亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Construction of semisimple categoryover generalized Yetter-Drinfeld modules

        2013-02-18 19:35:15ZhangXiaohuiWangShuanhong

        Zhang Xiaohui Wang Shuanhong

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        In 2007, Panaite and Staic[1]introduced the notion of generalized Yetter-Drinfeld modules which covered both Yetter-Drinfeld modules and anti-Yetter-Drinfeld modules. Liu and Wang[2]studied the notion of generalized weak Yetter-Drinfeld modules and made the category ofHWYDH(α,β) into a braided T-category[3]. The fusion category[4-6]plays an important role in classifying the semisimple Hopf algebra. The semisimple category is the first step to construct a fusion category. In this paper, we discuss the following question: how to make the category of generalized Yetter-Drinfeld modulesHYDH(α,β) into a semisimple category.

        Throughout this paper, we assume thatHis a Hopf algebra[7-8]with a bijective antipode over a fieldk. Denote the set of all the automorphisms ofHby AutHopf(H). Letα,β∈AutHopf(H).

        1 Preliminaries

        Definition1For anyα,β∈AutHopf(H), a (α,β)-Yetter-Drinfeld module is ak-moduleM, such thatMis a leftH-module (with notationh?m|→h·m) and a rightH-comodule (with notationm|→m(0)?m(1)) with the following compatibility condition:

        ρ(h·m)=h2·m(0)?β(h3)m(1)α(S-1(h1))

        for allh∈Handm∈M. The category of (α,β)-Yetter-Drinfeld modules andH-linearH-colinear maps is denoted byHYDH(α,β).

        Define the category of the generalized Yetter-Drinfeld module YD(H) as the disjoint union of allHYDH(α,β).

        Definition2Suppose thatM∈YD(H), thenMis called simple if it has no proper subobjects. A direct sum of simple objects is called semisimple. If every objectM∈YD(H) is semisimple, we call the category YD(H) semisimple.

        2 Making YD(H) into semisimple

        Lemma1[1]Suppose thatM∈HYDH(α,β) andN∈HYDH(γ,δ), thenM?N∈HYDH(αγ,δγ-1βγ) with the following structures

        h·(m?n)=γ(h1)·m?γ-1βγ(h2)·n

        m?n|→(m?n)(0)?(m?n)(1)=(m(0)?n(0))?n(1)m(1)

        Lemma2Ifkis a commutative ring,His a commutative Hopf algebra overk,M∈HYDH(α,β),N∈HYDH(γ,δ), andMis a finitely generated projectiveH-module, then

        1)Hhom(M,N) is anH-comodule, andHhomH(M,N)=Hhom(M,N)coH, where theH-coaction is given byρ(f)(m)=f0(m)?f1f(m0)0?f(m0)1S(m1).

        2)Hhom(M,N)∈HYDH(α,β), where theH-action is given by (h·f)(m)hf(m)=f(h·m).

        Proof1) Define a mapπ:Hhom(M,N)→Hhom(M,N?H) byπ(f)(m)=f(m0)0?f(m0)1S(m1).

        For anym∈M,h∈H, we have

        π(f)(h·m)=f((h·m)0)0?f((h·m)0)1S((h·m)1)=

        f(h2·m0)0?f(h2·m0)1S(β(h3)m1α(S-1(h1)))=

        h·f(m0)0?β(h3)β(S(h4))f(m0)1α(S-1(h2))·

        α(h1)S(m1)=h·f(m0)0?f(m0)1S(m1)=

        h·(π(f))(m))

        Thus,πis well defined. SinceMis a finitely generated projectiveH-module, we haveHhom(M,N?H)?Hhom(M,N)?H. So we obtain a map:

        ρ:Hhom(M,N)→Hhom(M,N)?H

        such thatρ(f)(m)=f(m0)0?f(m0)1S(m1), andHhom(M,N)∈MH.

        Now for anyf∈Hhom(M,N), iffisH-colinear, then

        ρ(f)(m)=f(m0)0?f(m0)1S(m1)=

        f(m0)?m1S(m2)=f(m)?1=(f?1)(m)

        Sofis coinvariant. Conversely, takef∈Hhom(M,N)coH, then we have

        ρN(f(m))=f(m0)0?f(m0)1ε(m1)=

        f(m0)0?f(m0)1S(m1)m2=f(m0)?m1

        for anym∈M, andfisH-linear. Thus,HhomH(M,N)=Hhom(M,N)coH.

        2) For anym∈M,h∈H, we have

        ((h·f)0?(h·f)1)(m)=(h·f(m0))0?

        (h·f(m0))1S(m1)=h2·f(m0)0?

        β(h3)f(m0)1α(S-1(h1))S(m1)=

        (h2·f0?β(h3)f1α(S-1(h1)))(m)

        Lemma3LetVbe ak-module andNbe anH-module, then

        1)Hhom(H?V,N) and hom(V,N) are isomorphic ask-modules, where the bijection is given byθ:Hhom(H?V,N)→hom(V,N),θ(f)(v)=f(1?v).

        2) IfVis a projectivek-module, thenH?Vis a projectiveH-module.

        Furthermore, ifV∈MH, thenH?Vis an object ofHYDH(α,β) via

        h·(h′?v)=hh′?v

        ρ(h?v)=h2?v0?β(h3)v1α(S-1(h1))

        Similar to Lemma 2, we can obtain the following lemmas.

        Lemma4LetV∈MHis a finitely generated projectivek-module. Then for anyH-comoduleN, we have hom(V,N)∈MH, where theH-coaction is given byρ(g)(v)=g(v0)0?g(v0)1S(v1). IfHis commutative, then for anyN∈HYDH(α,β), we can getHhom(H?V,N)∈HYDH(α,β).

        Lemma5Suppose thatHis commutative, andN∈HYDH(α,β).

        1) IfV∈MHis a finitely generated projectivek-module, thenHhom(H?V,N) and hom(V,N) are isomorphic asH-comodules.

        2) Ifkis a field,Vis a finite-dimensionalk-space and a projective rightH-comodule, thenH?Vis a projective object inHYDH(α,β).

        Proof1) It is straightforward.

        2) Obviously, we have

        HhomH(H?V,N)?Hhom(H?V,N)coH?

        hom(V,N)coH?homH(V,N)

        where the last isomorphism is due to the proof of Lemma 2. So the conclusion holds. From the above two lemmas, we have the following facts.

        Lemma6Letkbe a field, andM∈HYDH(α,β). ThenMis a finitely generatedH-module if and only if there exists a finite dimensionalH-comoduleVand anH-linearH-colinear epimorphismπ:H?V→M.

        LetH*be the linear dual ofH. IfM,N∈MH, then homk(M,N)∈H*Munder the followingH*-action

        (h*·f)(m)=h*(f(m0)1S(m1))·f(m0)0

        Lemma7Assume thatHis commutative, andM,N∈HYDH(α,β). ThenHhom(M,N) is a leftH*-submodule of homk(M,N).

        Furthermore,M∈H*Mis called rational if the leftH*-action onMis induced by a rightH-coaction onM.

        Proposition1Suppose thatHis commutative,kis a field,M,N∈HYDH(α,β), andMis a finitely generatedH-module. ThenHhom(M,N)∈HYDH(α,β).

        ProofBy Lemma 6, there exists a finite dimensionalH-comoduleVand anH-linearH-colinear epimorphismπ:H?V→M. So we obtain an injectivek-linear mapHhom(π,N):Hhom(M,N)→Hhom(H?V,N). For anyφ∈H*,v∈V,h∈H,f∈Hhom(M,N), we haveπ(h?v)=h·v,ρ(1?v)=1?v0?v1, and

        ((φ·f)°π)(1?v)=(φ·f)(v)=

        φ(f(v0)1S(v1))f(v0)0=

        φ(f(π(1?v0))1S(v1))f(π(1?v0))0=

        φ(f(π(1?v)0)1S(1?v)1)f(π(1?v)0)0=

        (φ·(f°π))(1?v)

        It follows thatHhom(π,N) isH*-linear. Then by Lemma 2,Hhom(H?V,N) is anH-comodule, and, therefore, a rationalH*-module. ThusHhom(M,N) is a rationalH*-submodule ofHhom(H?V,N). This means thatHhom(M,N) is anH-comodule. Then we obtainHhom(M,N)∈HYDH(α,β) by Lemma 2.

        We say thatHYDH(α,β) satisfies the exact condition if the following property holds: ifM∈HYDH(α,β) is a finitely generatedH-module, then the functorHhom(M,_):HYDH(α,β)→HYDH(α,β) is exact.

        By Proposition 1, ifHis commutative andMis a finitely generatedH-module, we haveHhom(M,N)∈HYDH(α,β) for anyN∈HYDH(α,β). ObviouslyHYDH(α,β) satisfies the exact condition ifHis semisimple.

        Proposition2Assume thatHis commutative, andHYDH(α,β) satisfies the exact condition and the functor (-)coH:HYDH(α,β)→kMis exact. Then any finitely generatedH-moduleM∈HYDH(α,β) is a projective object.

        Proofwe haveHhomH(M,_)?Hhom(M,_)coH=(-)coH°Hhom(M,_) which implies thatHhomH(M,_) is also an exact functor.

        Proposition3Under the same condition of Proposition 2, suppose thatHis noetherian. Then any finitely generatedH-moduleM∈HYDH(α,β) is a direct sum of a family of simple subobjects which are also finitely generated asH-modules inHYDH(α,β).

        ProofAssume thatNis a subobject ofM. ThenNandM/Nare finitely generatedH-modules sinceHis noetherian. Furthermore,NandM/Nare projective objects. So we have a split exact sequence inHYDH(α,β): 0→N→M→M/N→0.

        Thus the conclusion holds.

        TakeM∈HYDH(α,β) and anH-subcomoduleVofM. We set

        whereIis a finite set. ThenHVis a subobject ofMinHYDH(α,β) via:

        Theorem1LetHbe commutative and noetherian,HYDH(α,β) satisfies the exact condition and the functor (-)coH:HYDH(α,β)→kMis exact. Then everyM∈HYDH(α,β) is a direct sum of a family of simple subobjects ofMwhich are finitely generated asH-modules inHYDH(α,β). Therefore,HYDH(α,β) is a semisimple category.

        ProofFor anym∈M,mbelongs to a finite dimensionalH-subcomoduleVmofM. ThenVmis a finitely generatedH-module. By Proposition 3,Vmis a direct sum of a family of simple subobjects which are finitely generated. LetΩbe the set of all direct sumsN=?i∈INiwhere everyNiis both a finitely generatedH-module and a simple subobject ofMinHYDH(α,β). Then the sum of two elements inΩis also an object inΩ. ThusΩcontains a maximal elementM′ through Zorn’s Lemma. For anym∈M, we havem∈HVm∈Ω. This means thatHVm+M′=M′. SoM=M′. Thus, the conclusion holds.

        Corollary1LetHbe commutative and noetherian (particularly finite dimensional), semisimple and cosemisimple. Then eachM∈HYDH(α,β) is a direct sum of a family of simple subobjects ofMwhich are finitely generated asH-modules inHYDH(α,β). HenceHYDH(α,β) is a semisimple category.

        ProofSinceHis cosemisimple, the functor (-)coH:MH→kMis exact. Thus (-)coH:HYDH(α,β)→kMis exact. Furthermore, the semisimplicity implies thatHYDH(α,β) satisfies the exact condition. Then by Theorem 1, the conclusion holds.

        Theorem2As the disjoint union of allHYDH(α,β), the category of the generalized Yetter-Drinfeld modules YD(H) is also semisimple.

        [1]Panaite F, Staic M D. Generalized (anti) Yetter-Drinfeld modules as components of a braided T-category [J].IsraelJMath, 2007,158(1): 349-365.

        [2]Liu L, Wang S H. Constructing new braided T-categories over weak Hopf algebras [J].ApplCategorStruct, 2010,18(4): 431-459.

        [3]Turaev V.Homotopyquantumfieldtheory[M]. Bloomington: European Mathematical Society, 2010.

        [4]Etingof P, Nikshych D, Ostrik V. On fusion categories [J].AnnalsofMathematics, 2005,162(2): 581-642.

        [5]Drinfeld V, Gelaki S, Nikshych D, Ostrik V. On braided fusion categories Ⅰ [J].SelectaMathematica, 2010,16(1): 1-119.

        [6]Naidu D, Rowell E. A finiteness property for braided fusion categories [J].AlgebrRepresentTheor, 2011,14(5): 837-855.

        [7]Sweedler M.Hopfalgebras[M]. New York: Benjamin, 1969.

        [8]Montgomery S.Hopfalgebrasandtheiractionsonrings[M]. Rhode Island: American Mathematical Society, 1993.

        亚洲国产丝袜美女在线| 亚洲无线一二三四区手机| 鸭子tv国产在线永久播放| 亚洲一二三区在线观看| 蜜桃av多人一区二区三区| 91九色熟女潮喷露脸合集| 国产综合色在线视频区| 亚洲av无码av吞精久久| 成人动漫久久| 少妇一区二区三区乱码| 亚洲综合中文日韩字幕| av无码小缝喷白浆在线观看| 亚洲欧洲偷自拍图片区| 亚洲精品成人av一区二区| 亚洲国产高清在线视频| 日本不卡视频一区二区| 黑人巨大精品欧美一区二区免费 | 日本道精品一区二区三区| 天天爽天天爽天天爽| 国产精品短视频| 国产精品黄页免费高清在线观看 | 亚洲 暴爽 av人人爽日日碰| 国产精品国产自线拍免费| 精品在线视频免费在线观看视频| 国产让女高潮的av毛片| 国产真实强被迫伦姧女在线观看 | 亚洲双色视频在线观看| 中文字幕精品人妻在线| 国产激情电影综合在线看| 久久99精品久久久久久齐齐百度| 久国产精品久久精品国产四虎| 特级国产一区二区三区| www国产亚洲精品| 亚洲va中文字幕无码| 亚洲精品国产不卡在线观看| 丝袜美腿丝袜美腿丝袜美腿丝袜| 自愉自愉产区二十四区| 日本一区午夜艳熟免费| 日韩女优一区二区视频| 成人性生交大片免费入口| 国产精品igao视频|