張麗 李艷梅等
摘 要:采用圖像處理技術(shù)自動(dòng)估算牛肉眼肌橫切面特征值,為基于計(jì)算機(jī)視覺的牛肉品質(zhì)自動(dòng)分級(jí)檢測(cè)奠定基礎(chǔ)。以牛胴體6~7肋橫斷面圖像為試驗(yàn)材料,采用邊緣檢測(cè)、二值化處理技術(shù)等,運(yùn)用VisualC++6.0編程語言,對(duì)牛肉眼肌的眼肌面積、脂肪、肌肉總面積比、脂肪分布均勻度、眼肌圓度、肌肉和脂肪色度值5個(gè)特征參數(shù)進(jìn)行特征提取和檢測(cè)。結(jié)果表明:經(jīng)測(cè)量所得的眼肌面積越大,圓度越大,肌肉和脂肪色度值越高、大理石紋密度分布均勻的牛肉品質(zhì)越好,相反,眼肌面積小、圓度小、肌肉和脂肪色度值越低、密度分布不均勻的牛肉品質(zhì)低。該設(shè)計(jì)可有效計(jì)算眼肌面積和特征參數(shù),能代替常規(guī)分級(jí)方法,實(shí)現(xiàn)牛肉質(zhì)量等級(jí)的自動(dòng)判別。
關(guān)鍵詞:牛肉分級(jí);邊緣檢測(cè);二值化處理;自動(dòng)分級(jí)
中圖分類號(hào):TS251.52 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8123(2013)04-0010-05
2003年10月我國農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)《牛肉質(zhì)量分級(jí)標(biāo)準(zhǔn)》開始實(shí)施,鑒于牛肉眼肌橫切面包含了大理石紋、肉色、脂肪色、背膘厚度和眼肌面積等評(píng)定指標(biāo),所以在牛肉質(zhì)量的分級(jí)標(biāo)準(zhǔn)和體系中,進(jìn)行牛肉等級(jí)評(píng)定時(shí),通常都將眼肌面積橫切面作為主要的評(píng)定對(duì)象。但目前為止,國內(nèi)外的牛肉分級(jí)體系采用的分級(jí)方法還是以主觀的視覺評(píng)定為主,評(píng)定過程受到人為因素的干擾,不僅效率低,而且還會(huì)產(chǎn)生較大的誤差。因此,計(jì)算機(jī)視覺、人工神經(jīng)網(wǎng)絡(luò)和圖像處理技術(shù),被認(rèn)為是實(shí)現(xiàn)牛肉自動(dòng)分級(jí)的最有效的方法。在國外,1989年Chen Shengwei等[1]首次針對(duì)美國牛肉大理石花紋標(biāo)準(zhǔn)圖版,應(yīng)用圖像處理技術(shù)對(duì)美國牛肉的肌肉脂肪面積進(jìn)行計(jì)算,用于牛肉質(zhì)量分級(jí),并將其作為判定牛肉質(zhì)量等級(jí)的定量指標(biāo),在隨后的相關(guān)研究中,研究學(xué)者運(yùn)用圖像處理方法等技術(shù)分別有效的預(yù)測(cè)大理石紋、顏色等級(jí)、脂肪面積比、脂肪顆粒分布均勻度等特征參數(shù),探討了基于圖像處理的牛肉等級(jí)評(píng)定技術(shù)[2-5]。在國內(nèi),計(jì)算機(jī)技術(shù)在牛肉等級(jí)評(píng)定中的應(yīng)用還處于初步研究階段,主要是通過眼肌切面圖像的紋理分割,通過計(jì)算脂肪面積比[6-7]的方式來計(jì)算牛肉等級(jí)[8-10],對(duì)脂肪在肌肉中分布所形成的特征分析不夠深入,對(duì)牛肉等級(jí)評(píng)定的準(zhǔn)確性和實(shí)際應(yīng)用等方面都有不足之處。本研究擬運(yùn)用計(jì)算機(jī)視覺系統(tǒng)對(duì)牛肉眼肌的形狀特征值、脂肪含量和分布進(jìn)行量化,在VC++6.0的環(huán)境下自行開發(fā)適用于牛肉眼肌自動(dòng)分級(jí)軟件,提高分級(jí)的準(zhǔn)確性和工作效率,為我國牛肉智能化分級(jí)技術(shù)的研究奠定理論依據(jù)[10]。
1 材料與方法
1.1 材料、軟件及基本原理
采用Visual Basic6.0作為實(shí)驗(yàn)分析軟件,利用圖形處理中的二值化算法、邊緣檢測(cè)算法等對(duì)采集到的數(shù)字圖像進(jìn)行處理和分析,提取出用于牛肉眼肌自動(dòng)分級(jí)的眼肌面積、圓度、大理石紋密度等重要參數(shù),再利用模糊數(shù)學(xué)理論利用計(jì)算出的參數(shù)數(shù)據(jù),實(shí)現(xiàn)對(duì)牛肉眼肌的智能自動(dòng)分級(jí)。
1.2 方法
1.2.1 邊緣檢測(cè)法
物體圖像的邊緣信息特征因?yàn)轭伾?、紋理結(jié)構(gòu)和灰度值的變化是以不連續(xù)性的形式出現(xiàn),是圖像最基本的特征之一。邊緣檢測(cè)法提取圖像特征是圖像識(shí)別中的一個(gè)重要屬性和重要環(huán)節(jié)[11]。圖像邊緣檢測(cè)中的經(jīng)典算法SUSAN算法[12]選用放在不同5個(gè)位置上圓形模板,如圖1所示。
比較模板內(nèi)像素的灰度與核心的灰度,其差值在閾值內(nèi)時(shí),認(rèn)為灰度相同。與核的灰度相同的像素?cái)?shù)目之和稱為模板的面積(USAN)。SUSAN算法根據(jù)USAN區(qū)的大小和矩陣特性來檢測(cè)圖像邊緣及角點(diǎn)等特征的位置及方向信息[13]。由圖1所示,平坦區(qū)域USAN區(qū)最大(d,e),邊緣處USAN區(qū)大小降為一半(a),角點(diǎn)附近USAN區(qū)變得更?。╟)。
1.2.2 二值化處理
圖像二值化是指對(duì)僅含黑白二值的圖像進(jìn)行參數(shù)提取數(shù)據(jù)預(yù)處理的重要技術(shù)。采用直方圖均衡化,同態(tài)濾波對(duì)圖像進(jìn)行預(yù)處理抑制外界因素提高圖像質(zhì)量,或者將圖像劃分為若干區(qū)域,分別設(shè)定閾值Tn,則:
(1)
由于所提取的大理石紋圖像中,僅有肉色和脂肪色,即只有紅色和白色兩類顏色信息,因此在二值化處理過程中,采用第1種方法進(jìn)行二值化處理。
圖像分割是基于邊緣檢測(cè)或基于區(qū)域的分割,將同一屬性但區(qū)域互不相交,均滿足特定區(qū)域一致性條件的不同區(qū)域分割開來[14]。本研究采用區(qū)域生長(zhǎng)法實(shí)現(xiàn)對(duì)圖像的分割。
1.2.4 模糊綜合評(píng)判
對(duì)模糊事物實(shí)現(xiàn)較合理的評(píng)價(jià)可采用模糊數(shù)學(xué)中的模糊綜合評(píng)判法 [15]。設(shè)定因素集,集合中的某一元素Ui表示決定事物的第i個(gè)因素,評(píng)價(jià)集Vi表示對(duì)事物評(píng)價(jià)結(jié)果。
2 結(jié)果與分析
2.1 利用二值化算法提取大理石花紋
2.1.1 二值化算法
對(duì)大理石紋圖像的特征參數(shù)提取時(shí),均需要先對(duì)圖像進(jìn)行二值化處理,將彩色圖像處理成只包括黑色像素點(diǎn)和白色像素點(diǎn)的圖像。由于所提取的大理石紋圖像中,僅有肉色和脂肪色,即只有紅色和白色兩類顏色信息,因此在二值化處理過程中,采用第1種方法進(jìn)行二值化處理。
假定彩色圖像的大小為M×N,fn其表示像素點(diǎn)的顏色值,f(I,j)表示像素點(diǎn)(I,j)的二值化結(jié)果,當(dāng)f(I,j)=1時(shí),像素點(diǎn)(I,j)被標(biāo)記為黑色像素點(diǎn),當(dāng)f(I,j)=0時(shí),像素點(diǎn)(I,j)被標(biāo)記為白色像素點(diǎn)。對(duì)于某一像素點(diǎn)(I,j),如果該像素點(diǎn)的顏色值fn大于閾值T,則令f(I,j)=1,否則f(I,j)=0,實(shí)現(xiàn)對(duì)彩色圖像的二值化處理。二值化方法如式(2)所示在二值化算法中,閾值的選取是二值化處理的關(guān)鍵,如何選取合適的閾值t,準(zhǔn)確提取出不同圖像中的大理石紋,是本算法的一個(gè)關(guān)鍵技術(shù)。本研究的所有實(shí)驗(yàn),都是基于VC++6.0編程完成。在所有圖像的二值化處理中,程序設(shè)計(jì)使用inputbox函數(shù)的數(shù)據(jù)輸入方式,由用戶根據(jù)個(gè)人經(jīng)驗(yàn)輸入某一個(gè)閾值T。
(2)
經(jīng)過二值化處理后的圖像,白色點(diǎn)表示脂肪像素點(diǎn),黑色點(diǎn)代表肌肉像素點(diǎn)。本算法進(jìn)行大理石紋的面積計(jì)算、圓度測(cè)量、密度分析等算法都是在圖像二值化的基礎(chǔ)上進(jìn)行的,因此,圖像二值化的結(jié)果將直接影響到后面參數(shù)的提取準(zhǔn)確度問題。
2.1.2 二值化實(shí)驗(yàn)結(jié)果分析
圖2是對(duì)原圖像1采用不同閾值t的檢測(cè)結(jié)果,圖3是對(duì)原圖像2采用不同閾值t的檢測(cè)結(jié)果。從圖2、3結(jié)果可以看出,對(duì)于不同亮度的圖像,采用相同的閾值,如t=90時(shí),對(duì)原圖像1,可以很好的提取出二值化圖像;而對(duì)原圖像2,無法正常提取出所需要的區(qū)域信息。同樣,對(duì)于t=160時(shí),從圖2D可以看出,對(duì)于原圖像1,由于閾值太大,造成一些有用的大理石紋信息丟失,而對(duì)于原圖像2,能更好的提取出需要的大理石紋信息,為后繼準(zhǔn)確的提取大理石紋信息提供保證。
本算法中,閾值的選取采用人機(jī)對(duì)話的方式選擇閾值,希望后期工作中能研究出一種能自動(dòng)根據(jù)圖像顏色亮度特征智能選取閾值的算法。
2.2 利用區(qū)域生長(zhǎng)算法提取有效眼肌面積
由于眼肌面積圖像中僅含有白色和紅色兩種顏色區(qū)域,有效眼肌面積區(qū)域是一塊連通區(qū)域,因此,采用種子點(diǎn)生長(zhǎng)算法,可以很好的提取出和所選種子點(diǎn)相連通的所有連通區(qū)像素點(diǎn)。
有效眼肌面積的提取步驟如下:以原圖像1(圖3A)中眼肌面積的提取為例,先采用二值化算法,選用閾值t=90,使得眼肌內(nèi)的區(qū)域?yàn)榇笃谏?lián)通區(qū),再利用種子點(diǎn)生長(zhǎng)算法,利用鼠標(biāo)選取眼肌中黑色聯(lián)通區(qū)中的一點(diǎn)作為種子點(diǎn),生成的眼肌面積內(nèi)的聯(lián)通區(qū),如圖3所示。由于生成的聯(lián)通區(qū)內(nèi)存在大理石紋,所以眼肌面積是圖像總面積減去灰色聯(lián)通區(qū)的面積。
首先采用二值化算法,對(duì)原圖像進(jìn)行二值化處理,然后對(duì)處理好的二值化圖像,用鼠標(biāo)選取屬于要計(jì)算面積區(qū)域中的某一黑色像素點(diǎn),采用種子點(diǎn)生長(zhǎng)算法[16],將所選取的像素點(diǎn)作為種子點(diǎn),進(jìn)行生長(zhǎng),識(shí)別出面積輪廓。由于圖4中的面積區(qū)域,還存在白色大理石紋,不能直接計(jì)算出面積大小,因此,再對(duì)圖4進(jìn)行二值化處理,選取背景色中的任意1點(diǎn)作為種子點(diǎn)進(jìn)行生長(zhǎng),然后進(jìn)行背景圖像區(qū)域的識(shí)別,再用總面積減去背景區(qū)域的面積,即可算出眼肌面積。對(duì)原圖像1,利用本實(shí)驗(yàn)算法計(jì)算出的有效眼肌面積共14742個(gè)像素點(diǎn)。
2.3 肌肉和脂肪色度值
將圖像中所有肌肉像素點(diǎn)采用種子點(diǎn)生長(zhǎng)的算法提取出來所有的紅色像素點(diǎn)區(qū)域,對(duì)提取出的肌肉連通區(qū)圖像,遍歷整個(gè)圖像,計(jì)算出連通區(qū)中所有像素點(diǎn)的Red、Green、Blue三個(gè)顏色分量的平均值,再使用顏色公式w(x,y)=Red+Green×256+Blue×65536,計(jì)算出所有肌肉像素點(diǎn)的顏色平均值。同樣的算法,可以提取出白色脂肪的色度值。對(duì)原圖像1(圖2A)進(jìn)行肌肉色度和脂肪色度的計(jì)算,計(jì)算出了脂肪色度為11437206,肌肉色度為7428162,對(duì)原圖像2(圖3A)所示的圖像,計(jì)算出的脂肪色度為11718453,肌肉色度為127466071。該顏色值越大,說明圖像顏色亮度越大,色值越高。
2.4 眼肌圓度
有效眼肌面積的圓度可以采用計(jì)算其長(zhǎng)軸的長(zhǎng)度和短軸的長(zhǎng)度,通過長(zhǎng)短軸的比值來衡量眼肌面積的圓度。在一幅灰度圖像中,已知中兩個(gè)像素點(diǎn)的坐標(biāo)(x1,y1)、(x2,y2),利用兩點(diǎn)間距離的計(jì)算公式:
(3)
可以計(jì)算出某一直徑,直徑的大小即為長(zhǎng)軸的長(zhǎng)度。因此,查找到有效眼肌面積的長(zhǎng)軸的兩個(gè)像素端點(diǎn)是計(jì)算長(zhǎng)軸的關(guān)鍵。
本算法采用種子點(diǎn)生長(zhǎng)算法提取出有效眼肌面積的連通區(qū),然后由用戶利用鼠標(biāo),選取出長(zhǎng)軸的起點(diǎn),如圖5B所示,設(shè)置出長(zhǎng)軸的起點(diǎn)坐標(biāo)(x1,y1)。然后在如圖5C所示的連通區(qū)中找到離該點(diǎn)最遠(yuǎn)的像素點(diǎn)坐標(biāo)值(x2,y2),利用兩點(diǎn)間距離公式,計(jì)算長(zhǎng)軸的長(zhǎng)度。短軸是在長(zhǎng)軸垂直平分線上的離長(zhǎng)軸中點(diǎn)((x1+x2)/2、(y1+y2)/2)最遠(yuǎn)的點(diǎn)和中點(diǎn)間的距離。測(cè)量結(jié)果顯示,長(zhǎng)軸215.94,短軸55.08,長(zhǎng)短軸比率:55.08/215.94≈0.51,比值越接近于1,說明眼肌面積越趨向圓。
2.5 大理石紋密度
對(duì)大理石紋密度統(tǒng)計(jì)分析分為5個(gè)步驟進(jìn)行:第1步,采用區(qū)域生長(zhǎng)法或者邊緣檢測(cè)算法對(duì)原圖像進(jìn)行圖像分割,將圖像分割成不同的很多連通區(qū);第2步,對(duì)所有連通區(qū)進(jìn)行著手標(biāo)記,同一連通區(qū)著相同的顏色,不同的連通區(qū)采用不同的顏色;第3步,統(tǒng)計(jì)所有連通區(qū)各自的面積大小區(qū)域;第4步,統(tǒng)計(jì)圖像中連通區(qū)總數(shù)目;第5步,統(tǒng)計(jì)標(biāo)記的連通區(qū)面積在0~5、5~10、10~15、15~20等范圍內(nèi)的連通區(qū)個(gè)數(shù)。
2.5.1 不同連通區(qū)著色
采用眼肌面積算法中的種子點(diǎn)生長(zhǎng)算法,對(duì)整個(gè)圖像進(jìn)行遍歷,識(shí)別出所有的連通區(qū),并用不同的顏色值標(biāo)記出不同的連通區(qū)。
對(duì)照高標(biāo)準(zhǔn)的密度檢測(cè)結(jié)果圖7和低標(biāo)準(zhǔn)的密度檢測(cè)結(jié)果圖8檢測(cè)結(jié)果發(fā)現(xiàn),相同像素點(diǎn)下連通區(qū)總數(shù)越多,說明大理石紋越豐富。像素點(diǎn)總數(shù)小于5的連通區(qū)的個(gè)數(shù)表明大理石紋的分散程度,值越大,說明越分散,密度越大。
2.6 基于模糊數(shù)學(xué)理論的牛肉大理石花紋自動(dòng)分級(jí)系統(tǒng)
針對(duì)牛肉自動(dòng)分級(jí)中大理石紋參數(shù)特征值的模糊性、相關(guān)性、多變量等特點(diǎn),結(jié)合模糊數(shù)學(xué)理論,將所提取出來的所有眼肌面積、大理石紋密度,眼肌面積的圓度、色度等多個(gè)參數(shù),采用模糊數(shù)學(xué)理論中的綜合評(píng)判技術(shù)建立了基于模糊綜合評(píng)判的牛肉大理石紋自動(dòng)分級(jí)模型。例如:使用模糊綜合評(píng)判算法記U={眼肌面積,圓度,肌肉色度,脂肪色度,大理石紋密度},表示因素集,表示決定牛肉分級(jí)品質(zhì)的所有因素。記?={a1,a2,a3,…,an}。取評(píng)價(jià)集V={低品質(zhì)牛肉,中等品質(zhì)牛肉,優(yōu)質(zhì)牛肉,特優(yōu)級(jí)牛肉},表示牛肉的評(píng)價(jià)結(jié)果。
對(duì)牛肉品質(zhì)等級(jí)的判定,需要綜合考慮各種因素,如牛肉的大理石紋分布的密度,有效眼肌面積的圓度、色度、面積大小等。結(jié)合本系統(tǒng)中采用數(shù)字圖像處理技術(shù)自動(dòng)提取出的相關(guān)的參數(shù)信息,然后考慮所有因素對(duì)評(píng)價(jià)集V中各等級(jí)的隸屬度,可得綜合評(píng)判矩陣如。
3 結(jié) 論
利用了圖像處理中的邊緣檢測(cè)技術(shù)、二值化處理和圖像分割技術(shù),先對(duì)原牛眼肌圖像進(jìn)行二值化處理,然后對(duì)處理好的二值化圖像,采用種子點(diǎn)生長(zhǎng)算法,識(shí)別出眼肌面積輪廓,進(jìn)行背景圖像區(qū)域識(shí)別,計(jì)算眼肌面積,并采集連通區(qū)中所有像素點(diǎn)的Red、Green、Blue 3個(gè)顏色分量,計(jì)算出所有肌肉和脂肪像素點(diǎn)的顏色平均值,并對(duì)有效眼肌區(qū)域的圓度和大理石紋分布密度進(jìn)行參數(shù)提取和檢測(cè)。結(jié)果證明,本實(shí)驗(yàn)設(shè)計(jì)的算法能夠近似的估算出牛眼肌面積、脂肪比例、色度值、眼肌圓度和大理石花紋密度,是一種有效的估算方法,并通過大量實(shí)驗(yàn)數(shù)據(jù)和人工測(cè)量數(shù)據(jù)進(jìn)行比對(duì),證明使用圖像處理技術(shù)自動(dòng)估算上述5個(gè)特征參數(shù)是可行的,為基于計(jì)算機(jī)視覺的牛肉品質(zhì)自動(dòng)分級(jí)檢測(cè)奠定基礎(chǔ)。后期工作中希望能并結(jié)合大理石花紋的特點(diǎn)和特征描述以及具體牛肉圖像的特點(diǎn),通過大量的數(shù)據(jù),使用模糊聚類,模糊識(shí)別、模糊綜合評(píng)判等技術(shù),給出接近現(xiàn)實(shí)的、準(zhǔn)確的牛肉等級(jí)判定結(jié)果,為進(jìn)一步研究基于計(jì)算機(jī)視覺的牛肉自動(dòng)分級(jí)系統(tǒng)打下基礎(chǔ)。
參考文獻(xiàn):
[1] CHEN Shengwei, SUN Xin, QIN Chunfang, et al. Color grading of beef fat by using computer vision and support vector machine[J]. Computers and Electronics in Agriculture, 2010, 70(1): 27-32.
[2] YOSHIKAWA F, TORAICHI K, WADA K, et al. On a grading system for beef marbling[J]. Pattern Recognition Letters, 2000, 21(12): 1037-1050.
[3] SHIRANITA K, HAYASHI K, OTUSBO A. Determination of meat quality using texture features[J]. The Institute of Electronics, Information and Communication Engineers Transactions on Information and Systems, 2000, 83(4): 1790-1796.
[4] AASS L, FRISTEDT C G, GRESHAM J D. Ultrasound prediction of intramuscular fat content in lean cattle[J]. Livestock Science, 2009, 125(2/3): 177-186.
[5] KAZUHIKO S, KENICHIRO H I, AKIFUMI O, et al. Grading meat quality by image processing[J]. Pattern Recognition, 2000, 33(1): 97-104.
[6] CHEN Kunjie, QIN Chunfang. Segmentation of beef marbling based on vision threshold[J]. Computers and Electronics in Agriculture, 2008, 62(2): 223- 230.
[7] 陳坤杰, 姬長(zhǎng)英. 牛肉自動(dòng)分級(jí)技術(shù)研究進(jìn)展分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2006(3): 159-162.
[8] 陳坤杰, 孫鑫, 陸秋琰. 基于計(jì)算機(jī)視覺和神經(jīng)網(wǎng)絡(luò)的牛肉顏色自動(dòng)分級(jí)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2009(4): 179-184.
[9] 陳坤杰, 秦春芳, 姬長(zhǎng)英. 牛胴體眼肌切面圖像的分割方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2006(6): 161-164.
[10] 任發(fā)政, 鄭麗敏, 王桂芹, 等. 應(yīng)用MATLAB圖像處理技術(shù)評(píng)判牛肉大理石花紋[J]. 肉類研究, 2002(4): 14-15.
[11] 賈淵, 李振江, 彭增起. 結(jié)合LLE流形學(xué)習(xí)和支持向量機(jī)的豬肉顏色分級(jí)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2012(9): 154-159.
[12] 魏光杏, 吳錫生. 新型邊緣檢測(cè)法[J]. 計(jì)算機(jī)工程與設(shè)計(jì), 2007(4): 144-145.
[13] GE X W, FU K T. Edge detection in image method research[J]. Digital Community & Smart Home, 2007, 3(16): 1144-1145.
[14] 王文淵, 王芳梅. 改進(jìn)的最大熵算法在圖像分割中的應(yīng)用[J]. 計(jì)算機(jī)仿真, 2011(8): 297-300.
[15] 勞麗, 吳效明, 朱學(xué)峰. 模糊集理論在圖像分割中的應(yīng)用綜述[J]. 中國體視學(xué)與圖像分析, 2006(3): 48-53.
[16] 李艷梅, 胡曉輝, 王靜. 基于SUSAN的種子點(diǎn)生長(zhǎng)邊緣檢測(cè)算法[J]. 計(jì)算機(jī)系統(tǒng)應(yīng)用, 2010(7): 206-208.