亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Constant angle surfaces constructed on curves

        2013-01-02 01:25:44WangXiaoliuChaoXiaoli

        Wang Xiaoliu Chao Xiaoli

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        Since the 19th century, the ruled surfaces have captured the attention of mathematicians and the main properties of these surfaces have been illuminated in almost all the monographs and books on differential geometry. Motivated again by their flatness property, in this paper we classify some ruled surfaces endowed with the constancy angle property. The constant angle surfaces was initially studied in the setting of the product spaceS2×R(see Ref.[1]). Then the surfaces with this property in other ambient spaces, namelyH2×RandR3, were investigated[2-4]. One may also find other relative references in Refs.[5-7].

        1 Preliminaries

        t′(s)=κ(s)n(s)

        n′(s)=-κ(s)t(s)+τ(s)b(s)

        (1)

        b′(s)=-τ(s)n(s)

        whereτ(s) is the torsion of curveσats.

        2 Main Theorems and Their Proof

        First, we consider ruled surfaceS

        r(s,v)=σ(s)+vl(s)

        (2)

        where

        l(s)=cosα(s)·t(s)+sinα(s)·n(s)

        Set

        m(s)=-sinα(s)·t(s)+cosα(s)·n(s)

        It is easy to know thatm(s) is orthogonal to bothl(s) andb(s). Moreover, we have

        A direct computation shows that

        rs=σ′(s)+vl′(s)=(1-vα′sinα-vκsinα)t+

        v(κ+α′)cosα·n+vτsinα·b

        rv=l(s)=cosα·t+sinα·n

        The normal of the surface is

        (3)

        whereΔ=(sinα-v(α′+κ))2+v2τ2sin2α.

        If surfaceSis a constant angle surface; i.e., the normalNmakes a constant angleθwith the fixed directionk, namely ∠(N,k)=θ; equivalently, 〈N,k〉=cosθ. Substituting (3) into this expression, we obtain a vanishing polynomial expression of the second order inv. So all the coefficients must be identically zero, that is

        sin2α(〈b,k〉2-cos2θ)=0

        (4)

        sinα(α′+κ)(〈b,k〉2-cos2θ)-τsin2α〈b,k〉〈m,k〉=0

        (5)

        (α′+κ)2(〈b,k〉2-cos2θ)-2τ〈b,k〉sinα(α′+κ)〈m,k〉+

        τ2sin2α〈m,k〉2-τ2sin2αcos2θ=0

        (6)

        If sinα≡0, thenSis a tangent developmental surface which is given by[8]

        r(u,v)=(ucosθ(cosv,sinv)+γ(v),usinθ)

        (7)

        with

        (8)

        and

        (9)

        whereλis a nonzero constant.

        If sinα≠0, from Eq.(4) we have

        〈b,k〉=±cosθ

        (10)

        Then Eq.(5) results in

        τ〈b,k〉 〈m,k〉=0

        (11)

        Whenτ≡0,σis a plane curve whose binormal coincides with the normal of the plane, soSis a ruled surface with plane curveσas the generating curve andl(s) as the rulings. Obviously,Sis a piece of a plane.

        Whenτ≠0, we claim that 〈b,k〉〈m,k〉=0. Indeed, if 〈b,k〉=0 at somewhere ofS, from Eq.(10), we obtain that cosθ=0 at the same point. Then Eq.(6) results in

        〈m,k〉=0

        (12)

        On the other hand, if 〈m,k〉=0 at somewhere ofS, then from Eq.(6) we obtain that cosθ=0 at the same point; i.e., 〈b,k〉=0. Thus, the claim is true. Now differentiating in 〈b,k〉=0 yields 〈n,k〉=0. Combining 〈m,k〉=0, we can obtain that 〈t,k〉=0. Now we deduce thatkis orthogonal to allt,nandb, which is impossible.

        Thus we prove our first main theorem.

        Theorem1Assume that the ruled surfaceS:r(s,v)=σ(s)+v(cosα(s)·t(s)+sinα(s)·n(s)) is a constant angle surface. ThenSis locally isometric to one of the following surfaces:

        1) A surface is given by

        r(u,v)=(ucosθ(cosv,sinv)+γ(v),usinθ)

        2) A piece of a plane.

        Remark1We have known that the tangent developmental constant angle surfaces are generated by cylindrical helices and the normal constant angle surfaces are generated by planar curves (see Theorem 1 and Theorem 5 in Ref.[8]). From the proof of Theorem 1, the generating curves of the constant angle surfacesr(s,v)=σ(s)+v(cosα(s)·t(s)+sinα(s)·n(s)) are also planar curves provided sinα(s)≠0.

        In the sequel we consider another kind of ruled surfaceS, which is defined by

        r(s,v)=σ(s)+vl(s)

        (13)

        where

        l(s)=cosα(s)·n(s)+sinα(s)·b(s)

        Set

        m(s)=-sinα(s)·n(s)+cosα(s)·b(s)

        It is easy to know thatm(s) is orthogonal to bothl(s) andt(s). We have

        Now we compute the normal toS. A routine computation shows

        rs=σ′(s)+vl′(s)=(1-κvcosα)t-vsinα(τ+α′)n+

        vcosα(τ+α′)b

        rv=l(s)=cosα·n+sinα·b

        Then the normal of the surface is

        (14)

        whereΔ=(1-κvcosα)2+v2(τ+α′)2.

        Assume that surfaceSis a constant angle surface. Then there is a fixed directionkand a constant angleθsuch that 〈N,k〉=cosθ. Substituting Eq.(14) into this expression and comparing the coefficients in the vanishing polynomial expression of the second order inv, we find the following relationships:

        〈m,k〉2=cos2θ

        (15)

        κsinα(〈m,k〉2-cos2θ)+(τ+α′)〈t,k〉〈m,k〉=0

        (16)

        κ2cos2α(〈m,k〉2-cos2θ)+(τ+α′)2(〈t,k〉2-cos2θ)+

        2κcosα〈m,k〉〈t,k〉(τ+α′)=0

        (17)

        We claim thatτ+α′≡0. Suppose thatτ+α′≠0. A contradiction will be deduced. From Eq.(15), we have

        〈m,k〉=±cosθ

        (18)

        From Eqs.(16) and (17), we obtain

        (τ+α′)2(〈t,k〉2-cos2θ)=0

        and thus〈t,k〉2=cos2θ=〈m,k〉2.

        At the same time, Eq.(16) shows that 〈t,k〉 〈m,k〉=0, which implies that 〈t,k〉=〈m,k〉=0. Taking the derivative in Eq.(18) and using 〈t,k〉=0, we obtain that 〈l,k〉=0. This is impossible sincekcannot be orthogonal to allt,l,m. Thus, we prove thatτ+α′≡0.

        Our aim is to showSis locally isometric to a plane or a cylinder. Ifκ≡0 locally, thenτ≡0 and α is a constant, which means thatSis locally a piece of a plane. So we only need to consider the case ofκ≠0. Taking the derivative into Eq.(18), we have

        κ〈t,k〉sinα=(α′+τ) 〈l,k〉=0

        When sin≡0,l≡nandSis a piece of a plane by Ref.[8]. When sinα≠0, 〈t,k〉=0 locally. We have the following computations:

        〈t,k〉 =0?〈t′,k〉=0?κ〈l,k〉cosα=κ〈m,k〉 sinα?

        κ〈cosα·n+sinα·b,k〉cosα=

        κ〈-sinα·n+cosα·b,k〉sinα?

        〈n,k〉=0?〈n′,k〉=0?τ〈b,k〉=0

        where 〈b,k〉 cannot be zero sincekcannot be orthogonal to allt,n,b. Thenτ≡0 locally. Recall thatτ+α′≡0. We know thatαis a constant andSis locally a cylindrical surface.

        In the end, our second main theorem reads as follows.

        Theorem2Assume that the ruled surfaceS:r(s,v)=σ(s)+v(cosα(s)·n(s)+sinα(s)·b(s)) is a constant angle surface. ThenSis locally isometric to a plane or a cylindrical surface.

        [1]Dillen F, Fastenakels J, van der Veken J, et al. Constant angle surfaces inS2×R[J].MonatsheftefürMathematik, 2007,152(2): 89-96.

        [2]Dillen F, Munteanu M I. Surfaces inH+×R[C]//ProceedingsoftheConferencePureandAppliedDifferentialGeometry. Brussels, Belgium, 2007: 185-193.

        [3]Dillen F, Munteanu M I. Constant angle surfaces inH2×R[J].BullBrazMathSoc, 2009,40(1): 85-97.

        [4]Munteanu M I, Nistor A I. A new approach on constant angle surfaces inE3[J].TurkishJMath, 2009,33(2): 169-178.

        [5]López R, Munteanu M I. Constant angle surfaces in Minkowski space [J].BullBelgMathSocSimonStevin, 2011,18(2): 271-286.

        [6]Munteanu M I. From golden spirals to constant slope surfaces [J].JournalofMathematicalPhysics, 2010,51(7): 073507.

        [7]Di Scala A J, Ruiz-Hernández G. Helix submanifolds of euclidean spaces [J].MonatsheftefürMathematik, 2009,157(3): 205-215.

        [8]Nistor A I. Certain constant angle surfaces constructed on curves [J].IntElectronJGeom, 2011,4(1): 79-87.

        国产白嫩护士被弄高潮| 亚洲综合国产精品一区二区| 日韩有码在线观看视频| 国产精品无码久久综合网| 少妇饥渴xxhd麻豆xxhd骆驼| 亚洲午夜看片无码| 日本亚洲视频免费在线看| 人人妻人人澡人人爽超污| 18无码粉嫩小泬无套在线观看| 9丨精品国产高清自在线看| 国产精品自拍盗摄自拍| 亚洲av无码国产精品色午夜字幕| 欧美性xxxx狂欢老少配| 无码高潮久久一级一级喷水| av免费观看网站大全| 色偷偷亚洲第一成人综合网址| 国产98在线 | 免费| 日本一极品久久99精品| 亚洲成人福利在线视频| 中国丰满熟妇xxxx性| 亚洲中文字幕在线爆乳| 中文字幕亚洲乱码熟女1区2区| 国产精品久久久久久| 久久久久麻豆v国产精华液好用吗 欧美性猛交xxxx乱大交丰满 | 亚洲日本人妻中文字幕| 国产精品国产三级野外国产| 中文字幕人妻无码一夲道| 99热这里只有精品69| 精品国产污黄网站在线观看| 国产成人精品免费视频大全软件| 国产精品麻豆成人av电影艾秋| 无码高清视频在线播放十区| 一级一片内射视频网址| 亚洲精品国偷拍自产在线观看| 国产91成人精品亚洲精品 | 亚洲三级中文字幕乱码| 成年女人粗暴毛片免费观看| 日本高清不卡二区| 国产三级一区二区三区在线观看 | 99热最新在线观看| 成a人片亚洲日本久久|