亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Ground states for asymptotically periodic quasilinearSchr?dinger equations with critical growth

        2013-02-18 22:53:38ZhangHuiZhangFubao

        Zhang Hui Zhang Fubao

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        1 Introduction and Statement of Main Result

        As the models of physical phenomena, the quasilinear Schr?dinger equation

        (1)

        has been extensively studied in recent years. For the detailed physical applications, one can see Ref.[1].

        Inspired by Refs.[4-5], we are interested in the existence of ground states for asymptotically periodic quasilinear Schr?dinger equation (1). We consider

        -Δu+V(x)u-uΔ(u2)=K(x)|u|22*-2u+g(x,u)

        u∈H1(RN)

        (2)

        LetFbe a class of functionsh∈C(RN)∩L∞(RN), such that for every>0 the set {x∈RN:|h(x)|≥} has a finite Lebesgue measure. Suppose thatV,K∈C(RN) satisfies the following conditions:

        H1) There exists a constanta0>0 and a functionVp∈C(RN), 1-periodic inxi, 1≤i≤N, such thatV-Vp∈FandVp(x)≥V(x)≥a0,x∈RN.

        H2) There exists a functionKp∈C(RN), 1-periodic inxi, 1≤i≤N, and a pointx0∈RNsuch thatK-Kp∈Fand

        ①K(x)≥Kp(x)>0,x∈RN;

        ②K(x)=|K|∞+O(|x-x0|N-2), asx→x0.

        H3)g(x,u)=o(u) uniformly inxasu→0;

        H4) |g(x,u)|≤a(1+|u|q-1), for somea>0 and 4≤q<22*;

        H6) There exists a neighborhood ofx0given by H2),Ω?RN, such that

        H7) There exists a constantq1∈(2,22*), functionsh∈Fandgp∈C(RN×R,R) such that

        ①gpis 1-periodic inxi,1≤i≤N;

        ② |g(x,u)-gp(x,u)|≤|h(x)|(|u|+|u|q1-1),x∈RN;

        Theorem1If H1) to H7) hold, then the problem (2) has a ground state.

        Remark1H3) and H5) imply that

        (3)

        2 Variational Setting

        is not well defined inH1(RN). Choose the changefdefined by

        f(t)=-f(-t) on (-∞,0]

        and setv=f-1(u), then we obtain

        which is well defined inH1(RN) by the properties off(see Ref.[5]). The critical points ofIare weak solutions of

        -Δv+V(x)f′(v)f(v)=K(x)|f(v)|22*-2f(v)f′(v)+g(x,f(v))f′(v)v∈H1(RN)

        (4)

        Similar to Ref.[5], we first prove that there is a nontrivial solution for Eq.(4). We know that the results obtained under (V), (K), (g1), (g2) and (g5) in Ref.[5] still hold since the conditions H1) to H4) and H6) are the same as (V), (K), (g1), (g2) and (g5), respectively. However, H5) and H7) are different from (g3) and (g4) in Ref.[5]; in the following, we verify whether the results under (g3) and (g4) still hold.

        Lemma1Let H1) to H5) hold. Then, the (Ce)b(b>0) sequencevnofIsatisfying

        I(vn)→b, =I′(vn)=(1+=vn=)→0

        (5)

        is bounded.

        By (5), we have

        I1+I2+I3

        (6)

        By Lemma 1 (8) in Ref.[5], we obtain

        (7)

        ForI3, using Lemma 1 (8) in Ref.[5] and inequality (3), we have

        In Ref.[5], the authors supposed that |g(x,u)-gp(x,u)|≤h(x)|u|q3-1,q3∈[2,22*), and we assume that |g(x,u)-gp(x,u)|≤h(x)(|u|+|u|q1-1),q1∈(2,22*). So Lemma 9 in Ref.[5] holds under H1), H2) and H7). Following the outline in Ref.[5], we have the following lemma.

        In order to find ground states, we also need to introduce the Nehari manifold. The Nehari manifold corresponding to Eq.(4) is

        M={u∈H1(RN){0}: 〈I′(u),u〉=0}

        First, we give the following lemma in which the simple proof is left to the reader.

        Lemma3Let H1) to H5) hold. ThenI(tu)→-∞ ast→∞,u∈H1(RN){0}.

        Inspired by Ref.[6], we have

        Note that

        t(|v+Φ1(t)+Φ2(t)+Φ3(t))

        By Lemma 1 (8) in Ref.[5] and the fact thatf″(tv)=-2f(tv)f′4(tv), we obtain

        2f2(tv)f′4(tv)tv2-f(tv)f′(tv)v]V(x)<0

        SoΦ1is decreasing.

        (8)

        Lemma5Let H1) to H6) hold. Thenc*≥c.

        3 Proof of Theorem 1

        ProofBy Lemma 2, we assume that there is a nontrivial solutionwwithI(w)=c. Thenw∈M. SoI(w)≥c*. Note thatI(w)=candc*≥c, and we obtainI(w)≤c*. SoI(w)=c*. Then we can easily infer thatwis a ground state for Eq.(4). We complete the proof.

        [1]Kurihara S. Large-amplitude quasi-solitons in superfluid films [J].JournalofthePhysicalSocietyofJapan, 1981,50(10): 3262-3267.

        [2]Liu J, Wang Z. Soliton solutions for quasilinear Schr?dinger equations Ⅰ [J].ProceedingsoftheAmericanMathematicalSociety, 2003,131(2): 441-448.

        [3]Liu J, Wang Y, Wang Z. Solutions for quasilinear Schr?dinger equations via the Nehari method [J].CommunicationsinPartialDifferentialEquations, 2004,29(5/6): 879-901.

        [4]Liu X, Liu J, Wang Z. Ground states for quasilinear Schr?dinger equation with critical growth [J].CalculusofVariationsandPartialDifferentialEquations, 2013,46(3/4): 641-669.

        [5]Silva E A B, Vieira G F. Quasilinear asymptotically periodic elliptic equations with critical growth [J].CalculusofVariationsandPartialDifferentialEquations, 2012,39(1/2): 1-33.

        [6]Szulkin A, Weth T. The method of Nehari manifold [C]//HandbookofNonconvexAnalysisandApplications. Boston, USA: International Press, 2010: 597-632.

        [7]Do J M, Miyagaki O H, Soares S H M. Soliton solutions for quasilinear Schr?dinger equations with critical growth [J].JournalofDifferentialEquations, 2010,248(4): 722-744.

        [8]Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schr?dinger equations with subcritical growth [J].NonlinearAnalysis:Theory,MethodsandApplications, 2010,72(6): 2935-2949.

        少妇连续高潮爽到抽搐| 在线丝袜欧美日韩制服| 国产av一区二区三区国产福利 | 亚洲狠狠网站色噜噜| 久久AⅤ无码精品色午麻豆| 最新在线观看免费的a站国产| 国产69精品久久久久app下载| 中国猛少妇色xxxxx| 99re国产电影精品| 人日本中文字幕免费精品| 国产又大又黑又粗免费视频| 国产精品va在线播放我和闺蜜 | 国产精品污www一区二区三区| 国产成人亚洲精品2020| 少妇精品揄拍高潮少妇桃花岛| 国产成人av一区二区三区在线观看| 最好看的最新高清中文视频| 亚洲国产成人Av毛片大全| 国产精品一区二区夜色不卡| 久久人妻无码一区二区| 无码视频一区二区三区在线观看| 国产精品国产三级国产av主| 亚洲成年国产一区二区| 精品少妇一区二区三区免费观| 在线视频你懂的国产福利| av男人操美女一区二区三区| 亚洲av精二区三区日韩| 欧洲一卡2卡三卡4卡免费网站| 成人无码区免费AⅤ片WWW| 久久精品亚洲热综合一本色婷婷| a级毛片免费观看在线播放| 亚洲精品国产v片在线观看| 亚洲高清在线观看免费视频| 漂亮丰满人妻被中出中文字幕| 欧美成人精品午夜免费影视| av无码av在线a∨天堂app| 日产一区二区三区的精品| 99热在线观看| 色综合自拍| 免费人妻精品区一区二区三| 国产精品情侣呻吟对白视频|