亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Ground states for asymptotically periodic quasilinearSchr?dinger equations with critical growth

        2013-02-18 22:53:38ZhangHuiZhangFubao

        Zhang Hui Zhang Fubao

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        1 Introduction and Statement of Main Result

        As the models of physical phenomena, the quasilinear Schr?dinger equation

        (1)

        has been extensively studied in recent years. For the detailed physical applications, one can see Ref.[1].

        Inspired by Refs.[4-5], we are interested in the existence of ground states for asymptotically periodic quasilinear Schr?dinger equation (1). We consider

        -Δu+V(x)u-uΔ(u2)=K(x)|u|22*-2u+g(x,u)

        u∈H1(RN)

        (2)

        LetFbe a class of functionsh∈C(RN)∩L∞(RN), such that for every>0 the set {x∈RN:|h(x)|≥} has a finite Lebesgue measure. Suppose thatV,K∈C(RN) satisfies the following conditions:

        H1) There exists a constanta0>0 and a functionVp∈C(RN), 1-periodic inxi, 1≤i≤N, such thatV-Vp∈FandVp(x)≥V(x)≥a0,x∈RN.

        H2) There exists a functionKp∈C(RN), 1-periodic inxi, 1≤i≤N, and a pointx0∈RNsuch thatK-Kp∈Fand

        ①K(x)≥Kp(x)>0,x∈RN;

        ②K(x)=|K|∞+O(|x-x0|N-2), asx→x0.

        H3)g(x,u)=o(u) uniformly inxasu→0;

        H4) |g(x,u)|≤a(1+|u|q-1), for somea>0 and 4≤q<22*;

        H6) There exists a neighborhood ofx0given by H2),Ω?RN, such that

        H7) There exists a constantq1∈(2,22*), functionsh∈Fandgp∈C(RN×R,R) such that

        ①gpis 1-periodic inxi,1≤i≤N;

        ② |g(x,u)-gp(x,u)|≤|h(x)|(|u|+|u|q1-1),x∈RN;

        Theorem1If H1) to H7) hold, then the problem (2) has a ground state.

        Remark1H3) and H5) imply that

        (3)

        2 Variational Setting

        is not well defined inH1(RN). Choose the changefdefined by

        f(t)=-f(-t) on (-∞,0]

        and setv=f-1(u), then we obtain

        which is well defined inH1(RN) by the properties off(see Ref.[5]). The critical points ofIare weak solutions of

        -Δv+V(x)f′(v)f(v)=K(x)|f(v)|22*-2f(v)f′(v)+g(x,f(v))f′(v)v∈H1(RN)

        (4)

        Similar to Ref.[5], we first prove that there is a nontrivial solution for Eq.(4). We know that the results obtained under (V), (K), (g1), (g2) and (g5) in Ref.[5] still hold since the conditions H1) to H4) and H6) are the same as (V), (K), (g1), (g2) and (g5), respectively. However, H5) and H7) are different from (g3) and (g4) in Ref.[5]; in the following, we verify whether the results under (g3) and (g4) still hold.

        Lemma1Let H1) to H5) hold. Then, the (Ce)b(b>0) sequencevnofIsatisfying

        I(vn)→b, =I′(vn)=(1+=vn=)→0

        (5)

        is bounded.

        By (5), we have

        I1+I2+I3

        (6)

        By Lemma 1 (8) in Ref.[5], we obtain

        (7)

        ForI3, using Lemma 1 (8) in Ref.[5] and inequality (3), we have

        In Ref.[5], the authors supposed that |g(x,u)-gp(x,u)|≤h(x)|u|q3-1,q3∈[2,22*), and we assume that |g(x,u)-gp(x,u)|≤h(x)(|u|+|u|q1-1),q1∈(2,22*). So Lemma 9 in Ref.[5] holds under H1), H2) and H7). Following the outline in Ref.[5], we have the following lemma.

        In order to find ground states, we also need to introduce the Nehari manifold. The Nehari manifold corresponding to Eq.(4) is

        M={u∈H1(RN){0}: 〈I′(u),u〉=0}

        First, we give the following lemma in which the simple proof is left to the reader.

        Lemma3Let H1) to H5) hold. ThenI(tu)→-∞ ast→∞,u∈H1(RN){0}.

        Inspired by Ref.[6], we have

        Note that

        t(|v+Φ1(t)+Φ2(t)+Φ3(t))

        By Lemma 1 (8) in Ref.[5] and the fact thatf″(tv)=-2f(tv)f′4(tv), we obtain

        2f2(tv)f′4(tv)tv2-f(tv)f′(tv)v]V(x)<0

        SoΦ1is decreasing.

        (8)

        Lemma5Let H1) to H6) hold. Thenc*≥c.

        3 Proof of Theorem 1

        ProofBy Lemma 2, we assume that there is a nontrivial solutionwwithI(w)=c. Thenw∈M. SoI(w)≥c*. Note thatI(w)=candc*≥c, and we obtainI(w)≤c*. SoI(w)=c*. Then we can easily infer thatwis a ground state for Eq.(4). We complete the proof.

        [1]Kurihara S. Large-amplitude quasi-solitons in superfluid films [J].JournalofthePhysicalSocietyofJapan, 1981,50(10): 3262-3267.

        [2]Liu J, Wang Z. Soliton solutions for quasilinear Schr?dinger equations Ⅰ [J].ProceedingsoftheAmericanMathematicalSociety, 2003,131(2): 441-448.

        [3]Liu J, Wang Y, Wang Z. Solutions for quasilinear Schr?dinger equations via the Nehari method [J].CommunicationsinPartialDifferentialEquations, 2004,29(5/6): 879-901.

        [4]Liu X, Liu J, Wang Z. Ground states for quasilinear Schr?dinger equation with critical growth [J].CalculusofVariationsandPartialDifferentialEquations, 2013,46(3/4): 641-669.

        [5]Silva E A B, Vieira G F. Quasilinear asymptotically periodic elliptic equations with critical growth [J].CalculusofVariationsandPartialDifferentialEquations, 2012,39(1/2): 1-33.

        [6]Szulkin A, Weth T. The method of Nehari manifold [C]//HandbookofNonconvexAnalysisandApplications. Boston, USA: International Press, 2010: 597-632.

        [7]Do J M, Miyagaki O H, Soares S H M. Soliton solutions for quasilinear Schr?dinger equations with critical growth [J].JournalofDifferentialEquations, 2010,248(4): 722-744.

        [8]Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schr?dinger equations with subcritical growth [J].NonlinearAnalysis:Theory,MethodsandApplications, 2010,72(6): 2935-2949.

        久久久人妻精品一区bav| 在线视频精品免费| 日本高清一区二区不卡视频| 午夜精品人妻中字字幕| 日本av在线一区二区| 国产精品欧美福利久久| 被黑人做的白浆直流在线播放| 亚洲精品一区二区三区国产| 国产毛女同一区二区三区| 蜜臀色欲av在线播放国产日韩| 就去吻亚洲精品欧美日韩在线| 天堂女人av一区二区| 亚洲精品一区三区三区在线| 久久久久久无码av成人影院| 久久亚洲中文字幕伊人久久大| 蜜桃视频插满18在线观看| 久热这里只有精品视频6| 亚洲不卡无码高清视频| 免费黄网站永久地址进入| 丝袜人妻一区二区三区| 亚洲日韩v无码中文字幕| 国产一区亚洲欧美成人| 日本亚洲视频免费在线看| 日本一二三区视频在线| 亚洲日韩精品国产一区二区三区| 中文无码制服丝袜人妻AV| 日本精品久久不卡一区二区| 国产在线观看无码免费视频| 国产免费专区| 日本在线一区二区在线| 亚洲精品乱码久久久久久不卡| 欧美巨大xxxx做受l| 一区二区三无码| 国产自拍视频在线观看免费| 无码av天堂一区二区三区| 无码av免费永久免费永久专区| 少妇高潮精品正在线播放| 中文字幕人妻熟女人妻| 国产不卡一区二区三区免费视| 亚洲黄色官网在线观看| 日日噜噜夜夜狠狠久久丁香五月 |