亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Linear arboricity of Cartesian products of graphs

        2013-01-08 12:04:15TaoFangyunLinWensong

        Tao Fangyun Lin Wensong

        (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2Department of Mathematics, Nanjing Forestry University, Nanjing 210037, China)

        In this paper, all the graphs are simple, finite and undirected. For a real numberx, 「x? is the least integer not less thanxand ?x」 is the largest integer not larger thanx. LetGbe a graph. We useV(G),E(G) andΔ(G) to denote the vertex set, the edge set and the maximum degree ofG, respectively.

        A linear forest is a forest whose components are paths. The linear arboricity la(G) ofGdefined by Harary[1]is the minimum number of linear forests needed to partition the edge setE(G) ofG.

        Akiyama et al.[2]conjectured that la(G)=「(Δ(G)+1)/2? for any regular graphG. They proved that the conjecture is true for complete graphs and graphs withΔ=3,4[2-3]. Enomoto and Péroche[4]proved that the conjecture is true for graphs withΔ=5,6,8. Guldan[5]proved that the conjecture is true for graphs withΔ=10. It is obvious that la(G)≥「Δ(G)/2? for every graphGand la(G)≥「(Δ(G)+1)/2? for every regular graphG. So the conjecture is equivalent to the following linear arboricity conjecture (LAC)[2]. For any graphG, 「Δ(G)/2?≤la(G)≤「(Δ(G)+1)/2?.

        Akiyama et al.[2]determined the linear arboricity of complete bipartite graphs and trees. Martinova[6]determined the linear arboricity of the maximal outerplanar graphs. Wu et al.[7-8]proved that the LAC is true for all the planar graphs. Wu[9]also determined the linear arboricity of the series-parallel graphs. Some other researches on linear arboricity can be found in Refs.[10-12].

        The Cartesian product of two graphsGandH(or simply product), denoted byG□H, is defined as the graph with vertex setV(G□H)={(u,v)|u∈V(G),v∈V(H)} and edge setE(G□H)={(u,x)(v,y)|u=vandxy∈E(H), oruv∈E(G) andx=y}. LetPmandCmrespectively, denote the path and cycle onmvertices andKndenote the complete graph onnvertices. In this paper, we determine the linear arboricity ofKn□Pm,Kn□CmandKn□Km.

        The following lemmas are useful in our proofs.

        Lemma1IfHis a subgraph ofG, then la(H)≤la(G).

        Lemma2la(G□H)≤la(G)+la(H).

        Lemma 2 holds by the definition of the linear arboricity and the Cartesian product of graphs.

        Lemma3[2]la(Kn)=「n/2?.

        Lemma4[13]Forn≥3, the complete graphKnis decomposable into edge disjoint Hamilton cycles if and only ifnis odd. Forn≥2, the complete graphKnis decomposable into edge disjoint Hamilton paths if and only ifnis even.

        Lemma5[14]LetV(K2n)={v0,v1,…,v2n-1}. For 0≤i≤n-1, put

        Fi=v0+iv1+iv2n-1+iv2+iv2n-2+i…vn+1+ivn+i

        where the indices ofvj’s are taken modulo 2n. ThenF0,F1,…,Fn-1are disjoint Hamilton paths ofK2n; i.e.,K2nis decomposed into edge disjoint Hamilton pathsF0,F1,…,Fn-1.

        1 la(Kn□Pm)

        The following lemma deals with the decomposition of the complete graphK2n+1.

        Lemma6E(K2n+1)=nP2n+1∪Mn, whereMnis a matching of ordern.

        ProofLetV(K2n+1)={u,v0,v1,…,v2n-1}. For 0≤i≤n-1, put

        Fi=v0+iv1+iv2n-1+iv2+iv2n-2+i…vn+1+ivn+i

        where the indices ofvj’s are taken modulo 2n. Then, by Lemma 5, the complete graphK2n+1{u} is decomposed intondisjoint Hamilton paths:F0,F1,…,Fn-1. For 0≤i≤n-1, leteibe then-th edge ofFiandMn={e0,e1,…,en-1}. Thenei=vi+「n/2?vi-「n/2?fori=0,1,…,n-1 andMn={v0vn,v1vn+1,…,vn-1v2n-1}. Clearly,Mnis a matching of ordern. For each 0≤i≤n-1, by deletingeifromFiand adding two edgesuvi,uvn+itoFi, we obtain a path on 2n+1 vertices. Thenpaths obtained in this way together withMnform a decomposition ofK2n+1as claimed in the lemma.

        Now suppose thatnis odd. Letn=2k+1, wherek≥1. For 0≤i≤k-1 and 0≤j≤m-1, put

        2 la(Kn□Cm)

        and the subscripts are taken modulo 2k.

        3 la(Kn□Km)

        Now, we consider the case that at least one ofn,mis odd.

        and the subscripts are taken modulo 2k.

        Summarizing Theorems 3 to 5, we have the following theorem.

        [1]Harary F. Covering and packing in graphs 1 [J].AnnalsoftheNewYorkAcademyofSciences, 1970,175(1): 198-205.

        [2]Akiyama J, Exoo G, Harary F. Covering and packing in graphs 3: cyclic and acyclic invariants [J].MathSlovaca, 1980,30(4): 405-417.

        [3]Akiyama J, Exoo G, Harary F. Covering and packing in graphs 4: linear arboricity [J].Networks, 1981,11(1): 69-72.

        [4]Enomoto H, Péroche B. The linear arboricity of some regular graphs [J].JournalofGraphTheory, 1984,8(2): 309-324.

        [5]Guldan F. The linear arboricity of 10-regular graphs [J].MathSlovaca, 1986,36(3): 225-228.

        [6]Martinova M K. Linear arboricity of maximal outerplanar graphs [J].GodishnikVisshUchebnZavedPrilozhnaMath, 1987,23: 147-155. (in Bulgarian)

        [7]Wu Jianliang. On the linear arboricity of planar graphs [J].JournalofGraphTheory, 1999,31(2): 129-134.

        [8]Wu Jianliang, Wu Yuwen. The linear arboricity of planar graphs of maximum degree seven are four [J].JournalofGraphTheory, 2008,58(3): 210-220.

        [9]Wu Jianliang. The linear arboricity of series-parallel graphs [J].GraphsandCombinatorics, 2000,16(3): 367-372.

        [10]Lu Xiaoxu, Xu Baogang. A note on vertex-arboricity of plane graphs [J].JournalofNanjingUniversity:NaturalSciences, 2007,43(1): 13-18.

        [11]Tan Xiang, Chen Hongyu, Wu Jianliang. The linear arboricity of planar graphs with maximum degree at least five [J].BulletinoftheMalaysianMathematicalSciencesSociety, 2011,34(3): 541-552.

        [12]Wu Jianliang, Hou Jianfeng, Liu Guizhen. The linear arboricity of planar graphs with no short cycles [J].TheoreticalComputerScience, 2007,381(1/2/3): 230-233.

        [14]Chen B L, Huang K C. On the lineark-arboricity ofKnandKn,n[J].DiscreteMath, 2002,254(1/2/3): 51-61.

        亚洲日韩精品无码av海量| 仙女白丝jk小脚夹得我好爽| 国产日韩欧美视频成人| 亚洲成人色黄网站久久| 手机在线免费观看av不卡网站| 亚洲av无码专区国产乱码4se| 女局长白白嫩嫩大屁股| 国产chinese男男gay视频网| 国产亚洲第一精品| 亚洲日本一区二区在线观看| 一区二区三区国产精品麻豆| 亚洲精品无码久久久久y| 欧美中日韩免费观看网站| 亚洲中文无码永久免| 无码伊人66久久大杳蕉网站谷歌| 一区=区三区国产视频| 精品国产亚洲av高清大片| 婷婷射精av这里只有精品| 日日碰狠狠躁久久躁9| 国产chinese在线视频| 日本一区二区午夜视频| 福利视频一区二区三区| 亚洲不卡高清av在线| 亚洲av区,一区二区三区色婷婷 | 亚洲精品国偷拍自产在线| 亚洲国产精品久久久久婷婷老年| 欧美日韩国产亚洲一区二区三区 | 无码国产精品色午夜| 亚洲一区二区三区av天堂| 在线免费观看黄色国产强暴av| 性高朝久久久久久久3小时| 消息称老熟妇乱视频一区二区| 国产成人77亚洲精品www| 亚洲愉拍自拍视频一区| 免费高清日本一区二区| 粉嫩极品国产在线观看免费一区 | 粗大的内捧猛烈进出视频 | 日本一区二区三区中文字幕最新 | 久久久久亚洲av无码尤物| 婷婷开心五月综合基地| 91精品国产综合久久久蜜|