亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Constant angle surfaces constructed on curves

        2013-01-02 01:25:44WangXiaoliuChaoXiaoli

        Wang Xiaoliu Chao Xiaoli

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        Since the 19th century, the ruled surfaces have captured the attention of mathematicians and the main properties of these surfaces have been illuminated in almost all the monographs and books on differential geometry. Motivated again by their flatness property, in this paper we classify some ruled surfaces endowed with the constancy angle property. The constant angle surfaces was initially studied in the setting of the product spaceS2×R(see Ref.[1]). Then the surfaces with this property in other ambient spaces, namelyH2×RandR3, were investigated[2-4]. One may also find other relative references in Refs.[5-7].

        1 Preliminaries

        t′(s)=κ(s)n(s)

        n′(s)=-κ(s)t(s)+τ(s)b(s)

        (1)

        b′(s)=-τ(s)n(s)

        whereτ(s) is the torsion of curveσats.

        2 Main Theorems and Their Proof

        First, we consider ruled surfaceS

        r(s,v)=σ(s)+vl(s)

        (2)

        where

        l(s)=cosα(s)·t(s)+sinα(s)·n(s)

        Set

        m(s)=-sinα(s)·t(s)+cosα(s)·n(s)

        It is easy to know thatm(s) is orthogonal to bothl(s) andb(s). Moreover, we have

        A direct computation shows that

        rs=σ′(s)+vl′(s)=(1-vα′sinα-vκsinα)t+

        v(κ+α′)cosα·n+vτsinα·b

        rv=l(s)=cosα·t+sinα·n

        The normal of the surface is

        (3)

        whereΔ=(sinα-v(α′+κ))2+v2τ2sin2α.

        If surfaceSis a constant angle surface; i.e., the normalNmakes a constant angleθwith the fixed directionk, namely ∠(N,k)=θ; equivalently, 〈N,k〉=cosθ. Substituting (3) into this expression, we obtain a vanishing polynomial expression of the second order inv. So all the coefficients must be identically zero, that is

        sin2α(〈b,k〉2-cos2θ)=0

        (4)

        sinα(α′+κ)(〈b,k〉2-cos2θ)-τsin2α〈b,k〉〈m,k〉=0

        (5)

        (α′+κ)2(〈b,k〉2-cos2θ)-2τ〈b,k〉sinα(α′+κ)〈m,k〉+

        τ2sin2α〈m,k〉2-τ2sin2αcos2θ=0

        (6)

        If sinα≡0, thenSis a tangent developmental surface which is given by[8]

        r(u,v)=(ucosθ(cosv,sinv)+γ(v),usinθ)

        (7)

        with

        (8)

        and

        (9)

        whereλis a nonzero constant.

        If sinα≠0, from Eq.(4) we have

        〈b,k〉=±cosθ

        (10)

        Then Eq.(5) results in

        τ〈b,k〉 〈m,k〉=0

        (11)

        Whenτ≡0,σis a plane curve whose binormal coincides with the normal of the plane, soSis a ruled surface with plane curveσas the generating curve andl(s) as the rulings. Obviously,Sis a piece of a plane.

        Whenτ≠0, we claim that 〈b,k〉〈m,k〉=0. Indeed, if 〈b,k〉=0 at somewhere ofS, from Eq.(10), we obtain that cosθ=0 at the same point. Then Eq.(6) results in

        〈m,k〉=0

        (12)

        On the other hand, if 〈m,k〉=0 at somewhere ofS, then from Eq.(6) we obtain that cosθ=0 at the same point; i.e., 〈b,k〉=0. Thus, the claim is true. Now differentiating in 〈b,k〉=0 yields 〈n,k〉=0. Combining 〈m,k〉=0, we can obtain that 〈t,k〉=0. Now we deduce thatkis orthogonal to allt,nandb, which is impossible.

        Thus we prove our first main theorem.

        Theorem1Assume that the ruled surfaceS:r(s,v)=σ(s)+v(cosα(s)·t(s)+sinα(s)·n(s)) is a constant angle surface. ThenSis locally isometric to one of the following surfaces:

        1) A surface is given by

        r(u,v)=(ucosθ(cosv,sinv)+γ(v),usinθ)

        2) A piece of a plane.

        Remark1We have known that the tangent developmental constant angle surfaces are generated by cylindrical helices and the normal constant angle surfaces are generated by planar curves (see Theorem 1 and Theorem 5 in Ref.[8]). From the proof of Theorem 1, the generating curves of the constant angle surfacesr(s,v)=σ(s)+v(cosα(s)·t(s)+sinα(s)·n(s)) are also planar curves provided sinα(s)≠0.

        In the sequel we consider another kind of ruled surfaceS, which is defined by

        r(s,v)=σ(s)+vl(s)

        (13)

        where

        l(s)=cosα(s)·n(s)+sinα(s)·b(s)

        Set

        m(s)=-sinα(s)·n(s)+cosα(s)·b(s)

        It is easy to know thatm(s) is orthogonal to bothl(s) andt(s). We have

        Now we compute the normal toS. A routine computation shows

        rs=σ′(s)+vl′(s)=(1-κvcosα)t-vsinα(τ+α′)n+

        vcosα(τ+α′)b

        rv=l(s)=cosα·n+sinα·b

        Then the normal of the surface is

        (14)

        whereΔ=(1-κvcosα)2+v2(τ+α′)2.

        Assume that surfaceSis a constant angle surface. Then there is a fixed directionkand a constant angleθsuch that 〈N,k〉=cosθ. Substituting Eq.(14) into this expression and comparing the coefficients in the vanishing polynomial expression of the second order inv, we find the following relationships:

        〈m,k〉2=cos2θ

        (15)

        κsinα(〈m,k〉2-cos2θ)+(τ+α′)〈t,k〉〈m,k〉=0

        (16)

        κ2cos2α(〈m,k〉2-cos2θ)+(τ+α′)2(〈t,k〉2-cos2θ)+

        2κcosα〈m,k〉〈t,k〉(τ+α′)=0

        (17)

        We claim thatτ+α′≡0. Suppose thatτ+α′≠0. A contradiction will be deduced. From Eq.(15), we have

        〈m,k〉=±cosθ

        (18)

        From Eqs.(16) and (17), we obtain

        (τ+α′)2(〈t,k〉2-cos2θ)=0

        and thus〈t,k〉2=cos2θ=〈m,k〉2.

        At the same time, Eq.(16) shows that 〈t,k〉 〈m,k〉=0, which implies that 〈t,k〉=〈m,k〉=0. Taking the derivative in Eq.(18) and using 〈t,k〉=0, we obtain that 〈l,k〉=0. This is impossible sincekcannot be orthogonal to allt,l,m. Thus, we prove thatτ+α′≡0.

        Our aim is to showSis locally isometric to a plane or a cylinder. Ifκ≡0 locally, thenτ≡0 and α is a constant, which means thatSis locally a piece of a plane. So we only need to consider the case ofκ≠0. Taking the derivative into Eq.(18), we have

        κ〈t,k〉sinα=(α′+τ) 〈l,k〉=0

        When sin≡0,l≡nandSis a piece of a plane by Ref.[8]. When sinα≠0, 〈t,k〉=0 locally. We have the following computations:

        〈t,k〉 =0?〈t′,k〉=0?κ〈l,k〉cosα=κ〈m,k〉 sinα?

        κ〈cosα·n+sinα·b,k〉cosα=

        κ〈-sinα·n+cosα·b,k〉sinα?

        〈n,k〉=0?〈n′,k〉=0?τ〈b,k〉=0

        where 〈b,k〉 cannot be zero sincekcannot be orthogonal to allt,n,b. Thenτ≡0 locally. Recall thatτ+α′≡0. We know thatαis a constant andSis locally a cylindrical surface.

        In the end, our second main theorem reads as follows.

        Theorem2Assume that the ruled surfaceS:r(s,v)=σ(s)+v(cosα(s)·n(s)+sinα(s)·b(s)) is a constant angle surface. ThenSis locally isometric to a plane or a cylindrical surface.

        [1]Dillen F, Fastenakels J, van der Veken J, et al. Constant angle surfaces inS2×R[J].MonatsheftefürMathematik, 2007,152(2): 89-96.

        [2]Dillen F, Munteanu M I. Surfaces inH+×R[C]//ProceedingsoftheConferencePureandAppliedDifferentialGeometry. Brussels, Belgium, 2007: 185-193.

        [3]Dillen F, Munteanu M I. Constant angle surfaces inH2×R[J].BullBrazMathSoc, 2009,40(1): 85-97.

        [4]Munteanu M I, Nistor A I. A new approach on constant angle surfaces inE3[J].TurkishJMath, 2009,33(2): 169-178.

        [5]López R, Munteanu M I. Constant angle surfaces in Minkowski space [J].BullBelgMathSocSimonStevin, 2011,18(2): 271-286.

        [6]Munteanu M I. From golden spirals to constant slope surfaces [J].JournalofMathematicalPhysics, 2010,51(7): 073507.

        [7]Di Scala A J, Ruiz-Hernández G. Helix submanifolds of euclidean spaces [J].MonatsheftefürMathematik, 2009,157(3): 205-215.

        [8]Nistor A I. Certain constant angle surfaces constructed on curves [J].IntElectronJGeom, 2011,4(1): 79-87.

        中文字幕在线码一区| 摸丰满大乳奶水www免费| 亚洲七久久之综合七久久| 亚洲精品免费专区| 亚洲国产精品亚洲高清| 一二三区亚洲av偷拍| 国产成人无码18禁午夜福利p| 99久久精品国产一区二区蜜芽| 色二av手机版在线| 谷原希美中文字幕在线| 国产人妻人伦精品1国产| 少妇的丰满3中文字幕| 亚洲av天堂久久精品| 极品美女一区二区三区免费| 久久人人爽人人爽人人片av东京热| 97视频在线播放| 日本高清在线一区二区| 伦伦影院午夜理论片| 丰满少妇高潮惨叫正在播放 | 亚洲av永久精品爱情岛论坛| 精品四虎免费观看国产高清| 精品国产一区二区三广区| 真实夫妻露脸自拍视频在线播放 | 华人免费网站在线观看| 国产一区二区三区av免费| 国产又粗又黄又爽的大片| 麻豆国产高清精品国在线| 免费女同毛片在线不卡| 亚洲国产a∨无码中文777| 亚洲av无码av日韩av网站| 中文字幕亚洲无线码a| 国产在线av一区二区| 亚洲熟妇无码一区二区三区导航 | 大肉大捧一进一出好爽视色大师| 99JK无码免费| 91国产自拍精品视频| 99久久精品午夜一区二区| 国产精品片211在线观看| 黄片一级二级三级四级| 国产精品区一区二区三在线播放| 激情97综合亚洲色婷婷五|