亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Ground states for asymptotically periodic quasilinearSchr?dinger equations with critical growth

        2013-01-08 12:57:49ZhangHuiZhangFubao

        Zhang Hui Zhang Fubao

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        1 Introduction and Statement of Main Result

        As the models of physical phenomena, the quasilinear Schr?dinger equation

        (1)

        has been extensively studied in recent years. For the detailed physical applications, one can see Ref.[1].

        Inspired by Refs.[4-5], we are interested in the existence of ground states for asymptotically periodic quasilinear Schr?dinger equation (1). We consider

        -Δu+V(x)u-uΔ(u2)=K(x)|u|22*-2u+g(x,u)

        u∈H1(RN)

        (2)

        LetFbe a class of functionsh∈C(RN)∩L∞(RN), such that for every>0 the set {x∈RN:|h(x)|≥} has a finite Lebesgue measure. Suppose thatV,K∈C(RN) satisfies the following conditions:

        H1) There exists a constanta0>0 and a functionVp∈C(RN), 1-periodic inxi, 1≤i≤N, such thatV-Vp∈FandVp(x)≥V(x)≥a0,x∈RN.

        H2) There exists a functionKp∈C(RN), 1-periodic inxi, 1≤i≤N, and a pointx0∈RNsuch thatK-Kp∈Fand

        ①K(x)≥Kp(x)>0,x∈RN;

        ②K(x)=|K|∞+O(|x-x0|N-2), asx→x0.

        H3)g(x,u)=o(u) uniformly inxasu→0;

        H4) |g(x,u)|≤a(1+|u|q-1), for somea>0 and 4≤q<22*;

        H6) There exists a neighborhood ofx0given by H2),Ω?RN, such that

        H7) There exists a constantq1∈(2,22*), functionsh∈Fandgp∈C(RN×R,R) such that

        ①gpis 1-periodic inxi,1≤i≤N;

        ② |g(x,u)-gp(x,u)|≤|h(x)|(|u|+|u|q1-1),x∈RN;

        Theorem1If H1) to H7) hold, then the problem (2) has a ground state.

        Remark1H3) and H5) imply that

        (3)

        2 Variational Setting

        is not well defined inH1(RN). Choose the changefdefined by

        f(t)=-f(-t) on (-∞,0]

        and setv=f-1(u), then we obtain

        which is well defined inH1(RN) by the properties off(see Ref.[5]). The critical points ofIare weak solutions of

        -Δv+V(x)f′(v)f(v)=K(x)|f(v)|22*-2f(v)f′(v)+g(x,f(v))f′(v)v∈H1(RN)

        (4)

        Similar to Ref.[5], we first prove that there is a nontrivial solution for Eq.(4). We know that the results obtained under (V), (K), (g1), (g2) and (g5) in Ref.[5] still hold since the conditions H1) to H4) and H6) are the same as (V), (K), (g1), (g2) and (g5), respectively. However, H5) and H7) are different from (g3) and (g4) in Ref.[5]; in the following, we verify whether the results under (g3) and (g4) still hold.

        Lemma1Let H1) to H5) hold. Then, the (Ce)b(b>0) sequencevnofIsatisfying

        I(vn)→b, =I′(vn)=(1+=vn=)→0

        (5)

        is bounded.

        By (5), we have

        I1+I2+I3

        (6)

        By Lemma 1 (8) in Ref.[5], we obtain

        (7)

        ForI3, using Lemma 1 (8) in Ref.[5] and inequality (3), we have

        In Ref.[5], the authors supposed that |g(x,u)-gp(x,u)|≤h(x)|u|q3-1,q3∈[2,22*), and we assume that |g(x,u)-gp(x,u)|≤h(x)(|u|+|u|q1-1),q1∈(2,22*). So Lemma 9 in Ref.[5] holds under H1), H2) and H7). Following the outline in Ref.[5], we have the following lemma.

        In order to find ground states, we also need to introduce the Nehari manifold. The Nehari manifold corresponding to Eq.(4) is

        M={u∈H1(RN){0}: 〈I′(u),u〉=0}

        First, we give the following lemma in which the simple proof is left to the reader.

        Lemma3Let H1) to H5) hold. ThenI(tu)→-∞ ast→∞,u∈H1(RN){0}.

        Inspired by Ref.[6], we have

        Note that

        t(|v+Φ1(t)+Φ2(t)+Φ3(t))

        By Lemma 1 (8) in Ref.[5] and the fact thatf″(tv)=-2f(tv)f′4(tv), we obtain

        2f2(tv)f′4(tv)tv2-f(tv)f′(tv)v]V(x)<0

        SoΦ1is decreasing.

        (8)

        Lemma5Let H1) to H6) hold. Thenc*≥c.

        3 Proof of Theorem 1

        ProofBy Lemma 2, we assume that there is a nontrivial solutionwwithI(w)=c. Thenw∈M. SoI(w)≥c*. Note thatI(w)=candc*≥c, and we obtainI(w)≤c*. SoI(w)=c*. Then we can easily infer thatwis a ground state for Eq.(4). We complete the proof.

        [1]Kurihara S. Large-amplitude quasi-solitons in superfluid films [J].JournalofthePhysicalSocietyofJapan, 1981,50(10): 3262-3267.

        [2]Liu J, Wang Z. Soliton solutions for quasilinear Schr?dinger equations Ⅰ [J].ProceedingsoftheAmericanMathematicalSociety, 2003,131(2): 441-448.

        [3]Liu J, Wang Y, Wang Z. Solutions for quasilinear Schr?dinger equations via the Nehari method [J].CommunicationsinPartialDifferentialEquations, 2004,29(5/6): 879-901.

        [4]Liu X, Liu J, Wang Z. Ground states for quasilinear Schr?dinger equation with critical growth [J].CalculusofVariationsandPartialDifferentialEquations, 2013,46(3/4): 641-669.

        [5]Silva E A B, Vieira G F. Quasilinear asymptotically periodic elliptic equations with critical growth [J].CalculusofVariationsandPartialDifferentialEquations, 2012,39(1/2): 1-33.

        [6]Szulkin A, Weth T. The method of Nehari manifold [C]//HandbookofNonconvexAnalysisandApplications. Boston, USA: International Press, 2010: 597-632.

        [7]Do J M, Miyagaki O H, Soares S H M. Soliton solutions for quasilinear Schr?dinger equations with critical growth [J].JournalofDifferentialEquations, 2010,248(4): 722-744.

        [8]Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schr?dinger equations with subcritical growth [J].NonlinearAnalysis:Theory,MethodsandApplications, 2010,72(6): 2935-2949.

        国产精品一区二区三区在线观看 | 狠狠色成人综合网| 久久国产精品国产精品日韩区| 黑人一区二区三区在线| 午夜免费观看日韩一级片| 亚洲 欧美 日韩 国产综合 在线| 国产午夜福利小视频合集| 美女视频很黄很a免费国产| 成人影院视频在线播放| 亚洲日韩av无码中文字幕美国| 久久精品国产亚洲AⅤ无码| 手机在线观看亚洲av| av网站在线观看入口| 久久丫精品国产亚洲av不卡 | 亚洲国产色婷婷久久精品| 日韩精品内射视频免费观看| 五月天综合网站| 国产在线精彩自拍视频| 亚洲夫妻性生活免费视频| 国产成年无码v片在线| 亚洲精品成人av一区二区| 国产精品亚洲在线播放| 少妇被爽到高潮喷水久久欧美精品| 日韩a毛片免费观看| 日韩精品人妻系列无码专区免费 | 国产自拍精品一区在线观看| 成人精品一区二区三区中文字幕| 全免费a级毛片免费看| 亚洲熟女天堂av一区二区三区| 亚洲av成人无码一区二区三区在线观看 | 国产成人精品免费久久久久| 青青久在线视频免费观看| 亚洲欧洲日产国码无码| 中文字幕人妻一区色偷久久| 少妇被黑人整得嗷嗷叫视频| 亚洲va国产va天堂va久久| 亚洲综合网在线观看首页| 日本一区二区日韩在线| 丁香五月亚洲综合在线| 亚洲av无码一区二区乱子伦as| 亚洲国产免费公开在线视频|