亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Ground states for asymptotically periodic quasilinearSchr?dinger equations with critical growth

        2013-01-08 12:57:49ZhangHuiZhangFubao

        Zhang Hui Zhang Fubao

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        1 Introduction and Statement of Main Result

        As the models of physical phenomena, the quasilinear Schr?dinger equation

        (1)

        has been extensively studied in recent years. For the detailed physical applications, one can see Ref.[1].

        Inspired by Refs.[4-5], we are interested in the existence of ground states for asymptotically periodic quasilinear Schr?dinger equation (1). We consider

        -Δu+V(x)u-uΔ(u2)=K(x)|u|22*-2u+g(x,u)

        u∈H1(RN)

        (2)

        LetFbe a class of functionsh∈C(RN)∩L∞(RN), such that for every>0 the set {x∈RN:|h(x)|≥} has a finite Lebesgue measure. Suppose thatV,K∈C(RN) satisfies the following conditions:

        H1) There exists a constanta0>0 and a functionVp∈C(RN), 1-periodic inxi, 1≤i≤N, such thatV-Vp∈FandVp(x)≥V(x)≥a0,x∈RN.

        H2) There exists a functionKp∈C(RN), 1-periodic inxi, 1≤i≤N, and a pointx0∈RNsuch thatK-Kp∈Fand

        ①K(x)≥Kp(x)>0,x∈RN;

        ②K(x)=|K|∞+O(|x-x0|N-2), asx→x0.

        H3)g(x,u)=o(u) uniformly inxasu→0;

        H4) |g(x,u)|≤a(1+|u|q-1), for somea>0 and 4≤q<22*;

        H6) There exists a neighborhood ofx0given by H2),Ω?RN, such that

        H7) There exists a constantq1∈(2,22*), functionsh∈Fandgp∈C(RN×R,R) such that

        ①gpis 1-periodic inxi,1≤i≤N;

        ② |g(x,u)-gp(x,u)|≤|h(x)|(|u|+|u|q1-1),x∈RN;

        Theorem1If H1) to H7) hold, then the problem (2) has a ground state.

        Remark1H3) and H5) imply that

        (3)

        2 Variational Setting

        is not well defined inH1(RN). Choose the changefdefined by

        f(t)=-f(-t) on (-∞,0]

        and setv=f-1(u), then we obtain

        which is well defined inH1(RN) by the properties off(see Ref.[5]). The critical points ofIare weak solutions of

        -Δv+V(x)f′(v)f(v)=K(x)|f(v)|22*-2f(v)f′(v)+g(x,f(v))f′(v)v∈H1(RN)

        (4)

        Similar to Ref.[5], we first prove that there is a nontrivial solution for Eq.(4). We know that the results obtained under (V), (K), (g1), (g2) and (g5) in Ref.[5] still hold since the conditions H1) to H4) and H6) are the same as (V), (K), (g1), (g2) and (g5), respectively. However, H5) and H7) are different from (g3) and (g4) in Ref.[5]; in the following, we verify whether the results under (g3) and (g4) still hold.

        Lemma1Let H1) to H5) hold. Then, the (Ce)b(b>0) sequencevnofIsatisfying

        I(vn)→b, =I′(vn)=(1+=vn=)→0

        (5)

        is bounded.

        By (5), we have

        I1+I2+I3

        (6)

        By Lemma 1 (8) in Ref.[5], we obtain

        (7)

        ForI3, using Lemma 1 (8) in Ref.[5] and inequality (3), we have

        In Ref.[5], the authors supposed that |g(x,u)-gp(x,u)|≤h(x)|u|q3-1,q3∈[2,22*), and we assume that |g(x,u)-gp(x,u)|≤h(x)(|u|+|u|q1-1),q1∈(2,22*). So Lemma 9 in Ref.[5] holds under H1), H2) and H7). Following the outline in Ref.[5], we have the following lemma.

        In order to find ground states, we also need to introduce the Nehari manifold. The Nehari manifold corresponding to Eq.(4) is

        M={u∈H1(RN){0}: 〈I′(u),u〉=0}

        First, we give the following lemma in which the simple proof is left to the reader.

        Lemma3Let H1) to H5) hold. ThenI(tu)→-∞ ast→∞,u∈H1(RN){0}.

        Inspired by Ref.[6], we have

        Note that

        t(|v+Φ1(t)+Φ2(t)+Φ3(t))

        By Lemma 1 (8) in Ref.[5] and the fact thatf″(tv)=-2f(tv)f′4(tv), we obtain

        2f2(tv)f′4(tv)tv2-f(tv)f′(tv)v]V(x)<0

        SoΦ1is decreasing.

        (8)

        Lemma5Let H1) to H6) hold. Thenc*≥c.

        3 Proof of Theorem 1

        ProofBy Lemma 2, we assume that there is a nontrivial solutionwwithI(w)=c. Thenw∈M. SoI(w)≥c*. Note thatI(w)=candc*≥c, and we obtainI(w)≤c*. SoI(w)=c*. Then we can easily infer thatwis a ground state for Eq.(4). We complete the proof.

        [1]Kurihara S. Large-amplitude quasi-solitons in superfluid films [J].JournalofthePhysicalSocietyofJapan, 1981,50(10): 3262-3267.

        [2]Liu J, Wang Z. Soliton solutions for quasilinear Schr?dinger equations Ⅰ [J].ProceedingsoftheAmericanMathematicalSociety, 2003,131(2): 441-448.

        [3]Liu J, Wang Y, Wang Z. Solutions for quasilinear Schr?dinger equations via the Nehari method [J].CommunicationsinPartialDifferentialEquations, 2004,29(5/6): 879-901.

        [4]Liu X, Liu J, Wang Z. Ground states for quasilinear Schr?dinger equation with critical growth [J].CalculusofVariationsandPartialDifferentialEquations, 2013,46(3/4): 641-669.

        [5]Silva E A B, Vieira G F. Quasilinear asymptotically periodic elliptic equations with critical growth [J].CalculusofVariationsandPartialDifferentialEquations, 2012,39(1/2): 1-33.

        [6]Szulkin A, Weth T. The method of Nehari manifold [C]//HandbookofNonconvexAnalysisandApplications. Boston, USA: International Press, 2010: 597-632.

        [7]Do J M, Miyagaki O H, Soares S H M. Soliton solutions for quasilinear Schr?dinger equations with critical growth [J].JournalofDifferentialEquations, 2010,248(4): 722-744.

        [8]Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schr?dinger equations with subcritical growth [J].NonlinearAnalysis:Theory,MethodsandApplications, 2010,72(6): 2935-2949.

        亚洲精品在线观看自拍| 亚洲av永久无码精品秋霞电影影院 | 精品国产aⅴ无码一区二区 | 亚洲精品97久久中文字幕无码| 色伊人国产高清在线| 一区二区三区人妻在线| 亚洲国产高清精品在线| 亚洲色精品aⅴ一区区三区| 亚州精品无码久久aV字幕| av成人资源在线播放| 91超精品碰国产在线观看| 亚洲国产另类精品| аⅴ天堂国产最新版在线中文| 青青草视频在线免费视频| 久久99精品久久久大学生| 国产白丝无码视频在线观看| 亚洲另在线日韩综合色| 81久久免费精品国产色夜| 亚洲av永久无码精品漫画| 久久tv中文字幕首页| 亚洲精品午夜精品国产| 久久国产精品婷婷激情| 国产中文字幕乱人伦在线观看| 国产欧美一区二区成人影院| av在线网站一区二区| 亚洲码欧美码一区二区三区| 日韩在线一区二区三区免费视频| 不卡无毒免费毛片视频观看| 日韩美女av一区二区三区四区| 欧美xxxx做受欧美| 国产精品毛片一区二区三区| 国产熟妇搡bbbb搡bbbb搡| 台湾佬中文偷拍亚洲综合| 国产另类av一区二区三区| 国产精品白浆在线观看免费| 亚洲不卡中文字幕无码| 日本韩国黄色三级三级| 一道本久久综合久久鬼色| 女人扒开屁股爽桶30分钟| 麻豆密入视频在线观看| 丰满老熟女性生活视频|