亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Linear arboricity of Cartesian products of graphs

        2013-01-08 12:04:15TaoFangyunLinWensong

        Tao Fangyun Lin Wensong

        (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2Department of Mathematics, Nanjing Forestry University, Nanjing 210037, China)

        In this paper, all the graphs are simple, finite and undirected. For a real numberx, 「x? is the least integer not less thanxand ?x」 is the largest integer not larger thanx. LetGbe a graph. We useV(G),E(G) andΔ(G) to denote the vertex set, the edge set and the maximum degree ofG, respectively.

        A linear forest is a forest whose components are paths. The linear arboricity la(G) ofGdefined by Harary[1]is the minimum number of linear forests needed to partition the edge setE(G) ofG.

        Akiyama et al.[2]conjectured that la(G)=「(Δ(G)+1)/2? for any regular graphG. They proved that the conjecture is true for complete graphs and graphs withΔ=3,4[2-3]. Enomoto and Péroche[4]proved that the conjecture is true for graphs withΔ=5,6,8. Guldan[5]proved that the conjecture is true for graphs withΔ=10. It is obvious that la(G)≥「Δ(G)/2? for every graphGand la(G)≥「(Δ(G)+1)/2? for every regular graphG. So the conjecture is equivalent to the following linear arboricity conjecture (LAC)[2]. For any graphG, 「Δ(G)/2?≤la(G)≤「(Δ(G)+1)/2?.

        Akiyama et al.[2]determined the linear arboricity of complete bipartite graphs and trees. Martinova[6]determined the linear arboricity of the maximal outerplanar graphs. Wu et al.[7-8]proved that the LAC is true for all the planar graphs. Wu[9]also determined the linear arboricity of the series-parallel graphs. Some other researches on linear arboricity can be found in Refs.[10-12].

        The Cartesian product of two graphsGandH(or simply product), denoted byG□H, is defined as the graph with vertex setV(G□H)={(u,v)|u∈V(G),v∈V(H)} and edge setE(G□H)={(u,x)(v,y)|u=vandxy∈E(H), oruv∈E(G) andx=y}. LetPmandCmrespectively, denote the path and cycle onmvertices andKndenote the complete graph onnvertices. In this paper, we determine the linear arboricity ofKn□Pm,Kn□CmandKn□Km.

        The following lemmas are useful in our proofs.

        Lemma1IfHis a subgraph ofG, then la(H)≤la(G).

        Lemma2la(G□H)≤la(G)+la(H).

        Lemma 2 holds by the definition of the linear arboricity and the Cartesian product of graphs.

        Lemma3[2]la(Kn)=「n/2?.

        Lemma4[13]Forn≥3, the complete graphKnis decomposable into edge disjoint Hamilton cycles if and only ifnis odd. Forn≥2, the complete graphKnis decomposable into edge disjoint Hamilton paths if and only ifnis even.

        Lemma5[14]LetV(K2n)={v0,v1,…,v2n-1}. For 0≤i≤n-1, put

        Fi=v0+iv1+iv2n-1+iv2+iv2n-2+i…vn+1+ivn+i

        where the indices ofvj’s are taken modulo 2n. ThenF0,F1,…,Fn-1are disjoint Hamilton paths ofK2n; i.e.,K2nis decomposed into edge disjoint Hamilton pathsF0,F1,…,Fn-1.

        1 la(Kn□Pm)

        The following lemma deals with the decomposition of the complete graphK2n+1.

        Lemma6E(K2n+1)=nP2n+1∪Mn, whereMnis a matching of ordern.

        ProofLetV(K2n+1)={u,v0,v1,…,v2n-1}. For 0≤i≤n-1, put

        Fi=v0+iv1+iv2n-1+iv2+iv2n-2+i…vn+1+ivn+i

        where the indices ofvj’s are taken modulo 2n. Then, by Lemma 5, the complete graphK2n+1{u} is decomposed intondisjoint Hamilton paths:F0,F1,…,Fn-1. For 0≤i≤n-1, leteibe then-th edge ofFiandMn={e0,e1,…,en-1}. Thenei=vi+「n/2?vi-「n/2?fori=0,1,…,n-1 andMn={v0vn,v1vn+1,…,vn-1v2n-1}. Clearly,Mnis a matching of ordern. For each 0≤i≤n-1, by deletingeifromFiand adding two edgesuvi,uvn+itoFi, we obtain a path on 2n+1 vertices. Thenpaths obtained in this way together withMnform a decomposition ofK2n+1as claimed in the lemma.

        Now suppose thatnis odd. Letn=2k+1, wherek≥1. For 0≤i≤k-1 and 0≤j≤m-1, put

        2 la(Kn□Cm)

        and the subscripts are taken modulo 2k.

        3 la(Kn□Km)

        Now, we consider the case that at least one ofn,mis odd.

        and the subscripts are taken modulo 2k.

        Summarizing Theorems 3 to 5, we have the following theorem.

        [1]Harary F. Covering and packing in graphs 1 [J].AnnalsoftheNewYorkAcademyofSciences, 1970,175(1): 198-205.

        [2]Akiyama J, Exoo G, Harary F. Covering and packing in graphs 3: cyclic and acyclic invariants [J].MathSlovaca, 1980,30(4): 405-417.

        [3]Akiyama J, Exoo G, Harary F. Covering and packing in graphs 4: linear arboricity [J].Networks, 1981,11(1): 69-72.

        [4]Enomoto H, Péroche B. The linear arboricity of some regular graphs [J].JournalofGraphTheory, 1984,8(2): 309-324.

        [5]Guldan F. The linear arboricity of 10-regular graphs [J].MathSlovaca, 1986,36(3): 225-228.

        [6]Martinova M K. Linear arboricity of maximal outerplanar graphs [J].GodishnikVisshUchebnZavedPrilozhnaMath, 1987,23: 147-155. (in Bulgarian)

        [7]Wu Jianliang. On the linear arboricity of planar graphs [J].JournalofGraphTheory, 1999,31(2): 129-134.

        [8]Wu Jianliang, Wu Yuwen. The linear arboricity of planar graphs of maximum degree seven are four [J].JournalofGraphTheory, 2008,58(3): 210-220.

        [9]Wu Jianliang. The linear arboricity of series-parallel graphs [J].GraphsandCombinatorics, 2000,16(3): 367-372.

        [10]Lu Xiaoxu, Xu Baogang. A note on vertex-arboricity of plane graphs [J].JournalofNanjingUniversity:NaturalSciences, 2007,43(1): 13-18.

        [11]Tan Xiang, Chen Hongyu, Wu Jianliang. The linear arboricity of planar graphs with maximum degree at least five [J].BulletinoftheMalaysianMathematicalSciencesSociety, 2011,34(3): 541-552.

        [12]Wu Jianliang, Hou Jianfeng, Liu Guizhen. The linear arboricity of planar graphs with no short cycles [J].TheoreticalComputerScience, 2007,381(1/2/3): 230-233.

        [14]Chen B L, Huang K C. On the lineark-arboricity ofKnandKn,n[J].DiscreteMath, 2002,254(1/2/3): 51-61.

        国产熟女亚洲精品麻豆| 色猫咪免费人成网站在线观看| 中文字幕有码无码人妻av蜜桃| 玩弄人妻少妇精品视频| 亚洲欧美日韩在线不卡| 伊人久久五月丁香综合中文亚洲| 久久97精品久久久久久久不卡| 亚州无线国产2021| 中文字幕精品乱码一区| 亚洲一区二区三区成人网| 久久久免费看少妇高潮| 免费无码又爽又刺激网站直播| 黑色丝袜秘书夹住巨龙摩擦| 国产女女做受ⅹxx高潮| 麻豆AV免费网站| 谁有在线观看av中文| 精品久久免费国产乱色也| 风骚人妻一区二区三区| 青青草原亚洲| 丰满岳妇乱一区二区三区| 久久久精品久久波多野结衣av| 丰满人妻无套中出中文字幕| 人妻中出中文字幕在线| 亚洲国产av一区二区四季 | 亚洲一区二区三区av色婷婷| 国产精品毛片av毛片一区二区| 亚洲av福利院在线观看| 粉嫩被粗大进进出出视频| 色诱久久av| 秀人网嫩模李梓熙大尺度| 日韩不卡一区二区三区色图| 亚洲日韩成人无码| 乱人伦视频中文字幕| 中文字幕Aⅴ人妻一区二区苍井空| 国产无套粉嫩白浆内精| 日韩人妻精品中文字幕专区| 久久国产色av免费观看| 亚洲精品无码mv在线观看| 久久91精品国产91久久麻豆| 国产精品美女主播在线| 午夜性刺激免费看视频|