亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Constant angle surfaces constructed on curves

        2013-01-02 01:25:44WangXiaoliuChaoXiaoli

        Wang Xiaoliu Chao Xiaoli

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        Since the 19th century, the ruled surfaces have captured the attention of mathematicians and the main properties of these surfaces have been illuminated in almost all the monographs and books on differential geometry. Motivated again by their flatness property, in this paper we classify some ruled surfaces endowed with the constancy angle property. The constant angle surfaces was initially studied in the setting of the product spaceS2×R(see Ref.[1]). Then the surfaces with this property in other ambient spaces, namelyH2×RandR3, were investigated[2-4]. One may also find other relative references in Refs.[5-7].

        1 Preliminaries

        t′(s)=κ(s)n(s)

        n′(s)=-κ(s)t(s)+τ(s)b(s)

        (1)

        b′(s)=-τ(s)n(s)

        whereτ(s) is the torsion of curveσats.

        2 Main Theorems and Their Proof

        First, we consider ruled surfaceS

        r(s,v)=σ(s)+vl(s)

        (2)

        where

        l(s)=cosα(s)·t(s)+sinα(s)·n(s)

        Set

        m(s)=-sinα(s)·t(s)+cosα(s)·n(s)

        It is easy to know thatm(s) is orthogonal to bothl(s) andb(s). Moreover, we have

        A direct computation shows that

        rs=σ′(s)+vl′(s)=(1-vα′sinα-vκsinα)t+

        v(κ+α′)cosα·n+vτsinα·b

        rv=l(s)=cosα·t+sinα·n

        The normal of the surface is

        (3)

        whereΔ=(sinα-v(α′+κ))2+v2τ2sin2α.

        If surfaceSis a constant angle surface; i.e., the normalNmakes a constant angleθwith the fixed directionk, namely ∠(N,k)=θ; equivalently, 〈N,k〉=cosθ. Substituting (3) into this expression, we obtain a vanishing polynomial expression of the second order inv. So all the coefficients must be identically zero, that is

        sin2α(〈b,k〉2-cos2θ)=0

        (4)

        sinα(α′+κ)(〈b,k〉2-cos2θ)-τsin2α〈b,k〉〈m,k〉=0

        (5)

        (α′+κ)2(〈b,k〉2-cos2θ)-2τ〈b,k〉sinα(α′+κ)〈m,k〉+

        τ2sin2α〈m,k〉2-τ2sin2αcos2θ=0

        (6)

        If sinα≡0, thenSis a tangent developmental surface which is given by[8]

        r(u,v)=(ucosθ(cosv,sinv)+γ(v),usinθ)

        (7)

        with

        (8)

        and

        (9)

        whereλis a nonzero constant.

        If sinα≠0, from Eq.(4) we have

        〈b,k〉=±cosθ

        (10)

        Then Eq.(5) results in

        τ〈b,k〉 〈m,k〉=0

        (11)

        Whenτ≡0,σis a plane curve whose binormal coincides with the normal of the plane, soSis a ruled surface with plane curveσas the generating curve andl(s) as the rulings. Obviously,Sis a piece of a plane.

        Whenτ≠0, we claim that 〈b,k〉〈m,k〉=0. Indeed, if 〈b,k〉=0 at somewhere ofS, from Eq.(10), we obtain that cosθ=0 at the same point. Then Eq.(6) results in

        〈m,k〉=0

        (12)

        On the other hand, if 〈m,k〉=0 at somewhere ofS, then from Eq.(6) we obtain that cosθ=0 at the same point; i.e., 〈b,k〉=0. Thus, the claim is true. Now differentiating in 〈b,k〉=0 yields 〈n,k〉=0. Combining 〈m,k〉=0, we can obtain that 〈t,k〉=0. Now we deduce thatkis orthogonal to allt,nandb, which is impossible.

        Thus we prove our first main theorem.

        Theorem1Assume that the ruled surfaceS:r(s,v)=σ(s)+v(cosα(s)·t(s)+sinα(s)·n(s)) is a constant angle surface. ThenSis locally isometric to one of the following surfaces:

        1) A surface is given by

        r(u,v)=(ucosθ(cosv,sinv)+γ(v),usinθ)

        2) A piece of a plane.

        Remark1We have known that the tangent developmental constant angle surfaces are generated by cylindrical helices and the normal constant angle surfaces are generated by planar curves (see Theorem 1 and Theorem 5 in Ref.[8]). From the proof of Theorem 1, the generating curves of the constant angle surfacesr(s,v)=σ(s)+v(cosα(s)·t(s)+sinα(s)·n(s)) are also planar curves provided sinα(s)≠0.

        In the sequel we consider another kind of ruled surfaceS, which is defined by

        r(s,v)=σ(s)+vl(s)

        (13)

        where

        l(s)=cosα(s)·n(s)+sinα(s)·b(s)

        Set

        m(s)=-sinα(s)·n(s)+cosα(s)·b(s)

        It is easy to know thatm(s) is orthogonal to bothl(s) andt(s). We have

        Now we compute the normal toS. A routine computation shows

        rs=σ′(s)+vl′(s)=(1-κvcosα)t-vsinα(τ+α′)n+

        vcosα(τ+α′)b

        rv=l(s)=cosα·n+sinα·b

        Then the normal of the surface is

        (14)

        whereΔ=(1-κvcosα)2+v2(τ+α′)2.

        Assume that surfaceSis a constant angle surface. Then there is a fixed directionkand a constant angleθsuch that 〈N,k〉=cosθ. Substituting Eq.(14) into this expression and comparing the coefficients in the vanishing polynomial expression of the second order inv, we find the following relationships:

        〈m,k〉2=cos2θ

        (15)

        κsinα(〈m,k〉2-cos2θ)+(τ+α′)〈t,k〉〈m,k〉=0

        (16)

        κ2cos2α(〈m,k〉2-cos2θ)+(τ+α′)2(〈t,k〉2-cos2θ)+

        2κcosα〈m,k〉〈t,k〉(τ+α′)=0

        (17)

        We claim thatτ+α′≡0. Suppose thatτ+α′≠0. A contradiction will be deduced. From Eq.(15), we have

        〈m,k〉=±cosθ

        (18)

        From Eqs.(16) and (17), we obtain

        (τ+α′)2(〈t,k〉2-cos2θ)=0

        and thus〈t,k〉2=cos2θ=〈m,k〉2.

        At the same time, Eq.(16) shows that 〈t,k〉 〈m,k〉=0, which implies that 〈t,k〉=〈m,k〉=0. Taking the derivative in Eq.(18) and using 〈t,k〉=0, we obtain that 〈l,k〉=0. This is impossible sincekcannot be orthogonal to allt,l,m. Thus, we prove thatτ+α′≡0.

        Our aim is to showSis locally isometric to a plane or a cylinder. Ifκ≡0 locally, thenτ≡0 and α is a constant, which means thatSis locally a piece of a plane. So we only need to consider the case ofκ≠0. Taking the derivative into Eq.(18), we have

        κ〈t,k〉sinα=(α′+τ) 〈l,k〉=0

        When sin≡0,l≡nandSis a piece of a plane by Ref.[8]. When sinα≠0, 〈t,k〉=0 locally. We have the following computations:

        〈t,k〉 =0?〈t′,k〉=0?κ〈l,k〉cosα=κ〈m,k〉 sinα?

        κ〈cosα·n+sinα·b,k〉cosα=

        κ〈-sinα·n+cosα·b,k〉sinα?

        〈n,k〉=0?〈n′,k〉=0?τ〈b,k〉=0

        where 〈b,k〉 cannot be zero sincekcannot be orthogonal to allt,n,b. Thenτ≡0 locally. Recall thatτ+α′≡0. We know thatαis a constant andSis locally a cylindrical surface.

        In the end, our second main theorem reads as follows.

        Theorem2Assume that the ruled surfaceS:r(s,v)=σ(s)+v(cosα(s)·n(s)+sinα(s)·b(s)) is a constant angle surface. ThenSis locally isometric to a plane or a cylindrical surface.

        [1]Dillen F, Fastenakels J, van der Veken J, et al. Constant angle surfaces inS2×R[J].MonatsheftefürMathematik, 2007,152(2): 89-96.

        [2]Dillen F, Munteanu M I. Surfaces inH+×R[C]//ProceedingsoftheConferencePureandAppliedDifferentialGeometry. Brussels, Belgium, 2007: 185-193.

        [3]Dillen F, Munteanu M I. Constant angle surfaces inH2×R[J].BullBrazMathSoc, 2009,40(1): 85-97.

        [4]Munteanu M I, Nistor A I. A new approach on constant angle surfaces inE3[J].TurkishJMath, 2009,33(2): 169-178.

        [5]López R, Munteanu M I. Constant angle surfaces in Minkowski space [J].BullBelgMathSocSimonStevin, 2011,18(2): 271-286.

        [6]Munteanu M I. From golden spirals to constant slope surfaces [J].JournalofMathematicalPhysics, 2010,51(7): 073507.

        [7]Di Scala A J, Ruiz-Hernández G. Helix submanifolds of euclidean spaces [J].MonatsheftefürMathematik, 2009,157(3): 205-215.

        [8]Nistor A I. Certain constant angle surfaces constructed on curves [J].IntElectronJGeom, 2011,4(1): 79-87.

        国产99久久久国产精品~~牛| 亚洲中文字幕无码不卡电影| 高清国产精品一区二区| 亚洲人成综合第一网站| 国产成人亚洲精品青草天美| 欧美乱妇日本无乱码特黄大片| 国产精品一区区三区六区t区| 亚洲av三级黄色在线观看| 国产69精品久久久久777| 亚洲av成人一区二区三区av| 人妻少妇中文字幕久久69堂| 丝袜美腿国产一区二区| 亚洲国产成人久久三区| 亚洲日韩乱码中文无码蜜桃臀| 91自国产精品中文字幕| 亚洲伊人av天堂有码在线| 亚洲熟妇少妇任你躁在线观看无码| 国产欧美日韩在线观看| 日本一区二区在线播放观看| 9久久婷婷国产综合精品性色 | 亚洲av无码精品国产成人| 最近中文av字幕在线中文| 国产日韩午夜视频在线观看| 色综合悠悠88久久久亚洲| 永久黄网站免费视频性色| 一区二区三区日韩亚洲中文视频| 精品国产麻豆一区二区三区| 丰满人妻一区二区三区视频| 午夜精品久久久久成人| 91青草久久久久久清纯| 永久中文字幕av在线免费| 乱码丰满人妻一二三区| 亚洲第一网站免费视频| 色综久久综合桃花网国产精品| 亚洲视频在线一区二区| 精产国品一二三产区m553麻豆| 色婷婷精品综合久久狠狠| 男女搞事在线观看视频| 国产精品乱码一区二区三区| 久久久久久中文字幕有精品 | 极品粉嫩嫩模大尺度视频在线播放|