亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Structure theorem for Hopf group-coalgebra

        2013-01-08 08:39:43DongLihongWangShengxiangWangShuanhong

        Dong Lihong Wang Shengxiang Wang Shuanhong

        (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China)

        As a generalization of a Hopf algebra, Turaev[3]introduced and studied the notions of Hopfπ-coalgebras. Further study is referred to Virelizier[4]and Wang[5-7]. It is now very natural to ask whether we can extend the main result in Ref.[2] to the setting of Hopfπ-coalgebras. This is the motivation of this paper.

        1 Preliminaries

        In this section we recall some basic definitions and results about Hopfπ-coalgebras introduced by Turaev[3]. Throughout this paper, letkbe a field. The reader is referred to Sweedler[8]about Hopf algebras.

        1.1 Semi-Hopf π-coalgebra

        Recall from Turaev[3]that aπ-coalgebra is a family ofk-spacesC={Cα}α∈πtogether with a family ofk-linear mapsΔ={Δα,β:Cαβ→Cα?Cβ}α,β∈πand ak-linear mapε:C1→k, such thatΔis coassociative in the sense that,

        (Δα,β?idCγ)Δαβ,γ=(idCα?Δβ,γ)Δα,βγ?α,β,γ∈π

        (idCα?ε)Δα,1=idCα=(ε?idCα)Δ1,α?α∈π

        A semi-Hopfπ-coalgebra is aπ-coalgebraH=({Hα},Δ,ε) such that eachHαis an algebra with multiplicationmαand unit element 1α∈Hα; and for allα,β∈π,Δα,βandε:H1→kare algebra maps.

        1.2 Right π-H-comodule algebra

        1.3 Relative Hopf π-comodule

        LetHbe a semi-Hopfπ-coalgebra andAa rightπ-H-comodule algebra. If thek-spaceMis a rightπ-H-comodulelike object, andMis a leftA-module such that, for anya∈A,m∈M,

        thenMis called a left-right relative (A,H)-Hopfπ-comodule.

        2 Structure Theorem of Endomorphism Algebras of Two-Sided Relative (A,H)-Hopfπ-Comodule

        In this section, we always assume thatHis a semi-Hopfπ-coalgebra and each componentHαis projective, andAis a rightπ-H-comodule algebra.

        Definition1Thek-vector spaceMis called a two-sided relative (A,H)-Hopfπ-comodule if 1)Mis a leftπ-H-and rightAbimodule; 2)Mis a right relative (A,H)-Hopfπ-comodule; and 3)Mis a left-right Hopfπ-H-comodule.

        g→(h?m)=gh?m,(h?m)←a=h?m·a

        ?g,h∈Hα;a∈A;m∈M

        ρ(h?m)=h(1,a)?m[0,0]?h(2,β)m(1,β)

        ?h∈Hαβ,m∈M

        In particular,H?A={Hα?A}α∈πis a two-sided relative (A,H)-Hopfπ-comodule.

        ρβ(f)(m)=f(m[0,0])[0,0]?f(m[0,0])[1,β]Sβ-1(m[1,β-1])

        (1)

        for anyf∈HomA(M,N),m∈M, whereN?Hβis a rightA-module via (n?h) ·a=n·a?hfor anyn∈N,h∈Hβ,a∈A. Then, it is easy to see thatρβ(f) is a rightA-module map.

        ArightA-linearf:M→Nis called rational if there exists an elementf[0,0]?f[1,β]∈HomA(M,N)?Hβsuch that

        f[0,0](m)?f[1,β]=f(m[0,0])[0,0]?f(m[0,0])[1,β]Sβ-1(m[1,β-1])

        (2)

        for anym∈M. Define

        HomA(M,N)={f∈HomA(M,N)|fis rational}

        Since eachHβis projective, HomA(M,N) may be viewed as a submodule of HomA(M,N?Hβ). And by Eqs.(1) and (2), for anyf∈HomA(M,N), we know that

        ρβ(f)=f[0,0]?f[1,β]

        ρβ(f)=f[0,0](m[0,0])?f[1,β]m[1,β]

        for anym∈Mandf∈HomA(M,N).

        As described above, we can easily obtain the following lemmas.

        1)ρ(f)={ρβ(f)∈HomA(M,N)|?Hβ}β∈πfor anyf∈HomA(M,N), and HomA(M,N) is a rightπ-H-comodulelike object;

        2) ENDA(M,N) is a rightπ-H-comodule algebra;

        (h→f)(m)=h(1,α)·f(Sα-1(h(2,α-1)) ·m)

        (3)

        Now we can obtain the main result of this paper.

        1) There exists an isomorphism of right relative (A,H)-Hopfπ-comodules,

        N?HOMA(A,N)

        where HOMA(A,N) is a rightA-module viaf·a(b)=f(ab).

        is an isomorphism of right Hopfπ-H-comodules, whereg∈HOMA(A,N) andh∈Hα. Furthermore,

        is an isomorphism of right Hopfπ-Hcomodules and algebras.

        ProofWe have a well-defined map

        φ:N→HOMA(A,N)φ(n)(a)=n·a

        sinceρβ(φ(n))(a)=φ(n[0,0])(a)?n[1,β]for anyn∈Nanda∈A. It is easy to show thatφ:HOMA(A,N)→N,f|→f(1A) is the inverse ofφ.

        In a similar way to Lemma 2, we know that HOMA(A,N) is a right relative (A,H)-Hopfπ-comodule. It is easy to prove thatφis a right relative (A,H)-Hopfπ-comodule map.

        The conclusion follows from Theorem 2.7 in Ref.[4] and 3) of Lemma 1, Lemma 2 and Lemma 3, which completes our proof.

        By Theorem 1, we have the following remark.

        Remark1) By 1) of Theorem 1,A?ENDA(A), which is an isomorphism of rightπ-H-comodule algebras. In particular,H?ENDH(H), which is an isomorphism of algebras.

        [1]Doi Y. On the structure of relative Hopf module[J].CommAlgebra, 1983,11(3): 243-255.

        [2]Ulbrich L H. Smash products and comodules of linear maps[J].TsukubaJMath, 1990,14(2): 371-378.

        [3]Turaev V.Homotopyquantumfieldtheory[M]. Zürich, Switzerland: European Mathematical Society, 2010.

        [4]Virelizier A. Hopf group-coalgebras[J].JPureApplAlgebra, 2002,171: 75-122.

        [5]Wang S H. Group twisted smash products and Doi-Hopf modules forT-coalgebras[J].CommAlgebra, 2004,32(9): 3417-3436.

        [6]Wang S H. Group entwining structures and group coalgebra Galois extensions[J].CommAlgebra, 2004,32(9): 3437-3457.

        [7]Wang S H. Morita contexts,π-Galois extensions for Hopfπ-coalgebras[J].CommAlgebra, 2006,34(2): 521-546.

        [8]Sweedler M.Hopfalgebras[M]. New York: Benjamin, 1969.

        三级国产自拍在线观看| 日韩亚洲欧美中文高清在线| 国产欧美曰韩一区二区三区| 三级日本午夜在线观看| 久久精品亚洲熟女av蜜謦| 丁香六月久久婷婷开心| a毛片全部免费播放| 自拍视频国产在线观看| 91九色视频在线国产| 久久婷婷五月综合97色一本一本| 国产亚洲av人片在线观看| 无码中文字幕av免费放| 中文字幕日本av网站| 欧美日韩精品一区二区视频| 熟妇人妻中文av无码| 娇妻粗大高潮白浆| 国产天堂av在线播放资源| 午夜爽爽爽男女污污污网站| 欧美俄罗斯乱妇| 亚洲AⅤ乱码一区二区三区| 免费播放成人大片视频| 无码字幕av一区二区三区 | 国产精品美女白浆喷水| av天堂一区二区三区| 亚洲 小说区 图片区 都市| 午夜福利麻豆国产精品| 日韩精品一区二区三区毛片| 一区二区精品天堂亚洲av| 亚洲国产日韩欧美综合a| 欧美午夜精品久久久久免费视| 国产一区二区三区视频大全| 中国老熟女露脸老女人| 国产高清在线精品一区二区三区| 亚洲AV无码一区二区二三区我| 国产91在线精品观看| 欧美成人国产精品高潮| 亚洲深深色噜噜狠狠爱网站| 国产一区二区三区高清视频| 亚洲高清三区二区一区 | 国产精品免费一区二区三区四区| 久久午夜伦鲁片免费无码|