亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        中地殼斷層帶內微裂隙愈合與高壓流體形成條件的模擬實驗研究

        2013-06-26 12:49:04周永勝姚文明
        地球物理學報 2013年1期
        關鍵詞:裂隙礦物斷層

        韓 亮,周永勝,姚文明

        1 中國地震局地質研究所,地震動力學國家重點實驗室,北京 100029

        2 中國地質科學院地質研究所,大陸構造與動力學國家重點實驗室,北京 100037

        1 引 言

        2008年5月12日,中國四川省發(fā)生了汶川MS8.0級大地震.地質和地球物理資料[1-4]、震后地表破裂帶考察[5-13]、地震破裂過程和余震分布[14-19]等研究顯示,汶川地震主震震源深度為13~19km,主震震源區(qū)巖石為與彭灌雜巖巖性類似的花崗質巖石,發(fā)震斷層具有右旋走滑分量的高角度逆斷層特征.根據龍門山地區(qū)的地溫梯度和流變結構[20]推斷,震源深度處于斷層脆塑性轉化帶(15~20km)附近.

        高角度逆斷層通常難以滑動,存在接近或超過靜巖壓力流體壓力[21-23]可以觸發(fā)斷層突然滑動,有利于地震成核.對西阿爾卑斯Sesia地區(qū)的逆沖型韌性剪切帶[24]和猶他州Sevier造山帶中逆斷層[25]中變形石英內的流體包裹體的研究,發(fā)現了在脆塑性轉化帶附近存在接近靜巖壓力的高壓流體的證據,認為流體的壓力變化、滲透擴散及其與圍巖的相互作用與震源深度在中地殼的強震事件緊密聯系.對代表地質歷史映秀—北川斷裂帶深部變形的雞冠山韌性剪切帶露頭內變形花崗巖里流體包裹體研究[26]同樣表明,在接近汶川地震主震震源深度附近的中地殼斷層帶內曾存在流體壓力系數約0.9的高壓流體,因此研究中地殼斷層帶的裂隙愈合機制對于理解高壓流體的形成條件,解釋高角度逆斷層滑動和汶川地震的強震孕育機理具有重要意義.

        斷層帶不同的變形域(不同深度),其斷層愈合的機制有所差別,對斷層帶構造巖研究表明,中地殼深度條件下的斷層帶愈合主要通過水巖反應、石英重結晶作用、壓溶—沉淀作用[22-23,27-30]實現.然而經過長期地質演化,深部斷層帶不同階段的愈合機制可能出現疊加,難以直接觀察斷層的愈合細節(jié),因此,微裂隙愈合的模擬實驗是研究斷層帶愈合機制的重要手段之一.Trepmann等[31]利用改進型Griggs型固體介質高溫高三軸變形設備,在接近自然條件下開展了非穩(wěn)態(tài)變形條件下石英微裂隙愈合實驗,揭示了動態(tài)重結晶作用和靜態(tài)重結晶作用能夠愈合地震復發(fā)周期不同階段形成的裂隙,并找到了動態(tài)和靜態(tài)重結晶作用愈合裂隙的地質證據.然而在同震破裂和震后破裂愈合過程中,斷層帶內流體含量會發(fā)生變化,這一因素對斷層帶愈合的影響以及高壓流體的形成條件與過程并不清楚.本文采用含水和烘干的樣品,在塑性變形條件下開展了微裂隙愈合的模擬實驗,研究微裂隙愈合機制以及水對微裂隙愈合速度的影響,探索中地殼斷層帶內高壓流體的形成條件.

        2 實驗裝置和實驗設計

        2.1 實驗裝置

        實驗在中國地震局地質研究所,地震動力學國家重點實驗室自主研制的Griggs型3GPa熔融鹽固體介質三軸高溫高壓實驗系統上進行,圍壓和軸壓加載系統通過液壓伺服油缸控制加載,實驗儀器控制和數據采集通過自主開發(fā)的計算機軟件實現.計算機控制軟件不僅能夠實時顯示并記錄實驗位移、壓力和溫度信息,而且能夠實現實驗中位移控制方式和應力控制方式的平穩(wěn)切換.溫度控制系統采用 Yamatake-Honeywell DCP-30型控溫儀,控制精度為0.1%.實驗前后通過氣墊底座方便的移動壓力容器,實驗中使用水冷系統對壓力容器外部降溫.在設備投入使用前進行了系統的圍壓和溫度標定研究[32-33].

        實驗設備與壓力容器的裝樣方式參見“熔融鹽固體介質高溫高壓三軸壓力容器的溫度標定”[32-33]一文,經過實驗中的技術積累,再次對裝樣方式進行了多處關鍵修改(圖1),一方面增加石墨帽高度充填附近的空隙,另一方面將樣品底部的帶孔碳化鎢修改為三部分(圖中的外部帶孔碳化鎢壓柱、中間空心鋁套和下部碳化鎢壓柱),提高了裝樣的密封性,減少了熱電偶在實驗中脫落和壓斷的幾率.

        實驗樣品為圓柱形(尺寸Ф3mm×6mm),根據實驗設計要求可以把樣品密封于金套、鎳套或葉蠟石套中,使用低共熔點的KCl/LiCl混合鹽套包裹樣品,以降低系統摩擦力和樣品周圍的壓力梯度.實驗中采用兩根K型熱電偶(NiCr-NiSi)平行于樣品放置在內葉蠟石套C內,位于樣品外側相對于樣品中心的上1/3和下1/3位置.其中上1/3位置的熱電偶的測量溫度作為反饋信號,用來控制自動加溫系統,溫度加載速率2℃/min.實驗中的應力加載速率0.5MPa/s或0.001mm/s,通過軸壓桿擠壓上剛玉柱A來實現樣品軸壓加載.在實驗圍壓加載階段,軸壓桿與上剛玉柱接觸后,通過保持軸壓活塞位移不變,繼續(xù)加載圍壓,通過鉛墊被動調節(jié),實現軸壓被動加載,在樣品周圍產生接近靜巖壓力的條件.

        圖1 裝樣結構圖Fig.1 Sample assembly

        2.2 實驗設計

        實驗樣品為Carrara大理巖,其主要礦物方解石的溶解度隨溫度的升高而減?。?4],在600℃的實驗條件下即可發(fā)生位錯蠕變[35],熱電偶在相對較低的實驗溫度下工作壽命更長,能夠保持足夠的愈合時間,有利于觀察到微裂隙的愈合細節(jié).

        實驗前采用三種方法準備實驗樣品,嘗試模擬不同的流體環(huán)境:(1)用純凈水浸泡樣品約120h,增加樣品中孔隙水含量,采用0.05mm厚鎳箔包裹樣品,模擬水含量高的封閉流體環(huán)境;(2)在200℃下烘干樣品約24h,采用0.05mm厚的鎳箔包裹,在實驗前快速裝樣,盡量減少空氣中水的吸附,模擬水含量最低的封閉流體環(huán)境;(3)樣品未經鎳箔包裹密封,直接采用未脫水的葉蠟石套包裹,在加溫過程中葉臘石能夠脫水,模擬一個水含量高且開放的流體環(huán)境.實驗后的樣品制備成雙面剖光的FTIR片,利用傅里葉變換紅外吸收光譜儀(FTIR)測試樣品的水含量,確認樣品在實驗過程中的實際水含量.

        實驗分為三種類型:A類實驗采用被動方式加載軸壓(接近靜巖壓力條件),在視在圍壓300MPa和室溫的條件下,以1.6×10-5的應變速率壓碎樣品,模擬斷層帶在同震過程中產生的脆性破裂;A+B類實驗在A類實驗基礎上繼續(xù)加載視在圍壓至800MPa,加溫樣品至600℃后,以10-6s-1的應變速率長時間緩慢加載樣品,模擬震后快速蠕變時期塑性變形機制愈合斷層帶裂縫;A+B+C類實驗在A+B類實驗基礎上繼續(xù)進行,當樣品屈服(應力-位移曲線完全走平,約48h)后,以10-2s-1的應變速率后退軸壓活塞,通過快速卸載樣品來模擬一個擴容過程,再以與B階段相同的應變速率重新加載樣品.如果樣品中微裂隙的愈合程度低,未完全愈合的微裂隙在快速卸載過程中將會擴展,重新加載可能會導致樣品沿微裂隙發(fā)生破裂,從而在應力-位移曲線上出現明顯的應力降.如果樣品中微裂隙的愈合程度高,在重新加載過程中樣品可能不會出現破裂與應力降.

        實驗樣品的顯微結構是確定愈合機制和比較微裂隙愈合程度的直接證據,為了保留愈合過程中的顯微結構,減少卸樣產生的后期變形,實驗結束時快速關閉加溫系統同時迅速降低軸壓至相對靜壓條件,再以相同應力缷載速率同時降低圍壓和軸壓.

        3 實驗結果

        本文給出四個實驗結果,其中A類實驗S10-29樣品未經烘干和浸泡處理,A+B類實驗S10-42樣品采用未烘干葉臘石包裹,實驗A+B+C類S10-45樣品經烘干處理后用鎳箔密封,A+B+C類實驗S10-48樣品采用純凈水浸泡后用鎳箔密封.實驗類型、樣品水含量和加載條件等信息列于表1.

        3.1 實驗力學數據

        為了便于對比,首先進行了簡單加載條件下的A類實驗S10-29.未經摩擦力校正的應力-位移曲線如圖2a所示,其中,曲線AB段為克服靜摩擦力過程,B點為最大靜摩擦力;曲線CD段為軸壓桿擠出軟介質(鉛和鹽)并與上剛玉柱A(見圖1)接觸過程;曲線DE段為樣品彈性變形階段;曲線EF段為樣品發(fā)生脆性變形階段,直到發(fā)生脆性破裂.

        經過軸壓摩擦力校正和面積校正后的A+B類實驗S10-42的力學曲線(見圖2b)給出含水較多的樣品在實驗B階段內的力學特征,表現為從硬化逐漸向穩(wěn)態(tài)轉變,同時曲線出現一個明顯的拐點,這代表了樣品內出現一次微破裂.

        經過軸壓摩擦力校正和面積校正后的A+B+C類實驗S10-45的力學曲線(見圖2c)給出了含水較少的樣品在實驗B和C階段內樣品的力學特征.在B階段實驗過程中,樣品的力學特征表現為先硬化后軟化;在C階段實驗過程中,樣品重新加載后發(fā)生了一次微破裂,應力-位移曲線上表現為約40MPa的應力降,隨著應變的增加,樣品的力學特征表現為持續(xù)的軟化.

        表1 實驗加載條件Table 1 Loading conditions of experiments

        圖2 實驗的力學曲線Fig.2 Stress-strain curves of the experiments

        經過軸壓摩擦力校正和面積校正后的A+B+C類實驗S10-48力學曲線(見圖2d)給出了含水較多的樣品在實驗B和C階段內樣品的力學特征.在B階段實驗過程中,樣品的力學特征以硬化為主,并逐漸向穩(wěn)態(tài)轉變,樣品發(fā)生了一次較大的微破裂(約40MPa),應力-應變曲線上表現為明顯的應力降;在C階段實驗過程中,樣品重新加載后出現了一次微弱的微破裂事件,隨著應變的增加,樣品的力學特征表現為持續(xù)的軟化.

        3.2 樣品的顯微結構

        圖3 原巖樣品的顯微結構(a)正交偏光下原巖(Carrara大理巖)的顯微照片,結構均勻;(b)在掃面電鏡的BSE模式下,顆粒邊界接觸緊密,顆粒粒度約60~100μm;(c)顆粒邊界和三聯點上分布著孔隙;(d)在掃面電鏡的SE模式下,平整的方解石顆粒表面存在溶蝕坑和雙晶線;(e)測點e得到的能譜成分;(f)測點f得到的能譜成分.圖中黑色箭頭所指位置為顆粒邊界孔隙,白色箭頭所指位置為雙晶線.Fig.3 Microstructure of the starting rock sample(a)Micrograph of original sample (Carrara marble)under polarized light showing a uniform structure;(b)Image produced using backscatter electron mode shows a compacting grain contact.Grain size is from 60to 100μm;(c)Pores developed in the grain boundaries and triple junction;(d)Pits and twin lines developed on the smooth surfaces of calcite grains using secondary electron imaging;(e)The composition of the spectrum obtained by the measuring point e;(f)The composition of the spectrum obtained by the measuring point f.In the figure,the positions marked by black arrows are pores along grain boundaries,and the ones marked by white arrows are twin lines.

        實驗原始樣品Carrara大理巖結構均勻,無各向異性,雙晶發(fā)育(圖3a).方解石顆粒粒度范圍約60~100μm(圖3b),顆粒間緊密接觸,顆粒邊界較為平直.在中國地質大學(北京)地質過程與礦產資源國家重點實驗室的Hitachi H-8100型高分辨率掃描電子顯微鏡下,對經過噴金(Au)處理的實驗初始樣品和變形樣品進行了分析.在BSE模式下,實驗初始樣品顆粒邊界和三聯點部位存在孤立分布的微小孔隙(圖3c);在掃描電鏡的SE模式下,顆粒表面非常平整,雙晶線(圖3d)清晰可見,顆粒表面存在一些較小的溶蝕坑和凸起物,這可能是天然樣品在地質流體作用下出現的局部溶蝕和沉淀現象.能譜分析結果顯示(圖3(e,f)),大理巖的化學成分以CaCO3為主,含有少量的Mg元素,而圖像中黑色的部分包含了少量的Na元素,礦物的成分差異造成掃描電鏡下灰度的顯著差異.

        A類實驗S10-29樣品整體上發(fā)生破碎,礦物粒度大幅降低,產生了貫通樣品對角的主破裂面,破裂面與最大主應力夾角約30°,礦物顆粒呈現菱形和尖角狀,極細粒的碎屑基質分布在破裂面和破裂殘留的大顆粒間(圖4).

        圖4 A類實驗S10-29樣品的顯微結構正交偏光下主破裂面附近的顯微結構.圖中垂直方向為軸壓方向,水平方向為圍壓方向.Fig.4 Microstructure of sample S10-29 after A type experimentThe microstructure around the major fracture surface was taken under polarized light.In the photo,the confining pressure is applied in the horizontal direction,and shortening compressive stress is in the vertical direction.

        A+B類實驗S10-42樣品軸向壓縮形成鼓型(圖5a),在偏光顯微鏡下,樣品整體碎裂,礦物粒度非常低,仍能識別出共軛破裂面.在掃描電鏡BSE模式下,一系列線狀的破裂面被灰度呈現白色的礦物所部分充填(圖5b).樣品整體碎裂細粒化(圖5c),導致樣品中出現大量孔隙和裂隙.局部放大圖(圖5d)表明,礦物之間存在大量微裂隙與孔隙,白色部分的礦物呈現團塊狀和薄膜狀出現在破碎嚴重的位置,是新產生的礦物.能譜分析(圖5(e,f))表明,白色部分礦物成分與周圍礦物和原巖礦物成分一致,這說明圖像中的襯度不同是由礦物內部的晶體結構發(fā)生了變化造成.由于本實驗經歷了B階段差應力條件下的塑性變形,顯然這是動態(tài)重結晶作用生成的新礦物.那些局部出現的灰白色薄膜狀或團塊狀新礦物就是動態(tài)重結晶作用的產物,在局部愈合了微裂縫.

        A+B+C類實驗S10-45樣品在軸向壓縮過程中形成餅型(圖6a),在偏光顯微鏡下,礦物粒度顯著變細,發(fā)生了糜棱巖化,從樣品中心向樣品兩端產生了近似水平流動組構.在掃描電鏡的BSE模式下,樣品內存在大量未愈合的孔隙(圖6b)和主要分布在顆粒邊界附近的線狀裂隙(圖6c).穿晶裂隙被完全愈合,接近于原巖的灰度;孔隙也因為不斷愈合而縮小,在周圍形成灰白色新礦物(圖6c),出現在被愈合縮小的孔隙周圍呈現白色,而孔隙為黑色(圖6d).能譜分析表明(圖6(e,f)),兩個位置的礦物成分與周圍巖和原巖一致,這說明灰白色部分礦物的內部晶體發(fā)生塑性變形與周圍礦物的晶體結構接近,而白色部分礦物是動態(tài)重結晶正在生長的新礦物.顯然,通過動態(tài)重結晶作用,大部分裂隙和孔隙被愈合了.

        A+B+C類實驗S10-48樣品在軸向壓縮中形成了餅型(圖7a),在偏光顯微鏡下,粒度顯著降低,具有糜棱巖的結構特征.在掃描電鏡BSE模式下,基本沒有發(fā)現微裂隙,主要存在一些尺寸較小的孔隙(圖7b),白色部分礦物分布范圍很小,只存在孔隙周圍很小的范圍內(圖7c).在局部放大的圖中,沒有任何裂隙,礦物顆粒接觸緊密,顆粒邊界只存在類似于原巖孤立分布的孔隙(圖7d).能譜分析同樣表明,孔隙周圍白色、灰白色部分和周圍礦物及原巖的成分相同.顯然,通過動態(tài)重結晶作用,幾乎所有裂隙和大部分孔隙被愈合了.

        上述掃描電鏡分析結果表明,經歷C階段的實驗(樣品S10-45和S10-48),樣品內的微裂隙與孔隙比B階段(樣品S10-42)明顯減少,說明C階段變形對裂隙的愈合作用顯著.其中含水樣品(樣品S10-48)比干樣品(樣品S10-45)的裂縫和孔隙更少,顯示水加速了愈合作用.

        4 實驗樣品的水含量

        圖5 A+B類實驗S10-42樣品的顯微結構(a)正交偏光下實驗樣品的顯微照片,細粒化的樣品內存在一系列共軛破裂(白色虛線);(b)在掃描電鏡的BSE模式下,破裂面(白色虛線)被呈白色的新顆粒部分愈合;(c)樣品表現為碎裂變形的結構特征,礦物間存在大量微裂隙與孔隙;(d)照片(c)的局部放大圖,礦物的表面凸凹不平,局部出現的灰白色薄膜狀或團塊狀新礦物愈合了微裂縫;(e)測點e得到的能譜成分;(f)測點f得到的能譜成分.圖中垂直方向為軸壓方向,水平方向為圍壓應力方向.Fig.5 Microstructures of sample S10-42after A+B type experiment(a)Micrograph of the sample taken under polarized light.A series of conjugate fractures developed in the fine-grained sample marked by dashed lines;(b)Backscattered electron image showing that some fractures marked by dashed lines were partly healed by white-colored new grains;(c)The sample were crushed by cataclastic deformation,forming large number of micro-cracks and pores;(d)Magnified area of the image(c)showing rough grain surfaces and some micro-cracks healed by white-colored grains;(e)The composition of the sample at point e measured by EDS;(f)The composition of the sample at point f measured by EDS.In the photo,confining pressure is in the horizontal direction,and shortening compressive stress is in the vertical direction.

        用地震動力學國家重點實驗室的傅里葉變換紅外吸收光譜儀(Bruker Vertex-70v)和Hyperio紅外顯微鏡,對實驗樣品和原巖樣品進行了水含量測試.測試結果表明,實驗樣品和原巖樣品的紅外吸收光譜特征非常相近(圖8),最高吸收峰出現在2800~2900cm-1附近,波數3200cm-1和3600cm-1附近出現小的吸收尖峰主,在3400cm-1附近吸收峰不明顯.根據 H 的分峰標準[36-55],波數3600cm-1附近的吸收峰為顆粒邊界型液態(tài)水;波數3200cm-1附近的吸收峰可能為顆粒邊界冰型水或晶體缺陷OH,這幾種類型的水在實驗前后變化不大.波數2800~2900cm-1的吸收峰代表了孔隙水,由于實驗后樣品薄片進行了烘干,測得的孔隙水代表了樣品內部封閉孔隙和愈合裂隙中賦存的自由水.

        計算水含量時,采用Paterson方法[56],在2700~3800cm-1之間進行計算.在進行水含量測試前,所有實驗后樣品和原巖在恒溫150℃下烘干12h,去除樣品表面的吸附水和磨片過程中浸入的孔隙水,獲得高溫高壓條件下低孔隙樣品的水含量.4次實驗后樣品的水含量(表2,圖9)分別為:S10-42:0.12~0.14wt%H2O;S10-45:0.06~0.08wt%H2O;S10-48:0.12~0.15wt%H2O;原巖:0.10~0.12wt%H2O.從以上數據可以看出,實驗前烘干的樣品水含量最低,其余樣品的水含量相差不大.

        圖6 A+B+C類實驗S10-45樣品的顯微結構(a)實驗樣品在正交偏光下的顯微照片,應變約62%,發(fā)育了水平方向的流動組構;(b)在掃描電鏡的BSE模式下,樣品內存在大量孔隙;(c)部分愈合的微裂隙主要存在于顆粒邊界;(d)照片(c)局部放大圖顯示充分愈合穿晶裂隙的礦物呈灰色,新生成的礦物呈白色;(e)測點e得到的能譜成分;(f)測點f得到的能譜成分.圖中垂直方向為軸壓方向,水平方向為圍壓應力方向.Fig.6 Microstructures of sample S10-45after A+B+C type experiment(a)Micrograph of the sample taken under polarized light.The strain is about 62%and structures of horizontal flow developed in the sample;(b)Backscattered electron image showing porous structure;(c)Most of the partly-h(huán)ealed microcracks lie around grain boundaries;(d)Magnified area of image(c)showing the grains which fully healed transgranular microcracks in gray color,and the new growing grains in white color;(e)The composition of the sample at point e measured by EDS;(f)The composition of the sample at point f measured by EDS.In the photo,confining pressure is in the horizontal direction,and shortening compressive stress is in the vertical direction.

        實驗樣品和原巖樣品的水含量測試表明,實驗前烘干的樣品水含量最低,實驗S10-42和S10-48樣品的水含量略高,根據Rybacki等[57]給出的實驗中“干”和“濕”的水含量標準0.05wt%H2O判斷,所有實驗樣品都是“濕”的.存在深部高壓流體的中地殼斷層帶內都存在流體和水巖反應[24-26],推斷其處于“濕”的條件下,因此在實驗室條件下,采用不同水含量的“濕”樣品用來模擬自然條件下水對斷層帶裂隙愈合的影響是合理的.

        表2 利用FTIR測試獲得的原巖和實驗樣品的水含量Table 2 Water content of the original sample and samples after deformation measured using FTIR

        圖7 A+B+C類實驗S10-48樣品的顯微結構(a)實驗樣品在正交偏光下的顯微照片,應變約55%;(b)在掃描電鏡的BSE模式下,樣品內未發(fā)現明顯的破裂面;(c)樣品內未見微裂隙,只存在少量孔隙;(d)圖像(c)局部放大圖像顯示礦物顆粒邊界緊密連接;(e)測點e得到的能譜成分;(f)測點f得到的能譜成分.圖中垂直方向為軸壓方向,水平方向為圍壓應力方向.Fig.7 Microstructures of sample S10-48after A+B+C type experiment(a)Micrograph of the sample taken under polarized light.The total strain is about 55%;(b)Backscattered electron image showing no significant fractures in the sample;(c)Few pores exist in the sample,and there are no microcracks;(d)Magnified area of image(c)showing close contact between grains;(e)The composition of the sample at point e measured by EDS,(f)The composition of the sample at point f measured by EDS.In the photo,confining pressure is in the horizontal direction,and shortening compressive stress is in the vertical direction.

        5 討 論

        5.1 實驗樣品在不同類型實驗中的變形機制

        A類實驗處于較快的應變速率和室溫條件下,實驗后樣品(S10-29)的顯微結構(圖4)顯示,樣品內礦物整體破碎,細?;牡V物顆粒呈棱角狀,并產生了破裂面,此外,A+B類實驗后樣品內仍能識別出共軛破裂面的痕跡,雖然A類實驗力學曲線(圖2a)并未出現應力降,但上述證據都表明,實驗A階段內樣品的變形機制以脆性變形為主.

        A+B類實驗的B階段處于發(fā)生塑性變形的條件下,實驗后樣品(S10-42)的顯微結構(圖5)顯示,樣品內礦物的粒度進一步降低,礦物顆粒內出現了波狀消光,樣品包含大量的微裂隙和孔隙,部分被動態(tài)重結晶的新生礦物充填愈合.實驗B階段的力學曲線(圖2b)前半段表現為硬化特征,這指示了樣品內發(fā)生了礦物粒度的降低,由于經歷了實驗A階段的樣品內存在大量微裂隙和破裂面,礦物的變形以機械破碎為主,同時伴隨著礦物晶體的塑性變形,因此變形機制以碎裂變形為主.實驗B階段力學曲線(圖2b)的后半段表現為逐漸向穩(wěn)態(tài)過渡,這指示了樣品內礦物顆粒的生長(動態(tài)重結晶作用的生長階段)和顆粒細?;C械破碎或亞顆粒化)逐漸向平顆粒開始重結晶生長愈合微裂隙,因而實驗C階段后期的應力-應變曲線(圖2c)表現為持續(xù)的軟化.在含水較多的樣品(S10-48)內,整個樣品充分愈合并形成顆粒表面平整的緊密結構,這說明該樣品在實

        驗B階段過程中愈合程度較高,樣品的應力-應變曲線(圖2d)逐漸表現為穩(wěn)態(tài),而快速卸載軸壓對樣品的影響很小,重新加載樣品后未出現明顯的微破裂,重新加載的應力-應變曲線初期仍表現為穩(wěn)態(tài).隨著應變的增加,含水較多的樣品(S10-48)頂部和底部都出現了一些粒度較大的動態(tài)重結晶顆粒,這能夠解釋該次實驗C階段的力學曲線(圖2d)從穩(wěn)態(tài)向弱化的轉變.

        圖8 實驗樣品薄片厚度歸一化后的紅外吸收光譜Fig.8 Absorbance spectra normalized by thickness of thin sections

        圖9 原巖和實驗后樣品的水含量對比Fig.9 Comparison of water content between the original sample and the samples after deformation

        5.2 水和應變促進了孔隙和裂隙的愈合

        對比含水較少樣品的實驗S10-45和含水較多樣品的實驗S10-48的力學曲線(圖2(c,d))發(fā)現,在實驗C階段過程中,實驗S10-45樣品出現了約40MPa的應力降,這代表樣品內部發(fā)生破裂,而實驗S10-48樣品只出現了一次很微弱的應力降.兩次實驗條件相似,這表明含水較多的樣品內未愈合的微裂隙相比含水較少樣品更少,經過軸壓快速卸載模擬的擴容作用后,樣品內主破裂面和微裂隙可能未發(fā)生顯著的擴展,這指示了水促進了礦物的動態(tài)重結晶作用,加速了微裂隙的愈合.

        對比含水較多的實驗S10-48樣品和含水較少的實驗S10-45樣品的顯微結構(圖6,7)發(fā)現,含水較多樣品內動態(tài)重結晶的礦物顆粒緊密接觸,顆粒表面平整,與原巖的緊密結構類似,而含水較少樣品內仍存在大量未愈合的微裂隙,這些顯微結構的證據同樣證明水促進了礦物的動態(tài)重結晶作用,加速了微裂隙的愈合.

        對比樣品應變不同而水含量近似的實驗S10-48樣品和S10-42樣品的顯微結構發(fā)現(圖5,7),大應變的樣品內礦物顆粒粒度雖然沒有明顯區(qū)別,但顆粒間的接觸更為緊密,一些礦物的顆粒邊界甚至難以識別.對比含水較少的實驗S10-45樣品的顯微結構(圖6),雖然因樣品含水少,水對裂隙愈合作用不充分,但樣品內的裂隙和孔隙尺寸也顯著小于S10-42樣品,這表明大的應變(強烈的動態(tài)重結晶作用)能夠促進了微裂隙的愈合,有效減少孔隙和裂隙尺寸.

        因此,在含水或大應變條件下,能夠促進礦物的動態(tài)重結晶作用,有效地愈合了微裂隙與孔隙,這應該是中地殼斷層帶內裂隙愈合與高壓流體形成的機制之一.

        5.3 脆塑性轉化帶內斷層的愈合機制

        對斷層帶構造巖研究表明,斷層帶不同的變形域(不同深度),斷層愈合的機制有差別.地震后,脆性域的斷層及其周圍巖石裂隙張開,地震前積累的高流體壓力轉變?yōu)殪o水壓,隨著流體高壓消失,流體向上排出,原先溶解于高壓流體中的礦物質(巖鹽、方解石、石英等)在裂隙中析出結晶,形成脈體,愈合了斷層帶中 的 裂 隙[21-23,27,58-60];而 在 脆 塑 性 轉 化 域,斷層帶中的碎裂的長石發(fā)生水解反應,生成的含水礦物綠泥石、綠簾石、云母等逐漸愈合了斷層[25,27-28,58,60].在塑性變形域,斷層帶愈合主要通過變形引起石英的壓溶、沉淀作用、動態(tài)和靜態(tài)重結晶作用[22-23,27-31,61-63]實現.上述的斷層愈合機制分類只強調了空間上的不同,但忽視了時間上的差別.在地震循環(huán)的周期中,脆塑性轉化帶內斷層的應變速率和滲透率會發(fā)生變化[61-63],這可能會引起斷層愈合的主要機制的改變.

        本文采用大理巖樣品開展的裂隙愈合實驗表明,方解石的動態(tài)重結晶作用能夠愈合微裂隙和孔隙,這種機制有利于高壓流體的形成.在脆塑性轉化帶附近,石英能夠發(fā)生動態(tài)重結晶作用,這與方解石的變形機制相似.在實驗室內,Carrara大理巖在600℃的溫度下即可發(fā)生動態(tài)重結晶作用[35],較低溫度需要較長愈合時間.此外,在600℃的實驗溫度下,方解石的溶解度很低,不易發(fā)生壓溶蠕變[34],有利于研究水對單一動態(tài)重結晶作用的影響.如果直接采用石英作為實驗樣品,實驗需要更高的溫度和更長的時間,而且石英動態(tài)重結晶對微裂隙愈合沒有方解石顯著.綜上所述,大理巖樣品在本文開展的實驗中屬于相似材料,研究水和應變對方解石的動態(tài)重結晶作用的影響,目的在于來推斷脆塑性轉化帶內石英的愈合作用.

        在實驗室的條件下,礦物內裂隙和孔隙尺寸微小,它們的愈合具有充足的物質來源.在野外斷層帶中,裂隙尺寸較大,裂縫愈合比較緩慢,破碎的斷層帶內存在流體-巖石相互作用,加速了物質成分的遷移與擴散,流體攜帶的大量容易溶解的礦物,容易在裂隙(流體運移通道)周圍發(fā)生沉淀,而流體本身又能夠促進沉淀礦物發(fā)生壓溶或動態(tài)重結晶作用,這種綜合作用可以加速斷層帶內裂隙愈合.在脆塑性轉化帶中,滿足上述條件的理想礦物是石英,能夠引起震后裂縫被不斷愈合.在龍門山地區(qū)的映秀—北川斷裂帶南段雞冠山附近出露的韌性剪切帶露頭,找到以動態(tài)重結晶作用變形的石英脈充填愈合了脆性裂縫,這可能指示了溶解在流體中的石英在沉淀和動態(tài)重結晶共同的作用下逐步愈合了斷層帶內的脆性裂縫(圖10).

        圖10 雞冠山韌性剪切帶內存在裂縫愈合現象的剖面(a)花崗片麻巖中脆性裂縫被石英脈愈合;(b)在正交偏光下,石英脈內的石英顆粒表現為膨突方式動態(tài)重結晶的變形特征.Fig.10 The profile in Jiguanshan ductile shear zone showing crack healing(a)The crack in granitic gneiss healed by quartz veins;(b)Quartz in the horizontal veins deformed by dynamic recrystallization.

        當強震發(fā)生后,震后滑動使得脆塑性轉化帶底部處于高強度和高應變速率狀態(tài)[64-66],能夠發(fā)生脆性破裂,斷層帶滲透率增加.在震后快速蠕變時期,斷層帶內裂縫存在流體活動,這對應著本文實驗中的含水條件,而較高的應變速率對應著本文實驗中的較大應變條件,這兩種條件都能促進石英的動態(tài)重結晶作用,使其成為主導的愈合機制.此外,在動態(tài)重結晶作用愈合斷層裂隙的過程中,斷層核部積累的應變比斷層邊緣更大,更加有利于高壓流體的形成.本文的實驗表明,動態(tài)重結晶作用可能成為震后快速蠕變時期脆塑性轉化帶內斷層愈合的主要機制,斷層核部相比斷層邊緣更有利于形成高壓流體.在間震期,脆塑性轉化帶的斷層強度和應變速率恢復到較低水平,壓溶作用[67-70]和靜態(tài)重結晶作用[31]相比動態(tài)重結晶作用更易發(fā)生,可能成為該時期斷層愈合的主要機制.

        6 結 論

        為了研究中地殼斷層帶內存在的接近靜巖壓力的高壓流體的形成機制和有利條件,本文采用Carrara大理巖樣品開展了脆塑性轉化-塑性變形條件下微裂隙愈合的高溫高壓模擬實驗,討論脆塑性轉化帶內裂隙的愈合作用,取得如下主要結論:

        (1)實驗樣品在A類實驗中發(fā)生脆性破裂,形成以破裂面為中心的破壞帶;實驗樣品在A+B類實驗的B階段以碎裂變形為主,樣品整體破碎,包含大量孔隙和微裂隙,細粒礦物發(fā)生動態(tài)重結晶作用;實驗樣品在A+B+C類實驗的C階段以塑性變形為主,形成糜棱組構,包含少量微裂隙和孔隙,顆粒接觸緊密,發(fā)生重結晶生長.

        (2)通過動態(tài)重結晶作用,大量在脆性變形階段形成的裂隙與孔隙被全部或部分愈合的事實表明,動態(tài)重結晶作用是斷層帶微裂隙和孔隙愈合的重要機制之一,這種愈合作用有利于斷層深部高壓流體形成.

        (3)含水多的實驗樣品內微裂隙和孔隙的愈合程度顯著高于含水少的實驗樣品,這表明水能夠促進礦物的動態(tài)重結晶作用,從而加快微裂隙的愈合速度.

        (4)較大應變的實驗樣品內微裂隙和孔隙的愈合程度顯著高于小應變的實驗樣品,這表明較大的應變有利于動態(tài)重結晶作用對微裂隙的愈合,由此推測,在中地殼斷層帶內應變速率較高的位置或震后快速蠕變時期,其裂隙愈合速度更快.

        (5)在映秀—北川斷裂帶南段出露的韌性剪切帶露頭發(fā)現,脆性裂縫被以動態(tài)重結晶方式變形的石英脈愈合.這表明在有流體溶解、攜帶和沉淀的作用下,石英的動態(tài)重結晶作用是震后快速蠕變時期脆塑性轉化帶內裂隙愈合的重要機制之一.

        (References)

        [1]劉順,劉樹根,宋春彥等.龍門山中央斷裂運動學研究.成都理工大學學報 (自然科學版),2008,35(4):463-470.Liu S,Liu S G,Song C Y,et al.A study on the kinematics of the Longmen central fault in Sichuan,China.Journal of Chengdu University of Technology(Science and Technology Edition)(in Chinese),2008,35(4):463-470.

        [2]胡新偉,王道永.映秀斷裂帶構造巖,顯微構造及組構特征和形成機制討論.成都理工學院學報,1995,22(4):54-59.Hu X W, Wang D Y. Characteristics of tectonite,microstructure and fabric and formation mechanism of Yingxiu fault zone in the middle Longmen mountains.Journal of Chengdu University of Technology (in Chinese),1995,22(4):54-59.

        [3]熊紹柏,滕吉文,尹周勛等.攀西構造帶南部地殼與上地幔結構的爆炸地震研究.地球物理學報,1986,29(3):235-244.Xiong S B,Teng J W,Yin Z X,et al.Explosion seismological study of the structure of the crust and upper mantle at southern part of the Panxi tectonic belt.Chinese J.Geophys.(in Chinese),1986,29(3):235-244.

        [4]王椿鏞,吳建平,樓海等.川西藏東地區(qū)的地殼P波速度結構.中國科學 (D輯),2003,33(增刊):181-189.Wang C Y,Wu J P,Lou H,et al.P-wave crustal velocity structure in western Sichuan and eastern Tibetan region.Science in China (Series D),2003,46(S2):254-265.

        [5]徐錫偉,聞學澤,葉建青等.汶川MS8.0地震地表破裂帶及其發(fā)震構造.地震地質,2008,30(3):597-629.Xu X W,Wen X Z,Ye J Q,et al.The MS8.0Wenchuan earthquake surface ruptures and its seismogenic structure.Seismology and Geology (in Chinese),2008,30(3):597-629.

        [6]李海兵,王宗秀,付小方等.2008年5月12日汶川地震(MS8.0)地表破裂帶的分布特征.中國地質,2008,35(5):803-813.Li H B,Wang Z X,Fu X F,et al.The surface rupture zone distribution of the Wenchuan earthquake(MS8.0)happened on May 12th,2008.Geology in China (in Chinese),2008,35(5):803-813.

        [7]劉靜,張智慧,文力等.汶川8級大地震同震破裂的特殊性及構造意義——多條平行斷裂同時活動的反序型逆沖地震事件.地質學報,2008,82(12):1707-1722.Liu J,Zhang Z H,Wen L,et al.The MS8.0Wenchuan earthquake co-seismic rupture and its tectonic implications——an out-of-sequence thrusting event with slip partitioned on multiple faults.Acta Geologica Sinica (in Chinese),2008,82(12):1707-1722.

        [8]陳桂華,徐錫偉,鄭榮章等.2008年汶川MS8.0地震地表破裂變形定量分析——北川—映秀斷裂地表破裂帶.地震地質,2008,30(3):723-738.Chen G H,Xu X W,Zheng R Z,et al.Quantitative analysis of the co-seismic surface rupture of the 2008Wenchuan earthquake,Sichuan,China along the Beichuan-Yingxiu fault.Seismology and Geology (in Chinese),2008,30(3):723-738.

        [9]付碧宏,王萍,孔屏等.四川汶川5.12大地震同震滑動斷層泥的發(fā)現及構造意義.巖石學報,2008,24(10):2237-2243.Fu B H,Wang P,Kong P,et al.Preliminary study of coseismic fault gouge occurred in the slip zone of the Wenchuan Ms8.0earthquake and its tectonic implication.Acta Petrologica Sinica (in Chinese),2008,24(10):2237-2243.

        [10]何宏林,孫昭民,王世元等.汶川MS8.0地震地表破裂帶.地震地質,2008,30(2):359-362.He H L,Sun Z M,Wang S Y,et al.Rupture of the MS8.0 Wenchuan Earthquake. Seismology and Geology (in Chinese),2008,30(2):359-362.

        [11]李細光,于貴華,徐錫偉.汶川MS8.0地震基巖中的地表破裂.地震地質,2008,30(4):989-995.Li S G,Yu G H,Xu X W.Surface ruptures in bedrock of the MS8.0Wenchuan earthquake.Seismology and Geology (in Chinese),2008,30(4):989-995.

        [12]李傳友,魏占玉.2008年汶川MS8.0地震北川以北段地表破裂變形的主要樣式.第四紀研究,2009,29(3):416-425.Li C Y,Wei Z Y.Representative patterns of coseismic deformation along surface rupture north to Beichuan city of 2008Wenchuan Ms8.0earthquake.Quaternary Sciences,2009,29(3):416-425.

        [13]Xu X W,Wen X Z,Yu G H.Coseismic reverse-and obliqueslip surface faulting generated by the 2008 Mw7.9Wenchuan earthquake,China.Geology,2009,37(6):515-518.

        [14]陳云泰,許力生,張勇等.2008年5月12日汶川特大地震震源特性分析報告.2008,http://www.csi.ac.cn/sichuan/chenyuntai.pdf.Chen Y T,Xu L S,Zhang Y,et al.Report of main-shock source character of Wenchuan strong earthquake happened at 05-12-2008.2008, http://www.csi.ac.cn /sichuan/chenyuntai.pdf.

        [15]張瑞青,吳慶舉,李永華等.汶川中強余震震源深度的確定及其意義.中國科學D輯:地球科學,2008,38(10):1234-1241.Zhang R Q,Wu Q J,Li Y H,et al.Focal depths for moderate-sized aftershocks of the Wenchuan MS8.0 earthquake and their implications.Science China Earth Sciences,2008,51(12):1694-1702,doi:10.1007/s11430-008-0140-2.

        [16]朱艾瀾,徐錫偉,刁桂苓等,汶川Ms8.0地震部分余震重新定位及地震構造初步分析.地震地質,2008,30(3):759-767.Zhu A L,Xu X W,Diao G L,et al.Relocation of the Ms8.0 Wenchuan earthquake sequence in part:preliminary seismotectonic analysis.Seismology and Geology (in Chinese),2008,30(3):759-767.

        [17]黃媛,吳建平,張?zhí)熘械?,汶?.0級大地震及其余震序列重定位研究.中國科學 D輯:地球科學,2008,38(10):1242-1249.Huang Y,Wu J P,Zhang T Z,et al.Relocation of the M8.0 Wenchuan earthquake and its aftershock sequence.Science China Earth Sciences,2008,51(12):1703-1711.doi:10.1007/s11430-008-0135-z.

        [18]呂堅,蘇金蓉,靳玉科等,汶川8.0級地震序列重新定位及其發(fā)震構造初探.地震地質,2008,30(4):917-925.LüJ,Su J R,Jin Y K,et al.Discussion on relocation and seismo-tectonics of the Ms8.0Wenchuan earthquake sequences.Seismology and Geology (in Chinese),2008,30(4):917-925.

        [19]陳九輝,劉啟元,李順成等,汶川Ms8.0地震余震序列重新定位及其地震構造研究.地球物理學報,2009,52(2):390-397.Chen J H,Liu Q Y,Li S C,et al.Seismotectonic study by relocation of the Wenchuan Ms8.0earthquake sequence.Chinese J.Geophys.(in Chinese),2009,52(2):390-397.

        [20]周永勝,何昌榮.汶川地震區(qū)的流變結構與發(fā)震高角度逆斷層滑動的力學條件.地球物理學報,2009,52(2):474-484.Zhou Y S,He C R.The rheological structures of crust and mechanics of high-angle reverse fault slip for Wenchuan Ms8.0earthquake.Chinese J.Geophys.(in Chinese),2009,52(2):474-484.

        [21]Sibson R H,Robert F,Poulsen K H.High-angle reverse faults,fluid-pressure cycling,and mesothermal gold-quartz deposits.Geology,1988,16(6):551-555.

        [22]Xu Z Q,Ji S C,Li H B,et al.Uplift of the Longmen Shan range and the Wenchuan earthquake.Episodes,2008,31(3):291-301.

        [23]嵇少丞,王茜,孫圣思等.亞洲大陸逃逸構造與現今中國地震活動.地質學報,2008,82(12):1643-1667.Ji S C,Wang Q,Sun S S,et al.Continental extrusion and seismicity in China.Acta Geologica Sinica (in Chinese),2008,82(12):1643-1667.

        [24]Küster M,Stockhert B. High differential stress and sublithostatic pore fluid pressure in the ductile regime—microstructural evidence for short-term post-seismic creep in the Sesia Zone,Western Alps.Tectonophysics,1999,303(1-4),263-277.

        [25]Yonkee W A,Parry W T,Bruhn R L.Relations between progressive deformation and fluid-rock interaction during shear-zone growth in a basement-cored thrust sheet,Sevier orogenic belt,Utah.American Journal Science,2003,303(1):1-59.

        [26]Han L,Zhou Y S,He C R.The fluid character of deformed granite and sublithostatic fluid pressure in the ductile shear zone along Wenchuan Earthquake Fault (Abstract).AOGS2011conference in Tapei.2011,SE83-A016.

        [27]Wintsch R P,Kvale C M,Kisch H J.Open-system,constant-volume development of slaty cleavage,and strain induced replacement reactions in the Martinsburg Formation,Lehigh Gap,Pennsylvania.Geological Society of America Bulletin,1991,103(7):916-927.

        [28]Wintsch R P,Yi K.Dissolution and replacement creep:a significant deformation mechanism in mid-crustal rocks.Journal Structural Geology,2002,24(6-7):1179-1193.

        [29]Gratier J P,Favreau P,Renard F,et al.Fluid pressure evolution during the earthquake cycle controlled by fluid flow and pressure solution crack sealing.Earth Planets Space,2002,54(11):1139-1146.

        [30]Gratier J P,Favreau P,Renard F.Modeling fluid transfer along California faults when integrating pressure solution crack sealing and compaction processes.Journal Geophysical Resesrch,2003, 108 (B2): 2104, doi: 10.1029/2001JB000380.

        [31]Trepmann C A,Stockhert B,Dorner D,et al.Simulating coseismic deformation of quartz in the middle crust and fabric evolution during postseismic stress relaxation–an experimental study.Tectonophysics,2007,442(1-4):83-104.

        [32]韓亮,周永勝,黨嘉祥等.3GPa熔融鹽固體介質高溫高壓三軸壓力容器的溫度標定.高壓物理學報,2009,25(6):407-415.Han L,Zhou Y S,Dang J X,et al.Temperature calibration for 3GPa molten salt medium triaxial pressure vessel.Chinese Journal of High Pressure Physics (in Chinese),2009,25(6):407-415.

        [33]韓亮,周永勝,何昌榮等.3GPa熔融鹽固體介質高溫高壓三軸壓力容器的圍壓標定.高壓物理學報,2011,25(3):213-220.Han L,Zhou Y S,He C R,et al.Confined pressure calibration for 3GPa molten salt medium triaxial pressure vessel under high pressure and temperature.Chinese Journal of High Pressure Physics(in Chinese),2011,25(3):213-220.

        [34]Grater J P,Gueydan F.Deformation in the Presence of fluids and mineral reactions:Effect of fracturing and fluid-rocks interaction on seismic cycle.// Handy M R,Hirth G,Hovius N eds.Tectonic Fault:Agents of Change on a Dynamic Earth.Cambridge:The MIT Press,2007:319-356.

        [35]Rybacki E,Renner J,Konrad K,et al.A servohydraulicallycontrolled deformation apparatus for rock deformation under conditions of ultra-h(huán)igh pressure metamorphism.Pure and Applied Geophysics,1998,152(3):579-606.

        [36]Aines R D,Kirby S H,Rossman G R.Hydrogen speciation in synthetic quartz.Physics and Chemistry Minerals,1984,11(5):204-212.

        [37]Aines R D,Rossman G R.Water in minerals?A peak in the infrared.Journal Geophysical Research,1984,89(B6):4059-4071.

        [38]Skogby H,Bell D R,Rossman G R.Hydroxide in pyroxene:variations in the natural environment.Am.Mineral.,1990,75(7-8):764-774.

        [39]Skogby H,Rossman G R.OH (super-)in pyroxene:an experimental study of incorporation mechanisms and stability.Am.Minera.l,1989,74(9-10):1059-1069.

        [40]Rossman G R.Studies of OH in nominally anhydrous minerals.Physics and Chemistry Minerals,1996,23(4-5):299-304.

        [41]Bell D R,Ihinger P D,Rossman G R.Quantitative analysis of trace OH in garnet and pyroxenes.Am.Mineral.,1995,80(5-6):465-474.

        [42]Bell D R,Rossman G R,Maldener J,et al.Hydroxide in olivine:aquantitative determination of the absolute amount and calibration of the IR spectrum.Journal of Geophysical Research,2003,108,doi:10.1029/2001JB000679.

        [43]Bell D R,Rossman G R,Moore R O.Abundance and partitioning of OH in a high-pressure magmatic system:megacrysts from the Monastery Kimberlite,South Africa.Journal of Petrology,2004,45(8):1539-1564.

        [44]Bell D R,Rossman G R.Water in earth’s mantle:the role of nominally anhydrous minerals.Science,1992,255(5050):1391-1397.

        [45]Beran A.A model of water allocation in alkali feldspar,derived from infrared spectroscopic investigations.Physics and Chemistry Minerals,1986,13(5):306-310.

        [46]Beran A.OH groups in nominally anhydrous framework structures:An infrared spectroscopic investigation of danburite and labradorite.Physics Chemistry Minerals,1987,14(5):441-445.

        [47]Johnson E A,Rossman G R.A Survey of hydrous species and concentrations in igneous feldspars.Am.Mineral.,2004,89(4):586-600.

        [48]Johnson E A,Rossman G R. The concentration and speciation of hydrogen in feldspars using FTIR and1H MAS NMR spectroscopy.Am.Mineral.,2003,88(5-6):901-911

        [49]Libowitzky E,Beran A.IR spectroscopic characterization of hydrous species in minerals.//Beran A,Libowitzky E.Spectroscopic methods in mineralogy.EMU Notes in Mineralogy,2004,6:227-279.

        [50]Nakashima S, Matayoshi H,Yuko T,et al.Infrared microspectroscopy analysis of water distribution in deformed and metamorphosed rocks.Tectonophysics,1995,245(3-4):263-276.

        [51]Yamagishi H,Nakashima S,Ito Y.High temperature infrared spectra of hydrous microcrystalline quartz.Physics and Chemistry of Minerals,1997,24(1):66-74.

        [52]Yanagisawa N,Fujimoto K,Nakashima S,et al.Micro FTIR study of the hydration-layer during dissolution of silica glass.Geochimica et Cosmochim Acta,1997,61(6):1165-1170.

        [53]Suzuki S,Nakashima S.In-situ IR measurements of OH species in quartz at high temperatures.Physics Chemistry Minerals,1999,26(3):217-225.

        [54]Ito Y, Nakashima S. Water distribution in low-grade siliceous metamorphic rocks by micro-FTIR and its relation to grain size:A case from the Kanto Mountain region,Japan.Chemical Geology,2002,189(1-2):1-18.

        [55]De Meer S,Spiers C J,NakashimaS.Structure and diffusive properties of fluid-filled grain boundaries:An in-situ study using infrared(micro)spectroscopy.Earth and Planetary Science Letters,2005,232(3-4):403-414.

        [56]Paterson M S.The determination of hydroxyl by infrared absorption in quartz,silicate glasses and similar materials.Bulletin de Minéralogie,1982,105:20-29.

        [57]Rybacki E,Gottschalk M,Wirth R,et al.Influence of water fugacity and activation volume on the flow properties of finegrained anorthite aggregates.Journal of Geophysical Research,2006,111:B03203.

        [58]Whitmeyer S J,Wintsch R P.Reaction localization and softening of texturally hardened mylonites in a reactivated fault zone,central Argentina.J.Meta.Geology.,2005,23(6):411-424.

        [59]Brantley S L,Evans B,Hickman S H,et al.Healing of microcracks in quartz:Implications for fluid flow.Geology,1990,18(2):136-139.

        [60]Moore J C,Saffer D.Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan:An effect of diagenetic to low-grade metamorphic processes and increasing effective stress.Geology,2001,29(2):183-186.

        [61]Trepmann C A,Stockhert B.Mechanical twinning of jadeitean indication of synseismic loading beneath the brittle-plastic transition.International Journal of Earth Sciences,2001,90(1):4-13.

        [62]Trepmann C A,Stockhert B.Cataclastic deformation of garnet:A record of synseismic loading and postseismic creep.Journal of Structural Geology,2002,24(11):1845-1856.

        [63]Trepmann C A, Stockhert B. Quartz microstructures developed during non-steady state plastic flow at rapidly decaying stress and strain rate.Journal of Structural Geology,2003,25(12):2035-2051.

        [64]Ellis S,St?ckhert B.Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust.Journal of Geophysical Research,2004,109,B05407,doi:10.1029/2003JB002744.

        [65]Ellis S,Stockhert B.Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust.Journal of Geophysical Research,2004,109:B05407,doi:10.1029/2003JB002744.

        [66]Ellis S,Stockhert B.Imposed strain localization in the lower crust on seismic timescales.Earth,Planets and Space,2004,56(12):1103-11029.

        [67]Zhang X D,Salemans J,Peach C J,et al.Compaction experiments on wet calcite powder at room temperature:Evidence for operation of intergranular pressure solution.//De Meer S,Drury M R,de Bresser J H P,et al.Deformation Mechanisms,Rheology and Tectonics:Current Status and Future Perspectives.Geol.Soc.Spec.Publ.,2002,200:29-39.

        [68]Zhang X M,Spiers C J.Compaction of granular calcite by pressure solution at room temperature and effects of pore fluid chemistry.Int.J.Rock Mech.Min.Sci.,2005,42(7-8):950-960,doi:10.1016/j.ijrmms.2005.05.017.

        [69]Zhang X M,Spiers C J.Effects of phosphate ions on intergranular pressure solution in calcite:An experimental study.Geochim.Cosmochim.Acta,2005,69(24):5681-5691,doi:10.1016/j.gca.2005.08.006.

        [70]Zhang X M,Spiers C J,Peach C J.Compaction creep of wet granular calcite by pressure solution at 28℃to 150℃.Journal of Geophysical Research,2010,115:B09217,doi:10.1029/2008JB005835.

        猜你喜歡
        裂隙礦物斷層
        裂隙腦室綜合征的診斷治療新進展
        煤泥水中煤與不同礦物相互作用的模擬研究
        我國首列106節(jié)重載列車抵達濟礦物流
        山東國資(2020年4期)2020-06-10 09:14:48
        基于NAIRS和PCA-SVM算法快速鑒別4種含鐵礦物藥
        中成藥(2018年2期)2018-05-09 07:19:55
        裂隙燈檢查的個性化應用(下)
        《老炮兒》:在時代裂隙中揚棄焦慮
        電影新作(2016年1期)2016-02-27 09:16:48
        斷層破碎帶壓裂注漿加固技術
        河南科技(2014年18期)2014-02-27 14:14:52
        關于錨注技術在煤巷掘進過斷層的應用思考
        河南科技(2014年7期)2014-02-27 14:11:06
        非完全充填裂隙的應力應變特性研究
        河南科技(2014年11期)2014-02-27 14:09:42
        斷層帶常用鉆進施工工藝
        城市地質(2013年4期)2013-03-11 15:20:53
        女同av免费在线播放| 日韩电影一区二区三区| 日本老熟欧美老熟妇| 国产va精品免费观看| 精品国产3p一区二区三区| 蜜桃臀av一区二区三区| 久久精品国产亚洲av果冻传媒| 免费国产黄网站在线观看可以下载 | 国产一区在线视频不卡| 亚洲色图在线免费观看视频| 精品三级av无码一区| 亚洲av无码片一区二区三区| 亚洲欧美国产成人综合不卡| 亚洲成av人片极品少妇| 日本又色又爽又黄的a片18禁| 国产精品久久久久久久久免费 | 公和我做好爽添厨房| 另类内射国产在线| av狼人婷婷久久亚洲综合| 成人影院视频在线播放| 无遮挡激情视频国产在线观看| 亚洲熟妇久久国产精品| 亚洲大尺度在线观看| 青青草在线成人免费视频| 国产乱人伦av在线麻豆a| 久久综合久久鬼色| 国产亚洲欧美另类久久久| 蜜桃视频永久免费在线观看| 精品人妖一区二区三区四区| 美女视频黄的全免费视频网站| 手机看片1024精品国产| 国产丝袜在线福利观看| 色综合久久蜜芽国产精品| 亚洲av无码之国产精品网址蜜芽| 国产成人久久综合热| 亚洲国产精品成人久久av| 久久精品国产亚洲av麻豆床戏| 免费国产黄网站在线观看视频| 欧美人与动牲猛交xxxxbbbb| 亚洲成a人网站在线看| 全亚洲高清视频在线观看|