亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Linear arboricity of Cartesian products of graphs

        2013-01-08 12:04:15TaoFangyunLinWensong

        Tao Fangyun Lin Wensong

        (1Department of Mathematics, Southeast University, Nanjing 211189, China)(2Department of Mathematics, Nanjing Forestry University, Nanjing 210037, China)

        In this paper, all the graphs are simple, finite and undirected. For a real numberx, 「x? is the least integer not less thanxand ?x」 is the largest integer not larger thanx. LetGbe a graph. We useV(G),E(G) andΔ(G) to denote the vertex set, the edge set and the maximum degree ofG, respectively.

        A linear forest is a forest whose components are paths. The linear arboricity la(G) ofGdefined by Harary[1]is the minimum number of linear forests needed to partition the edge setE(G) ofG.

        Akiyama et al.[2]conjectured that la(G)=「(Δ(G)+1)/2? for any regular graphG. They proved that the conjecture is true for complete graphs and graphs withΔ=3,4[2-3]. Enomoto and Péroche[4]proved that the conjecture is true for graphs withΔ=5,6,8. Guldan[5]proved that the conjecture is true for graphs withΔ=10. It is obvious that la(G)≥「Δ(G)/2? for every graphGand la(G)≥「(Δ(G)+1)/2? for every regular graphG. So the conjecture is equivalent to the following linear arboricity conjecture (LAC)[2]. For any graphG, 「Δ(G)/2?≤la(G)≤「(Δ(G)+1)/2?.

        Akiyama et al.[2]determined the linear arboricity of complete bipartite graphs and trees. Martinova[6]determined the linear arboricity of the maximal outerplanar graphs. Wu et al.[7-8]proved that the LAC is true for all the planar graphs. Wu[9]also determined the linear arboricity of the series-parallel graphs. Some other researches on linear arboricity can be found in Refs.[10-12].

        The Cartesian product of two graphsGandH(or simply product), denoted byG□H, is defined as the graph with vertex setV(G□H)={(u,v)|u∈V(G),v∈V(H)} and edge setE(G□H)={(u,x)(v,y)|u=vandxy∈E(H), oruv∈E(G) andx=y}. LetPmandCmrespectively, denote the path and cycle onmvertices andKndenote the complete graph onnvertices. In this paper, we determine the linear arboricity ofKn□Pm,Kn□CmandKn□Km.

        The following lemmas are useful in our proofs.

        Lemma1IfHis a subgraph ofG, then la(H)≤la(G).

        Lemma2la(G□H)≤la(G)+la(H).

        Lemma 2 holds by the definition of the linear arboricity and the Cartesian product of graphs.

        Lemma3[2]la(Kn)=「n/2?.

        Lemma4[13]Forn≥3, the complete graphKnis decomposable into edge disjoint Hamilton cycles if and only ifnis odd. Forn≥2, the complete graphKnis decomposable into edge disjoint Hamilton paths if and only ifnis even.

        Lemma5[14]LetV(K2n)={v0,v1,…,v2n-1}. For 0≤i≤n-1, put

        Fi=v0+iv1+iv2n-1+iv2+iv2n-2+i…vn+1+ivn+i

        where the indices ofvj’s are taken modulo 2n. ThenF0,F1,…,Fn-1are disjoint Hamilton paths ofK2n; i.e.,K2nis decomposed into edge disjoint Hamilton pathsF0,F1,…,Fn-1.

        1 la(Kn□Pm)

        The following lemma deals with the decomposition of the complete graphK2n+1.

        Lemma6E(K2n+1)=nP2n+1∪Mn, whereMnis a matching of ordern.

        ProofLetV(K2n+1)={u,v0,v1,…,v2n-1}. For 0≤i≤n-1, put

        Fi=v0+iv1+iv2n-1+iv2+iv2n-2+i…vn+1+ivn+i

        where the indices ofvj’s are taken modulo 2n. Then, by Lemma 5, the complete graphK2n+1{u} is decomposed intondisjoint Hamilton paths:F0,F1,…,Fn-1. For 0≤i≤n-1, leteibe then-th edge ofFiandMn={e0,e1,…,en-1}. Thenei=vi+「n/2?vi-「n/2?fori=0,1,…,n-1 andMn={v0vn,v1vn+1,…,vn-1v2n-1}. Clearly,Mnis a matching of ordern. For each 0≤i≤n-1, by deletingeifromFiand adding two edgesuvi,uvn+itoFi, we obtain a path on 2n+1 vertices. Thenpaths obtained in this way together withMnform a decomposition ofK2n+1as claimed in the lemma.

        Now suppose thatnis odd. Letn=2k+1, wherek≥1. For 0≤i≤k-1 and 0≤j≤m-1, put

        2 la(Kn□Cm)

        and the subscripts are taken modulo 2k.

        3 la(Kn□Km)

        Now, we consider the case that at least one ofn,mis odd.

        and the subscripts are taken modulo 2k.

        Summarizing Theorems 3 to 5, we have the following theorem.

        [1]Harary F. Covering and packing in graphs 1 [J].AnnalsoftheNewYorkAcademyofSciences, 1970,175(1): 198-205.

        [2]Akiyama J, Exoo G, Harary F. Covering and packing in graphs 3: cyclic and acyclic invariants [J].MathSlovaca, 1980,30(4): 405-417.

        [3]Akiyama J, Exoo G, Harary F. Covering and packing in graphs 4: linear arboricity [J].Networks, 1981,11(1): 69-72.

        [4]Enomoto H, Péroche B. The linear arboricity of some regular graphs [J].JournalofGraphTheory, 1984,8(2): 309-324.

        [5]Guldan F. The linear arboricity of 10-regular graphs [J].MathSlovaca, 1986,36(3): 225-228.

        [6]Martinova M K. Linear arboricity of maximal outerplanar graphs [J].GodishnikVisshUchebnZavedPrilozhnaMath, 1987,23: 147-155. (in Bulgarian)

        [7]Wu Jianliang. On the linear arboricity of planar graphs [J].JournalofGraphTheory, 1999,31(2): 129-134.

        [8]Wu Jianliang, Wu Yuwen. The linear arboricity of planar graphs of maximum degree seven are four [J].JournalofGraphTheory, 2008,58(3): 210-220.

        [9]Wu Jianliang. The linear arboricity of series-parallel graphs [J].GraphsandCombinatorics, 2000,16(3): 367-372.

        [10]Lu Xiaoxu, Xu Baogang. A note on vertex-arboricity of plane graphs [J].JournalofNanjingUniversity:NaturalSciences, 2007,43(1): 13-18.

        [11]Tan Xiang, Chen Hongyu, Wu Jianliang. The linear arboricity of planar graphs with maximum degree at least five [J].BulletinoftheMalaysianMathematicalSciencesSociety, 2011,34(3): 541-552.

        [12]Wu Jianliang, Hou Jianfeng, Liu Guizhen. The linear arboricity of planar graphs with no short cycles [J].TheoreticalComputerScience, 2007,381(1/2/3): 230-233.

        [14]Chen B L, Huang K C. On the lineark-arboricity ofKnandKn,n[J].DiscreteMath, 2002,254(1/2/3): 51-61.

        欧美又大又硬又粗bbbbb| 国产丝袜免费精品一区二区| 熟女少妇丰满一区二区| 亚洲精品中文字幕导航| 丰满熟女高潮毛茸茸欧洲视频 | 在教室伦流澡到高潮hgl动漫| 人妻av无码一区二区三区| 人妻少妇av无码一区二区| 国产精品亚洲ΑV天堂无码| 强迫人妻hd中文字幕| 日本一道综合久久aⅴ免费| 人人玩人人添人人澡| 亚洲中文字幕av天堂 | 午夜亚洲精品视频在线| 亚洲精品色午夜无码专区日韩| 中文字幕在线观看亚洲日韩| 国产成人无码A区在线观| 人妻av中文字幕精品久久| 国产精品久久久久久久久久红粉| 无码va在线观看| 爱我久久国产精品| 手机在线观看亚洲av| 欧美又大又硬又粗bbbbb| 成年无码av片完整版| 亚洲AV无码国产精品久久l| 亚洲一区二区综合精品| 樱桃视频影院在线播放| 亚洲成人电影在线观看精品国产 | 在线观看播放免费视频| 亚洲狠狠婷婷综合久久久久| 久久发布国产伦子伦精品| 无码伊人久久大蕉中文无码| 中文av字幕一区二区三区| 国产女人的高潮国语对白| 亚洲熟妇无码久久精品疯| 永久免费看黄在线观看| 免费又黄又爽又色的视频| 国产精品爽爽va在线观看无码| 亚洲国产成人Av毛片大全| 日本人妻97中文字幕| 国产白袜脚足j棉袜在线观看|