Pna21space group. The scheme of the asymmetric unit of complex is in Fig.1. The asymmetric unit of complex consists of one Cu(Ⅱ)ion, one TBTA2-anion,one 2,2′ -bipy molecule, one coordinated and one uncoordinated water molecules. The central Cu(Ⅱ)ion is five-coordinated by two oxygen atoms from two coordinated TBTA2-anions, respectively, two nitrogen atoms from one 2,2′-bipy molecule and one oxygen atom from coordinated water molecule. The carboxylate groups of H2TBTA ligand are deprotonated and coordinate by the monodentate mode. The adjacent Cu (Ⅱ)centers are connected by the TBTA2-anions bridge to afford a 1D chain motif (Cu…Cu=0.822 4 nm) (Fig.2).

        Fig.2 1D polymeric chain in complex

        In the 1D chain, one pyridine of 2,2′-bipy is parallel to the plane of benzene ring of TBTA2-.Moreover, the 1D chain is stabilized through weak π…π interactions between benzene ring of TBTA2-and 2,2′-bipy. The distance of center to center, Cg(1) …Cg(2), is 0.391 4(5) nm and the dihedral angle is 8.9370° (Cg(1) is the ring C(12)-C(13)-C(14)-C(15)-C(17)-C(18) from TBTA2-, Cg(2)is the ring N(2)-C(1)-C(2)-C(3)-C(4)-C(5) of 2,2′-bipy). The perpendicular distance of Cg(1) on Cg(2) is 0.3512 6(3) nm (Fig.3).

        The H-bonding interactions between uncoordinated water molecule and coordinated water molecule and between uncoordinated water molecule and H2TBTA ligand firmly fix the uncoordinated water molecule on 1D chain. In addition, the H-bonding interactions between the hydrogen atoms of 2,2′-bipy and the oxygen atoms of coordinated water and H2TBTA molecules further stabilize the 1D chain (Fig.3). The adjacent 1D arrays are further extended to 2D supramolecular framework by weak H-bonding interactions (O(1)-H(1A)…O(6)v,v-1/2+x, -3/2-y, z;O(2)-H(2B)…O(4)vi,vi-1/2+x, -1/2-y, z). The data of all H-bonding interactions are listed in Table 3.

        Table 3 Hydrogen bond lengths and bond angles for complex

        Fig.3 π-π interaction and H-bonding interactions of complex

        2.3 Thermogravimetric analysis

        Fig.4 Thermogravimetric analyses for complex

        Thermogravimetric analysis has been measured for complex (Fig.4). The complex is stable up to 203℃, The weight loss of 70.06% from 203 to 508 ℃corresponds to the loss of coordinated TBTA2-,coordinated and uncoordinated water molecules(Calcd. 70.12%). The weight loss of 20.27% from 508 to 657 ℃dues to the removal of coordinated 2,2′-bipy molecules (Calcd.21.24%).No weight loss is observed after 657 ℃, and the resulting residue is copper oxide(CuO) (Obsd. 9.68 %, Calcd. 10.82%).

        2.4 Powder X-ray diffraction

        The results of powder X-ray diffraction (PXRD)analysis of the complex are shown in Fig.5. The PXRD analysis confirms the product to be singlephase. The stimulated PXRD pattern based on the crystal structure analysis allow identification via a comparison of the experimental and computed powder diffraction patterns.

        Fig.5 PXRD patterns for complex (a) simulated PXRD pattern; (b) experimental PXRD pattern

        [1] Moulton B, Zaworotko M J. Chem. Rev., 2001,101:1629-1658

        [2] Kitagawa S, Kitaura R, Noro S I. Angew. Chem., Int. Ed.Engl., 2004,43:2334-2375

        [3] Evans O R, Lin W. Acc. Chem. Res., 2002,35:511-522

        [4] Spencer E C,Howard J A K,Yaghi O M,et al.Chem.Commun.,2006:278-280

        [5] Eddaoudi M, Kim J, Rosi N, et al. Science, 2002,295:469-472

        [6] Bourne S A, Lu J J, Mondal A, et al. Angew. Chem., Int. Ed.Engl., 2001,40:2111-2117

        [7] Vodak D T, Braun M E, Kim J, et al. Chem. Commun., 2001:2534-2535

        [8] Chen S C, Zhang Z H, Huang K L, et al. Cryst. Growth Des.,2008,8:3437-3445

        [9] Li C P, Tian Y L, Guo Y M. Inorg. Chem. Commun., 2008,11:1405-1408

        [10]Li C P, Tian Y L, Guo Y M. Polyhedron, 2009,28:505-510

        [11]Wang X L, Bi Y F, Lin H Y, et al. Cryst. Growth Des.,2007,7:1086-1091

        [12]Pan L, Liu H M, Kely S P, et al. Chem. Commun., 2003:854-855

        [13]Wang X L, Qin C, Wang E B, et al. Angew. Chem., Int. Ed.Engl., 2005,44:5824-5827

        [14]Gomez-Lor B, Gutierrez-Puebla E, Iglesias M, et al. Chem.Mater., 2005,17:2568-2573

        [15]Rafael A A, Zhu S R, Kevin K K, et al. Inorg. Chem.Commun., 2007,10(12):1527-1530

        [16]Lin Z Z, Chen L, Jiang F L, et al. Inorg. Chem. Commun.,2005,8:199-201

        [17]Wang Y Q, Cao R, Sun D F, et al. J. Mol. Struct., 2003,657:301-309

        [18]Li X J, Sun D F, Cao R, et al. Inorg. Chem. Commun.,2003,6:908-911

        [19]Sheldrick G M. SADABS 2.05, University of G?ttingen,Germany, 1996.

        [20]SHELXTL 6.10,Bruker Analytical Instrumentation,Madison,Wisconsin, USA, 2000.

        [21]Sheldrick G M. SHELXL97, Program for the Refinement of Crystal Structure, University of Gottingen, Germany, 1997.

        [22]SHI Zhi-Qiang(石智強), JI Ning-Ning(季寧寧), HE Guo-Fang(何 國 芳), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(8):1507-1512

        猜你喜歡
        中北大學聯(lián)吡啶對苯二甲
        《中北大學學報(社會科學版)》征稿啟事
        四氯對苯二甲腈含量分析方法
        中北大學信創(chuàng)產(chǎn)業(yè)學院入選首批現(xiàn)代產(chǎn)業(yè)學院
        科學導報(2021年91期)2021-01-11 07:02:14
        《中北大學學報(自然科學版)》征稿簡則
        有機相化學鍍鋁法制備Al/石墨烯復合材料粉末
        擴鏈劑對聚對苯二甲酸乙二醇酯流變性能和發(fā)泡性能影響
        中國塑料(2015年5期)2015-10-14 00:59:48
        純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
        功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
        咪唑-多聯(lián)吡啶釕配合物的合成、晶體結(jié)構(gòu)和性能研究
        基于四溴代對苯二甲酸構(gòu)筑的兩個Cu(Ⅱ)配位聚合物的合成與晶體結(jié)構(gòu)
        午夜免费观看日韩一级视频| 亚洲视频专区一区二区三区| 亚洲欧美日韩精品香蕉| 一本久道在线视频播放| 久久国产精品亚洲我射av大全 | 国产精品人伦一区二区三| 中文字幕亚洲精品无码| 久久久久亚洲精品无码网址| 欧美日韩亚洲国产无线码| 男女啪啪在线视频网站| 97久久久久人妻精品区一| 中文字幕乱偷无码av先锋蜜桃| 亚洲 欧美精品suv| 在线亚洲AV成人无码一区小说| 在线看不卡的国产视频| 丁香婷婷激情视频在线播放| 国产精品毛片一区二区| 国产欧美精品一区二区三区, | 无码少妇一区二区三区| 日本在线视频网站www色下载 | 少妇一级内射精品免费| 国产欧美在线观看不卡| 亚洲av永久无码国产精品久久| 国产伦精品一区二区三区四区| 人妻1024手机看片你懂的| 91精品国产综合久久久密臀九色| 亚洲国产av无码精品| 999国内精品永久免费观看| www插插插无码免费视频网站| 欧亚精品无码永久免费视频| 亚洲本色精品一区二区久久| 亚洲a无码综合a国产av中文| 搡老熟女中国老太| 国产成人无精品久久久| 亚洲视频在线观看第一页| 妺妺窝人体色www婷婷| 中文字幕在线亚洲日韩6页| 亚洲av无码一区二区二三区下载| 和少妇人妻邻居做爰完整版| 日韩人妻久久中文字幕| 97精品超碰一区二区三区|