賴嘉導(dǎo),王奇生
?
二維積分微分方程初邊值問題的Taylor配置解和誤差分析
賴嘉導(dǎo),王奇生
(五邑大學(xué) 數(shù)學(xué)與計算科學(xué)學(xué)院,廣東 江門 529020)
利用Taylor配置方法求解二維Volterra-Fredholm型積分微分方程初邊值問題,給出了Taylor配置解的求解格式和誤差分析結(jié)果,并給出了闡述理論分析結(jié)果的數(shù)值例子.
二維積分微分方程;初邊值問題;Taylor配置解;誤差分析
考慮二維Volterra-Fredholm型積分微分方程問題
初始條件為:
邊界條件為:
在式(6)中,
把式(9)、(10)代入式(6),得:
其中,
將式(4)及其導(dǎo)數(shù)表示成矩陣形式:
則初始條件(2)可表示成:
即可寫成如下形式:
邊界條件(3)分為4種情況,分別表示如下:
即可寫成如下形式:
由式(12)得:
對二維積分微分方程問題(1),定義誤差函數(shù):
用式(1)減去式(19),且由式(18)可得:
例1 求解二維積分微分方程初值問題
例2 求解二維積分微分方程初值問題
表1 例2的誤差函數(shù)變化趨勢
圖1 例2中的圖像
圖2 例2中的圖像
例3 求解二維積分微分方程邊值問題
例4 求解二維積分微分方程邊值問題
表2 例4的誤差函數(shù)變化趨勢
圖3 例4中的圖像
圖4 例4中的圖像
[1] SEZER M. Taylor polynomial solution of Volterra integral equations [J]. Int J Math Educ Sci Technol, 1994, 25(5): 625.
[2] YALINBAS S, SEZER M. The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials [J]. Appl Math Comp, 2000, 112: 291-308.
[3] YALCINBAS S. Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations [J]. Appl Math Comp, 2002, 127: 195-206.
[4] DARANIA P, SHALI J A, IVAZ K. New computational method for solving some 2-dimensional nonlinear Volterra integro-differential equations [J]. Numer Algor, 2011, 57: 125-147.
[5] 陳少軍,王奇生. 二維Volterra積分方程Chebyshev譜配置解法及誤差分析[J]. 五邑大學(xué)學(xué)報:自然科學(xué)報,2011, 25(2): 15-19.
[6] CHEN Shaojun, WANG Qisheng. Legendre spectral method and convergence analysis for two dimension Volterra integral equation[C]//proceedings of the Ninth International Conference on Matrix Theory and its Applications, July18-22, 2010, Shanghai. England: World Academic Press, 3: 121-124.
[7] RASHED M T. Numerical solution of functional integral equations [J]. Applied Mathematics and Computation, 2004, 156: 507-512.
[8] RASHED M T. Lagrange interpolation to compute the numerical solutions of differential, integral and integro-differential equations [J]. Applied Mathematics and Computation, 2004, 151: 869-878.
[9] RASHED M T. Numerical solution of functional differential, integral and integro-differential equations [J]. Applied Mathematics and Computation, 2004, 156: 485-492.
[10] CHEN Yanping, TANG Tao. Spectral methods for weakly singular Volterra integral equations with smooth solutions [J]. Journal of Computational and Applied Mathematics, 2009, 233: 938-950.
[11] TANG Tao, XU Xiang, CHENG Jin. On spectral methods for Volterra integral equations and the convergence analysis [J]. Journal of Computational and Applied Mathematics, 2008, 26: 825-837.
[責(zé)任編輯:熊玉濤]
Taylor Collocation Solution and Error Analysis of the Initial Boundary ValueProblem of 2-Dimension Integral Differential Equations
LAIJia-dao, WANGQi-sheng
(School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China)
An approximate method for solving the initial boundary value problems in 2-dimensional Volterra-Fredholm integral differential equations is presented by using the Taylor collocation method. The solving format and results of error analysis are also obtained and numerical examples for the theoretical analysis results are provided.
2-dimensional integral differential equations; initial boundary value problems; Taylor collocation method; error analysis
1006-7302(2013)02-0001-08
O189.1
A
2012-09-19
廣東省計算科學(xué)重點實驗室開放基金項目(No.201206007)
賴嘉導(dǎo)(1987—),男,廣東梅州人,在讀碩士生,研究方向為微積分方程數(shù)值解法;王奇生,教授,博士,碩士生導(dǎo)師,研究方向為微積分方程數(shù)值解法.