亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        四溴代對苯二甲酸及2,2′-聯(lián)吡啶構(gòu)筑的銅配位聚合物的合成、晶體結(jié)構(gòu)及熱穩(wěn)定性

        2013-08-20 00:57:24劉建鋒呂旭燕高玲玲胡拖平
        無機化學學報 2013年1期
        關(guān)鍵詞:中北大學聯(lián)吡啶對苯二甲

        劉建鋒 劉 艷 呂旭燕 高玲玲 胡拖平

        (中北大學理學院,化學實驗室,太原 030051)

        0 Introduction

        1 Experimental

        1.1 Synthesis of complex

        A H2O solution (5 mL) of H2TBTA (10 mg, 0.02 mmol) and 2,2′-bipy (10 mg, 0.064 mmol) was placed at the bottom of a straight glass tube, upon which a solution of Cu(NO3)2·3H2O (20 mg, 0.08 mmol) in methanol (5 mL) was carefully layed. Upon slow evaporation of the solvents, blue block crystals suitable for X-ray diffraction were yielded after 5 d in 65% yield. IR (KBr pellet, cm-1): 3 398 (s),1 610(vs),1 517(s),1 425(s),1 391(s),1 318(s),1 085(m), 839(m),772(w), 725(m), 559(m). Anal. Calcd. for C18H12CuN2O6Br4(%): C, 29.37; H, 1.63; N, 3.80. Found(%): C,30.11; H, 1.671; N, 4.86.

        1.2 Structure determination

        Crystallographic data for complex (size: 0.15 mm×0.14 mm×0.10 mm) were collected on a Bruker Smart APEXII CCD diffractometer equipped with a graphite-monothematic Mo Kα radiation (λ=0.071 073 nm) at room temperature. Semi-empirical absorption correction was applied (SADABS) and the program SAINT was used to reduce the data[19]. The structures was solved by direct methods using the SHELXS program of SHELXTL[20]package and refined by fullmatrix least-squares techniques with SHELXL. The metal atoms in the complex were located from E-maps,and other non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on F2using SHELX-97[21]. The organic hydrogen atoms were generated geometrically and refined as riding. A summary of the crystallographic data and structure refinement of complex is listed in Table 1. The selected bond lengths and bond angels are listed in Table 2.

        CCDC: 870487.

        Table 1 Crystal data and structure refinement for complex

        Table 2 Selected bond lengths (nm) and bond angles (°) for complex

        2 Results and discussion

        2.1 IR spectrum of the complex

        In the IR spectrum of complex, the broad peak centered at 3 398 cm-1indicates the O-H characteristic stretching vibrations of uncoordinated water molecular.The asymmetric stretching vibrations(νas(COO)) and its symmetric stretching vibrations (νs(COO)) of H2TBTA appear at 1610 and at 1 391 cm-1, respectively. Their difference Δν(νas(COO-)-νs(COO-)=220 cm-1)between the asymmetric stretching vibrations and the symmetric stretching vibrations shows that carboxylic acid ligand adopts a monodentate mode. The very characteristic bands ν(C=N), ν(C=C) and δ(C-H) of 2,2′-bipy ligand moved from 1 419,1 457 and 758 cm-1to 1 517,1 425 and 772 cm-1indicate 2,2′-bipy ligand coordinated with Cu(Ⅱ)ion[22].

        2.2 Crystal structure of the complex

        Fig.1 Asymmetric unit of complex

        Complex crystallizes in orthorhombic system,Pna21space group. The scheme of the asymmetric unit of complex is in Fig.1. The asymmetric unit of complex consists of one Cu(Ⅱ)ion, one TBTA2-anion,one 2,2′ -bipy molecule, one coordinated and one uncoordinated water molecules. The central Cu(Ⅱ)ion is five-coordinated by two oxygen atoms from two coordinated TBTA2-anions, respectively, two nitrogen atoms from one 2,2′-bipy molecule and one oxygen atom from coordinated water molecule. The carboxylate groups of H2TBTA ligand are deprotonated and coordinate by the monodentate mode. The adjacent Cu (Ⅱ)centers are connected by the TBTA2-anions bridge to afford a 1D chain motif (Cu…Cu=0.822 4 nm) (Fig.2).

        Fig.2 1D polymeric chain in complex

        In the 1D chain, one pyridine of 2,2′-bipy is parallel to the plane of benzene ring of TBTA2-.Moreover, the 1D chain is stabilized through weak π…π interactions between benzene ring of TBTA2-and 2,2′-bipy. The distance of center to center, Cg(1) …Cg(2), is 0.391 4(5) nm and the dihedral angle is 8.9370° (Cg(1) is the ring C(12)-C(13)-C(14)-C(15)-C(17)-C(18) from TBTA2-, Cg(2)is the ring N(2)-C(1)-C(2)-C(3)-C(4)-C(5) of 2,2′-bipy). The perpendicular distance of Cg(1) on Cg(2) is 0.3512 6(3) nm (Fig.3).

        The H-bonding interactions between uncoordinated water molecule and coordinated water molecule and between uncoordinated water molecule and H2TBTA ligand firmly fix the uncoordinated water molecule on 1D chain. In addition, the H-bonding interactions between the hydrogen atoms of 2,2′-bipy and the oxygen atoms of coordinated water and H2TBTA molecules further stabilize the 1D chain (Fig.3). The adjacent 1D arrays are further extended to 2D supramolecular framework by weak H-bonding interactions (O(1)-H(1A)…O(6)v,v-1/2+x, -3/2-y, z;O(2)-H(2B)…O(4)vi,vi-1/2+x, -1/2-y, z). The data of all H-bonding interactions are listed in Table 3.

        Table 3 Hydrogen bond lengths and bond angles for complex

        Fig.3 π-π interaction and H-bonding interactions of complex

        2.3 Thermogravimetric analysis

        Fig.4 Thermogravimetric analyses for complex

        Thermogravimetric analysis has been measured for complex (Fig.4). The complex is stable up to 203℃, The weight loss of 70.06% from 203 to 508 ℃corresponds to the loss of coordinated TBTA2-,coordinated and uncoordinated water molecules(Calcd. 70.12%). The weight loss of 20.27% from 508 to 657 ℃dues to the removal of coordinated 2,2′-bipy molecules (Calcd.21.24%).No weight loss is observed after 657 ℃, and the resulting residue is copper oxide(CuO) (Obsd. 9.68 %, Calcd. 10.82%).

        2.4 Powder X-ray diffraction

        The results of powder X-ray diffraction (PXRD)analysis of the complex are shown in Fig.5. The PXRD analysis confirms the product to be singlephase. The stimulated PXRD pattern based on the crystal structure analysis allow identification via a comparison of the experimental and computed powder diffraction patterns.

        Fig.5 PXRD patterns for complex (a) simulated PXRD pattern; (b) experimental PXRD pattern

        [1] Moulton B, Zaworotko M J. Chem. Rev., 2001,101:1629-1658

        [2] Kitagawa S, Kitaura R, Noro S I. Angew. Chem., Int. Ed.Engl., 2004,43:2334-2375

        [3] Evans O R, Lin W. Acc. Chem. Res., 2002,35:511-522

        [4] Spencer E C,Howard J A K,Yaghi O M,et al.Chem.Commun.,2006:278-280

        [5] Eddaoudi M, Kim J, Rosi N, et al. Science, 2002,295:469-472

        [6] Bourne S A, Lu J J, Mondal A, et al. Angew. Chem., Int. Ed.Engl., 2001,40:2111-2117

        [7] Vodak D T, Braun M E, Kim J, et al. Chem. Commun., 2001:2534-2535

        [8] Chen S C, Zhang Z H, Huang K L, et al. Cryst. Growth Des.,2008,8:3437-3445

        [9] Li C P, Tian Y L, Guo Y M. Inorg. Chem. Commun., 2008,11:1405-1408

        [10]Li C P, Tian Y L, Guo Y M. Polyhedron, 2009,28:505-510

        [11]Wang X L, Bi Y F, Lin H Y, et al. Cryst. Growth Des.,2007,7:1086-1091

        [12]Pan L, Liu H M, Kely S P, et al. Chem. Commun., 2003:854-855

        [13]Wang X L, Qin C, Wang E B, et al. Angew. Chem., Int. Ed.Engl., 2005,44:5824-5827

        [14]Gomez-Lor B, Gutierrez-Puebla E, Iglesias M, et al. Chem.Mater., 2005,17:2568-2573

        [15]Rafael A A, Zhu S R, Kevin K K, et al. Inorg. Chem.Commun., 2007,10(12):1527-1530

        [16]Lin Z Z, Chen L, Jiang F L, et al. Inorg. Chem. Commun.,2005,8:199-201

        [17]Wang Y Q, Cao R, Sun D F, et al. J. Mol. Struct., 2003,657:301-309

        [18]Li X J, Sun D F, Cao R, et al. Inorg. Chem. Commun.,2003,6:908-911

        [19]Sheldrick G M. SADABS 2.05, University of G?ttingen,Germany, 1996.

        [20]SHELXTL 6.10,Bruker Analytical Instrumentation,Madison,Wisconsin, USA, 2000.

        [21]Sheldrick G M. SHELXL97, Program for the Refinement of Crystal Structure, University of Gottingen, Germany, 1997.

        [22]SHI Zhi-Qiang(石智強), JI Ning-Ning(季寧寧), HE Guo-Fang(何 國 芳), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(8):1507-1512

        猜你喜歡
        中北大學聯(lián)吡啶對苯二甲
        《中北大學學報(社會科學版)》征稿啟事
        四氯對苯二甲腈含量分析方法
        中北大學信創(chuàng)產(chǎn)業(yè)學院入選首批現(xiàn)代產(chǎn)業(yè)學院
        科學導報(2021年91期)2021-01-11 07:02:14
        《中北大學學報(自然科學版)》征稿簡則
        有機相化學鍍鋁法制備Al/石墨烯復合材料粉末
        擴鏈劑對聚對苯二甲酸乙二醇酯流變性能和發(fā)泡性能影響
        中國塑料(2015年5期)2015-10-14 00:59:48
        純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
        功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
        咪唑-多聯(lián)吡啶釕配合物的合成、晶體結(jié)構(gòu)和性能研究
        基于四溴代對苯二甲酸構(gòu)筑的兩個Cu(Ⅱ)配位聚合物的合成與晶體結(jié)構(gòu)
        久久久久久久97| 日本一区二三区在线中文| 精品熟女视频一区二区三区国产| 一本大道av伊人久久综合| 久久久久久国产精品无码超碰动画 | 国产亚洲精品久久777777| 国产一及毛片| 亚洲中文字幕不卡一区二区三区| 亚洲av一区二区三区色多多| 亚洲精品无码久久久影院相关影片 | 亚洲成a人片在线看| 亚洲精品尤物av在线网站| 中文字幕av长濑麻美| 精品无码国产一区二区三区av| 亚洲 欧美 综合 另类 中字| 国产99精品精品久久免费| 免费播放成人大片视频| 成人免费xxxxx在线观看| 日韩毛片基地一区二区三区| 精品一区二区三区中文字幕在线| 久久精品国产亚洲av性瑜伽| 无码人妻人妻经典| 国产高清无码在线| 性一交一乱一乱一视频亚洲熟妇 | 国产精品熟妇视频国产偷人| 亚洲熟妇夜夜一区二区三区 | av资源在线播放网站| 亚洲男人天堂一区二区| 成片免费观看视频大全| 亚洲欧美日韩国产精品网| 国产一区二区亚洲一区| 日韩av无码一区二区三区不卡| 中文字幕+乱码+中文字幕一区| 香蕉视频毛片| 亚洲中文字幕乱码在线视频| 中文字幕人妻久久久中出| 国产伦精品一区二区三区妓女| 福利网址在线观看| 成人免费播放片高清在线观看| 337p日本欧洲亚洲大胆色噜噜 | 国产香蕉一区二区三区在线视频|