亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        無8-,9-和10-圈的平面圖的3-可選擇性

        2013-06-27 05:45:04朱曉穎
        關(guān)鍵詞:南京航空航天大學(xué)子圖平面圖

        朱曉穎

        (南京航空航天大學(xué)金城學(xué)院,江蘇南京 211156)

        無8-,9-和10-圈的平面圖的3-可選擇性

        朱曉穎

        (南京航空航天大學(xué)金城學(xué)院,江蘇南京 211156)

        尋找平面圖是3-或者4-可選擇的充分條件是圖的染色理論中一個重要研究課題,本文研究了圍長至少是4的特殊平面圖的選擇數(shù),通過權(quán)轉(zhuǎn)移的方法證明了每個圍長至少是4且不含8-圈,9-圈和10-圈的平面圖是3-可選擇的.

        可選擇的;平面圖;圍長

        1 引言

        本文中所考慮的圖都是有限、簡單的平面圖,未定義的符號可參照文獻[1].G=(V,E,F)表示一個平面圖,V,E,F分別為其頂點集,邊集和面集.NG(v)表示與頂點相鄰的頂點集合,即頂點v的鄰域.一個頂點的度

        若d(v)=k,則稱v是一個k-頂點,δ(G)為圖中頂點的最小度.與f關(guān)聯(lián)的邊的數(shù)目(割邊按兩次算)記為面f的度數(shù),記作d(f).若d(f)=k,則稱f是一個k-面.設(shè)k是個整數(shù),k+和k-分別表示大于等于k和小于等于k的整數(shù).G中所有長為k的圈組成的集合記為Ck.若Ck=?,則稱圖G是Ck-free.G中最短圈的長度稱為G的圍長.若兩個面至少有一條公共邊,則這兩個面稱為是相鄰的.

        定義1.1若與一個h-面相關(guān)聯(lián)的所有頂點均為3--頂點,則稱這個h-面為light h-面,否則如果它至少和一個4+-頂點相關(guān)聯(lián),則稱它為non-light h-面.若f是一個non-light h-面,且b(f)上除了一個4+度點外,其余點均為3--頂點,則稱此h-面為minimal h-面,否則,若h-面至少與兩個4+-頂點相關(guān)聯(lián),則稱此h-面為non-minimal h-面.

        定義1.2對G中每個頂點v都分配一個顏色列表L(v),使得每個頂點能從其關(guān)聯(lián)的色表中選色并且相鄰的兩個頂點選擇不同的顏色,稱為G的一個L-著色.若對圖G的每個頂點的列表滿足圖G總存在L-著色,則稱圖G是k-可選擇的.定義使得圖G是k-可選擇的最小的自然數(shù)k稱為圖G的選擇數(shù)(或選色數(shù)),記為ch(G).

        關(guān)于2-可選色的圖,文獻[2]作了特征化的論述.文獻[3]證明了每個平面圖是5-可選色的,且文獻[4]證明了每個圍長至少為5的平面圖是3-可選擇的.文獻[5]構(gòu)造了一個圍長是4但不是3-可選擇的圖,因此要對3-可選擇的平面圖的特征還需進一步刻畫,必須尋找一些條件,使得某一類平面圖是3-可選擇的.文獻[6]論證了圍長至少為4且無5-和6-圈的平面圖是3-可選擇的.文獻[7-8]中論證了任何圍長至少為4且無6-,8-和9-圈的平面圖都是3-可選擇的以及圍長至少為4且無5-,8-和9-圈的平面圖都是3-可選擇的.

        本文證明了每個圍長至少為4且無8-,9-和10-圈的平面圖是3-選擇的.

        2 基本引理

        在證明定理之前,首先給出以下的三個引理:

        引理2.1[9]若G是一個長度為偶數(shù)的圈,則G是2-可選擇的.

        引理2.2[7]若G是一個非-3-可選擇圖,且G的每一個非空真子集V??V的導(dǎo)出子圖G[V?]是3-可選擇的,則G的任何一個長度為偶數(shù)的圈至少含有一個4+-頂點.

        引理2.3[8]若G是一個非-3-可選擇圖,且G的每一個非空真子集V??V的導(dǎo)出子圖G[V?]是3-可選擇的,若C1和C2是圖中兩個恰有一個公共頂點的4-圈,則C1和C2中至少有一個是non-minimal圈.

        3 結(jié)論

        由于考慮的圖G不含長度為8-,9-和10-的圈,可得G具有下列性質(zhì):

        (O1)一個4-面至多能和兩個相鄰的4-面相鄰;

        (O2)一個4-面不能和另一個6-面相鄰;也不能和另一個7-面相鄰;

        (O3)一個5-面至多與兩個4-面相鄰;

        (O4)一個5-面不能和另一個5-面相鄰,也不能和另一個6-面或7-面相鄰.

        用權(quán)轉(zhuǎn)移的方法調(diào)整所有的點和面的權(quán)值,調(diào)整后的權(quán)函數(shù)記為φ?(x),若權(quán)的移動導(dǎo)致對所有的x∈V∪F,φ?(x)≥0,則得到矛盾,從而完成定理的證明.當(dāng)一個4-面f與i個4-面相鄰時,稱該4-面f為4i-面,其中i為0,1,2.權(quán)的移動根據(jù)以下規(guī)則:

        圖1 f是42-面時

        圖2 f是41-面時

        由上述討論,面f通過邊uv轉(zhuǎn)移的權(quán)值是小于或等于被調(diào)整后的定額數(shù)值,到這里證明了φ?(f)≥0對于所有的x∈V∪F,所以有

        得出矛盾,得證.

        [1]Bondy J A,Murty U S R.Graph Theory with Applications[M].New Youk:Macmillan Co.,1976.

        [2]Erdos P,Rubin A L,Taylor H.Choosability in graphs[J].Congr.Numer.,1979,26:125-157.

        [3]Thomassen C.Every planar graph is 5-choosable[J].Journal of Combinatorial Theory Ser.(B),1994,62(1): 180-181.

        [4]Thomassen C.3-list-coloring planar graphs of girth 5[J].Journal of Combinatorial Theory Ser.(B),1995,64(1): 101-107.

        [5]Voigt M.List colouring of planar graphs[J].Discrete Math.,1993,120:215-219.

        [6]Peter C B Lam.The 3-choosability of plane graphs of girth 4[J].Discrete Math.,2005,294:297-301.

        [7]張海輝,沈邦玉.關(guān)于無6-,8-和9-圈平面圖的3-選色[J].南京師范大學(xué)報,2004,27:55-60.

        [8]Zhang Haihui.On 3-choosability of plane graphs without 5-,8-and 9-cycles[J].Journal of Lanzhou University: Natural Sciences,2005,41:93-97.

        [9]Alon N,Tarsi M.Colorings and orientations of graphs[J].Combinatorica,1992,12:125-134.

        The 3-choosability of plane graphs without 8-,9-and 10-cycles

        Zhu Xiaoying
        (College of Jincheng,Nanjing University of Aeronautics and Astronautics,Nanjing211156,China)

        An important researth on coloring of planar graphs is to determine whether a given planar graphs is 3-choosable or 4-choosable.In this paper,we study the choice number of special planers with girth at least 4. According to the discharging method,it is shown that every planar graph with girth at least 4 and without 8-, 9-and 10-cycles is 3-choosable.

        choosability,plane graph,girth

        O157.5

        A

        1008-5513(2013)06-0609-06

        10.3969/j.issn.1008-5513.2013.06.009

        2013-07-17.

        朱曉穎(1979-),碩士,講師,研究方向:圖論及其應(yīng)用.

        2010 MSC:05C78

        猜你喜歡
        南京航空航天大學(xué)子圖平面圖
        南京航空航天大學(xué)機電學(xué)院
        南京航空航天大學(xué)機電學(xué)院
        南京航空航天大學(xué)
        南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實驗室
        《別墅平面圖》
        《別墅平面圖》
        《景觀平面圖》
        臨界完全圖Ramsey數(shù)
        平面圖的3-hued 染色
        基于頻繁子圖挖掘的數(shù)據(jù)服務(wù)Mashup推薦
        国成成人av一区二区三区| 377p日本欧洲亚洲大胆张筱雨| 精品少妇无码av无码专区| 亚洲一区精品无码色成人| 激情久久无码天堂| 亚洲又黄又大又爽毛片| 日本免费影片一区二区| AV中文码一区二区三区| 日本高清一区在线你懂得 | 国产在线精品成人一区二区三区| 91中文人妻熟女乱又乱| 欧美亚洲日本国产综合在线美利坚| 一本色综合久久| 中文字幕久热精品视频免费| 精品女同一区二区三区不卡 | 亚洲av大片在线免费观看 | 国产 精品 自在 线免费| 欧美日韩精品一区二区三区高清视频| 18禁男女爽爽爽午夜网站免费| 亚洲AV无码日韩综合欧亚 | 日韩精品无码免费专区网站| 一区二区三区福利在线视频| 国产一区二区av在线观看| 日本一区二区三区视频国产| 亚洲精品无码久久久| 亚洲自偷自偷偷色无码中文| 亚洲成人av一区二区麻豆蜜桃| 亚洲女同系列在线观看| 欧美激情一区二区三区成人 | 妓院一钑片免看黄大片| 亚洲av成人在线网站| 亚洲国产精品av麻豆一区| 国产欧美va欧美va香蕉在线| 日本japanese丰满多毛| 国产精品爆乳在线播放| 亚洲一区日本一区二区| 国产av剧情刺激对白| 久久久久成人精品无码| 色综合久久无码中文字幕app| 亚洲一区二区三区久久久| 国产亚洲精品品视频在线|