亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        蕨菜中的一個(gè)新高黃烷醇

        2013-05-17 00:44:26陳乃東陳乃富陳存武

        陳乃東,陳乃富* ,王 濤,張 莉,陳存武

        1皖西學(xué)院生物與制藥工程學(xué)院;2植物細(xì)胞安徽省工程技術(shù)研究中心,六安237012;3中國(guó)藥科大學(xué)新藥篩選中心,南京210009

        Introduction

        Pteridium aquilinum(L.)Kuhn(Pteridaceae)is a herbaceous perennial plant. The immature, tightly curled emerging fronds are commonly used as a vegetable.The species is traditionally used to heal jaundice with damp-heat pathogen,rheum arthritis,and hypertension[1]by the Chinese people and is broadly distributed in Eastern and Southern China.Previous phytochemical investigation of this plant has led to the isolation of a variety of proanthocyanidins[2,3],and flavonol glycosides[4-10]and homoflavonoids[11].As a partof serial investigations on Pteridaceae,and in order to seek more novel bioactive compounds,an extensive chemical study on P.a(chǎn)quilinum was carried out,and a novel homoflavonoid with an unprecedented homoflavonol skeletone(1)(Fig.1)together with three known flavonoids quercetin 3-O-β-D-glucopyranoside(2),rutin(3)and kaempferol 3-O-β-D-glucopyranoside(4),was obtained from the ethyl acetate extract.To our knowledge,this is the first reported case about the rare homoflavonoid isolated from P.a(chǎn)quilinum.Described herein are the isolation,structural elucidation and cy-totoxic evaluation of the novel flavonoid(1).

        Fig.1 Chem ical structure of com pound 1

        M aterials and M ethods

        General

        TLC was performed on silica-gel plates(Qingdao Marine Chemical Factory),with AcOEt:MeOH:H2O(20∶1∶0.5)as eluent;visualization under UV light and by spraying with AlCl3(5%in EtOH).Column chromatography(CC):silica gel(SiO2200-300;Qingdao Marine Chemical Factory).Sephadex LH-20(Sigma-Aldrich Co.,Ltd).Melting points:X4 micro melting point apparatus;Optical rotations(ORD):JASCO P-1020 polarimeter;IR Spectra:Avatar 670 FTIR spectrophotometer(Thermo Nicolet),as KBr pellets;in cm–1.EI-MS:a Bruker APEX II mass spectrometer(Bruker Daltonik GmbH,Bremen,Germany);in m/z(rel.%).1H and13C NMR Spectra:Bruker AM-400 MHz and DRX-500 MHz spectrometers,in DMSO-d6;δin ppm,J in Hz.

        Plantmaterial

        P.a(chǎn)quilinum were collected from Tiantangzhai,Anhui province,P.R.China,in July 2010 and identified by Professor Shou-biao Zhou of Anhui Normal University(specimen No.2010-07-3).

        Extraction and isolation

        The dried aerial parts(16.5 kg)were extracted with ethylether(50°C)to remove lipid soluble pigments.The gruffs remaining was extracted three times with 80%EtOH for 5 h under reflux.The extract was retrieved EtOH under reduced pressure to give a residue which was partitioned between petroleum ether,CHCl3,AcOEt,1-Butanol,and H2O three times successively.After evaporation,the AcOEt fraction(174 g)was chromatographed on a SiO2column gradiently eluted with AcOEt/MeOH(1∶0,40∶1,10∶1,2∶1,0∶1,v/v)and four fractions(Fr.1-4)were obtained from the part eluted by AcOEt.Fr.3(13.2 g)was submitted to Sephadex LH-20 chromatography with an eluent of MeOH/H2O to afford fractions P1-6.P2(130 mg)was subjected to Sephadex LH-20 repeatedly eluting with MeOH and further purified by recrystallization in MeOH/CHCl3(1∶1,v∶v)to yield compound 1(6 mg).AcOEt/MeOH(10∶1)fraction(32.0 g)was also repeatedly eluted with MeOH/H2O onto Sephadex LH-20 column and further purified by recrystallization in MeOH to yield compound 2(25 mg),3(100 mg)and 4(45 mg).

        Cytotoxicity assay

        Six human cancer cells linesweremaintained in RPMI-1640 medium.The cellswere cultured in Nunc disposable 384-well plates containing 45μL of growth medium per well and were incubated at 37℃in a humidified incubator with 5%CO2.5 μL of samples were added to the cultures at24 h of incubation.After 72 h of incubation with the samples,5 μL of Prestoblue(5 mg/mL)were added to each of the wells.The optical density wasmeasured using a Freedom EVOlyzer(TECAN,Switzerland)at 560 nm with reference wavelength at590 nm.In all experiments,three replicates were used.Adriamycin was used as positive control.

        Results and Discussion

        Structural identification

        Compound 1,yellow power,mp 172-173 ℃;[α]=+17°(c=0.05,MeOH);IR(KBr)νmax3325,1752,1721,1510,1014,1198,935 cm-1;Itsmolecular formula,C16H16O6,was established on the basis of HR-ESI-MS for the[M+H]+ion atm/z305.1036(calculated:305.1025).The1H NMR spectrum of 1(Table 1)showed six aromatic resonances atδH7.47(d,J=4.0 Hz,1H),7.04(d,J=2.0 Hz,1H),6.23(d,J=6.0 Hz,1H),7.01(dd,J=1.5,8.0 Hz,1H),6.76(d,J=8.0 Hz,1H),and 6.68(s,1H).The1H NMR spectrum of1 also indicated the presence of three aromatic hydroxyl groups atδH12.44,9.61,9.13 and two chelated hydroxyl groups atδH4.99,4.99.

        The13C and DEPT NMR spectra(Table 1)revealed the presence of one methylene,ninemethines(including three oxygenated alkane carbons δc69.8,67.7,65.4)and six quaternary carbons(involving three hydroxylated aromatic carbons δc145.5,148.4 and 166.0).The structure of 1 was suspected to be a flavanol on the basis of above-mentioned data.

        Table 1 The 1 H NMR(500 MHz),13 C NMR(125 MHz)data,HMBC and 1 H-1 H COSY correlations of com pound 1 in DM SO-d6

        The gross structure of 1 was elucidated by analysis of1H-1H COSY and HMBC spectra data in DMSO-d6.The1H-1H COSY spectra of 1 revealed connectivities of three partial structures:a(δH2.67/2.19-δH5.09-δH3.77-δH4.27),b(δH7.01-δH6.76),c(δH6.23-δH7.47)as shown in Fig.2.The HMBC cross-peaks of δH7.01 to δc145.5 and δc167.4,δH6.76 to δc125.5,and δH6.68(the H of δc138.5 according to HSQC spectrum)showed HMBC correlations to δc167.4(Table 1),suggested fragment b(δH7.01-δH6.76,assigned H-7,H-8),δc145.5(assigned C-5),δc138.5(assigned C-6), δc167.4(assigned C-9)and δc125.5(assigned C-10)(Fig.2,Table 1)might be in a ring(A ring of 1).The factδH7.47 exhibited HMBC correlations to δc127.9,δc166.0 and δc114.9,and δH7.04(the H ofδc114.9)showed HMBC correlations to δc148.4 and δc145.3,disclosed that fragment c(δH7.47-δH6.23,assigned H-5',H-6')and δc127.9(assigned C-1'),δc166.0(assigned C-2'),δc114.9(assigned C-3')and δc148.4(assigned C-4')in a ring(B ring of 1).As for fragment a(δH2.67/2.19-δH5.09-δH3.77-δH4.27),the HMBC correlations ofδH2.67/2.19 and δH5.09 to C-1'indicated thatδH5.09,δH3.77,δH4.27(Fig.2,Table 1)were the signals of the H of C ring(H-2,H-3,H-4)and B ring was confirmed to connect with C ring via C-11.Thus,a homoflavanol skeleton was confirmed in 1.

        Fig.2 The key 1 H,1 H-COSY and HMBC correlations of compound 1 in DMSO

        The three aromatic hydroxyl groups were assigned by the analysis of NOESY spectrum.The NOESY correlations ofδH9.61 and δH9.13(Fig.3),considering the HMBC and1H-1H cosy analysis,revealed the two aromatic hydroxyl groups were meta HO-of C ring of 1(assigned HO-C2'and HO-C4',respectively),and the aromatic hydroxyl group δH12.44 was HO-of A ring(assigned HO-C6).The H-2 showed NOESY correlations to H-3 while no crosspeakswere observed be-tween H-2 and H-4,H-3 and H-4.This suggested that the C-H chemical bonds at C-2 and C-3 were equatorial while axial bonds for the C-H at C-3 and C-4.Therefore,the configuration of H-2 and H-3,H-3 and C-4 were cis-and trans-, respectively. Thus, the structure of 1 was elucidated as 3,4,6,2',4'-penta hydroxyl-2,3-cis-homoflavan-3,4-trans-diol,a novel homoflavonoid with an unprecedented homoflavanol skeleton.

        Compounds 2-4 were identified by comparisons of their spectral data with the literature values as quercetin 3-O-β-D-glucopyranoside[12](2),which was first isolated from P.a(chǎn)quilinum,rutin[13](3)and kaempferol3-O-β-D-glucopyranoside[14](4),which had ever been isolated from this plant by F.Imperato[10]and T.Nakabayshi[15],respectively.

        Fig.3 Selected NOESY correlations and relative stereochem istry of com pound 1

        Cytotoxic activities

        The primary antitumor activities of compound 1-4 against six cancer cells were evaluated(Table 2).1 showed potent cytotoxic activities to melanoma cell A375(IC50=6.2 μM),glioma U-7MG(IC50=15.5 μM)and BEL-7402(IC50=38.4 μM)while no cytotoxic activities to hepatoma carcinoma cell BEL-7402,gastric carcinoma SGC-7901 and prostatic carcinoma PC-3 were observed in our experiments.The further investigations are undertaking.

        Table 1 In vitro cytotoxic activities of com pound 1-4

        This work was supported by the Natural Science Foundation of Anhui Province(No.090413113),the Provincial-Level Natural Science Foundation of Anhui Education Department(KJ2009A165, KJ20108259,KJ2012A277),National Natural Science Foundation of China(NSFC No.81274021)and the Research Project of Lu’an City(2011LWA001).The authors thank Dr.Dong-Jun Chen,analyzing and Testing Center of China Pharmaceutical University,for measurements of ESI-MS,NMR.The authors also thank Dr.Tao Wang,the National Drug Screening Center of China Pharmaceutical University,for detection of the cytotoxic activity of the compounds reported in the paper.

        1 Zhao SX,Huang TK,Ding ZZ.Tzu Haiof Traditional Chinese Medicine(III).Beijing:China Medical Science and Technology Press,1997.

        2 Markham KR.The Flavonoids Advances in Research Since 1980.London:Hapman and Hall,1988.83-84.

        3 Voirin B.Recherches chimiques,taxinomiques et physiologiques sur les flavonoids des pteridophytes.France:University of Lyon,PhD,1970.

        4 Imperato F.Kaempferol 3-O-(5"-feruloylapioside)from Pteridium aquilinum.Phytochem,1996,43:1421-1423.

        5 Imperato F.Kaempferol 7-O-rhamnoside-4-O-glucoside from Pteridium aquilinum.Phytochem,1998,47:911-913.

        6 Wang CY,Mahir PA,Bryan GT.Isolation of fumaric acid,succinic acid,astragalin isoquercitrin and tiliroside from Pteridium aquilinum.Phytochem,1973,12:2298-2299.

        7 Cooper GA.Chernotaxonomy and phytochemical ecology of bracken.Botan J Linn Soc,1976,73:35-46.

        8 Imperato F.Rhamnetin 3-O-laminaribioside from Pteridium aquilinum.Phytochem,1997,45:1729-1730.

        9 Imperato F,Minutiello P.Kaempferol-3-O-(6-O-caffeoylgluco-side)from Pteridium aquilinum.Phytochem,1997,45:199-200.

        10 Imperato F.Flavonol glycosides from Pteridium aquilinum.Phytochem,1995,40:1801-1802.

        11 Chen ND,Chen NF,Chen CW,etal.Separation and structure elucidation of a new homoflavanol derivative from Pteridium aquilinum(L.)Kuhn.Nat Prod Res,2013,Accepted.

        12 Liu H,Mou Y,Zhao JL,et al.Flavonoids from Halostachys caspica and their antimicrobial and antioxidant activities.Molecules,2010,15:7933-7945.

        13 Markham KR,Geiger H.The Flavonoids Advances in Research since 1986.London:Chapman & Hall,1994.

        14 Thirugnanasamambantham P,Viswanthan S,Reddy K,et al.Analgesic activity of certain bioflavonoids.Indian J Pharm Sci,1985,47:230-231.

        15 Nakabayshi T.Isolation of astragalin and isoquercitrin from bracken,Pteridium aquilinum.Bull Agric Chem Soc Jpn,1955,19:104-109.

        天然產(chǎn)物研究與開(kāi)發(fā)2013年5期

        天然產(chǎn)物研究與開(kāi)發(fā)的其它文章
        大果榕莖的化學(xué)成分
        久久噜噜噜| 日本va欧美va精品发布| 久久久精品人妻无码专区不卡| 呻吟国产av久久一区二区| 久久HEZYO色综合| av免费资源在线观看| av国产传媒精品免费| 曰本女人与公拘交酡免费视频 | 操B小视频国产| 亚洲国产日韩一区二区三区四区 | 一区二区三区一片黄理论片 | 亚洲日韩精品一区二区三区| 中文字幕人妻中文av不卡专区| 亚洲国产精品综合久久20| 国产人妻久久精品二区三区老狼| 无码人妻精品一区二区三区夜夜嗨 | 精品一区二区三区四区国产| 中国老熟妇自拍hd发布| 超碰Av一区=区三区| 久久99国产精品久久99密桃| 搡女人真爽免费视频大全| 少妇被躁爽到高潮无码文| 国产精品色内内在线播放| 亚洲一区二区在线观看av| 中文字幕中文有码在线| 婷婷四房播播| 久久中文字幕av第二页| 熟妇人妻无乱码中文字幕av| 强行无套内谢大学生初次| 国产在线一区二区三区av| 久久精品亚洲热综合一本色婷婷| 国产午夜精品av一区二区麻豆| av无码精品一区二区三区四区| 亚洲精品中文字幕二区| 自拍偷自拍亚洲精品第按摩| 人人爽久久涩噜噜噜av| 精品久久久久久蜜臂a∨| 精品人妻av中文字幕乱| 中文字幕一精品亚洲无线一区| 亚洲精品第一页国产精品| 日韩一区二区三区天堂|