王素霞,徐英
?
中立型多延遲積分微分方程Runge-Kutta方法的散逸性
王素霞,徐英
(淮南師范學(xué)院 數(shù)學(xué)與計(jì)算科學(xué)系,安徽 淮南 232038)
研究了中立型多延遲積分微分方程Runge-Kutta方法的散逸性,給出了Runge-Kutta方法的數(shù)值散逸性結(jié)果.
中立型多延遲積分微分方程;Runge-Kutta方法;散逸性
考慮中立型多延遲積分微分方程初值問題:
證明 由文獻(xiàn)[1]容易得到:
由式(2)和式(8)可推出:
遞推得:
由式(3)和Cauchy-Schwarz不等式及式(5b-5d)可推出:
將式(11b-11d)帶入到式(10)可以推出:
又由式(4)可得:
所以方法(4)是散逸的.
[1] HUMPHRIES A R, STUART A M. Runge-Kutta methods for dissipative and gradient dynamical systems [J]. SIAM J Numer Anal, 1994, 31(5): 1452-1485.
[2] 肖愛國. Hilbert空間中散逸動力系統(tǒng)一般線性方法的散逸穩(wěn)定性[J]. 計(jì)算數(shù)學(xué),2000, 22 (4): 429-436.
[3] HUANG Chengming. Dissipativity of Runge-Kutta methods for dynamical systems with delays [J]. IMA J Numer Anal, 2000, 20(1): 153-166.
[5] HUANG Chengming. Dissipativity of one-leg methods for dynamical systems with delays [J]. Appl Numer Math, 2000, 35(1): 11-22.
[6] WEN Liping, WANG Suxia, YU Yuexin. Dissipativity of Runge-Kutta methods for neutral delay integro- differential equations [J]. Applied Mathematics and Computation, 2009, 215(2): 583-590.
[7] 王素霞,平靜水. 中立型多延遲微分方程Runge-Kutta方法的散逸性[J]. 淮南師范學(xué)院學(xué)報(bào):自然科學(xué)版,2011, 13(5): 14-16.
[8] 文立平,余越昕,李壽佛. 一類求解分片延遲微分方程的線性多步法的散逸性[J]. 計(jì)算數(shù)學(xué),2006, 28(1): 67-74.
[9] 李壽佛. 剛性微分議程算法理論[M]. 長沙:湖南科學(xué)技術(shù)出版社,1997.
[責(zé)任編輯:熊玉濤]
Dissipativity of Runge-Kutta Methods for Neutral Multi-delayIntegro-differential Equations
WANGSu-xia, XUYing
(Department of Mathematics and Computational Science, Huainan Normal University,Huainan 232038, China)
This paper deals with the dissipativity of the Runge-Kutta methods for neutral multi-delay integro-differential equations and gives the dissipativity result of the Runge-Kutta methods.
neutral multi-delay integro-differential equations; Runge-Kutta methods; dissipativity
1006-7302(2013)02-0009-04
O241.81
A
2012-12-15
安徽省教育廳資助項(xiàng)目(KJ2012Z367)
王素霞(1982—),女,河南周口人,助教,碩士,研究方向?yàn)槲⒎址匠虜?shù)值解.