亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Constant angle surfaces constructed on curves

        2013-01-02 01:25:44WangXiaoliuChaoXiaoli

        Wang Xiaoliu Chao Xiaoli

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        Since the 19th century, the ruled surfaces have captured the attention of mathematicians and the main properties of these surfaces have been illuminated in almost all the monographs and books on differential geometry. Motivated again by their flatness property, in this paper we classify some ruled surfaces endowed with the constancy angle property. The constant angle surfaces was initially studied in the setting of the product spaceS2×R(see Ref.[1]). Then the surfaces with this property in other ambient spaces, namelyH2×RandR3, were investigated[2-4]. One may also find other relative references in Refs.[5-7].

        1 Preliminaries

        t′(s)=κ(s)n(s)

        n′(s)=-κ(s)t(s)+τ(s)b(s)

        (1)

        b′(s)=-τ(s)n(s)

        whereτ(s) is the torsion of curveσats.

        2 Main Theorems and Their Proof

        First, we consider ruled surfaceS

        r(s,v)=σ(s)+vl(s)

        (2)

        where

        l(s)=cosα(s)·t(s)+sinα(s)·n(s)

        Set

        m(s)=-sinα(s)·t(s)+cosα(s)·n(s)

        It is easy to know thatm(s) is orthogonal to bothl(s) andb(s). Moreover, we have

        A direct computation shows that

        rs=σ′(s)+vl′(s)=(1-vα′sinα-vκsinα)t+

        v(κ+α′)cosα·n+vτsinα·b

        rv=l(s)=cosα·t+sinα·n

        The normal of the surface is

        (3)

        whereΔ=(sinα-v(α′+κ))2+v2τ2sin2α.

        If surfaceSis a constant angle surface; i.e., the normalNmakes a constant angleθwith the fixed directionk, namely ∠(N,k)=θ; equivalently, 〈N,k〉=cosθ. Substituting (3) into this expression, we obtain a vanishing polynomial expression of the second order inv. So all the coefficients must be identically zero, that is

        sin2α(〈b,k〉2-cos2θ)=0

        (4)

        sinα(α′+κ)(〈b,k〉2-cos2θ)-τsin2α〈b,k〉〈m,k〉=0

        (5)

        (α′+κ)2(〈b,k〉2-cos2θ)-2τ〈b,k〉sinα(α′+κ)〈m,k〉+

        τ2sin2α〈m,k〉2-τ2sin2αcos2θ=0

        (6)

        If sinα≡0, thenSis a tangent developmental surface which is given by[8]

        r(u,v)=(ucosθ(cosv,sinv)+γ(v),usinθ)

        (7)

        with

        (8)

        and

        (9)

        whereλis a nonzero constant.

        If sinα≠0, from Eq.(4) we have

        〈b,k〉=±cosθ

        (10)

        Then Eq.(5) results in

        τ〈b,k〉 〈m,k〉=0

        (11)

        Whenτ≡0,σis a plane curve whose binormal coincides with the normal of the plane, soSis a ruled surface with plane curveσas the generating curve andl(s) as the rulings. Obviously,Sis a piece of a plane.

        Whenτ≠0, we claim that 〈b,k〉〈m,k〉=0. Indeed, if 〈b,k〉=0 at somewhere ofS, from Eq.(10), we obtain that cosθ=0 at the same point. Then Eq.(6) results in

        〈m,k〉=0

        (12)

        On the other hand, if 〈m,k〉=0 at somewhere ofS, then from Eq.(6) we obtain that cosθ=0 at the same point; i.e., 〈b,k〉=0. Thus, the claim is true. Now differentiating in 〈b,k〉=0 yields 〈n,k〉=0. Combining 〈m,k〉=0, we can obtain that 〈t,k〉=0. Now we deduce thatkis orthogonal to allt,nandb, which is impossible.

        Thus we prove our first main theorem.

        Theorem1Assume that the ruled surfaceS:r(s,v)=σ(s)+v(cosα(s)·t(s)+sinα(s)·n(s)) is a constant angle surface. ThenSis locally isometric to one of the following surfaces:

        1) A surface is given by

        r(u,v)=(ucosθ(cosv,sinv)+γ(v),usinθ)

        2) A piece of a plane.

        Remark1We have known that the tangent developmental constant angle surfaces are generated by cylindrical helices and the normal constant angle surfaces are generated by planar curves (see Theorem 1 and Theorem 5 in Ref.[8]). From the proof of Theorem 1, the generating curves of the constant angle surfacesr(s,v)=σ(s)+v(cosα(s)·t(s)+sinα(s)·n(s)) are also planar curves provided sinα(s)≠0.

        In the sequel we consider another kind of ruled surfaceS, which is defined by

        r(s,v)=σ(s)+vl(s)

        (13)

        where

        l(s)=cosα(s)·n(s)+sinα(s)·b(s)

        Set

        m(s)=-sinα(s)·n(s)+cosα(s)·b(s)

        It is easy to know thatm(s) is orthogonal to bothl(s) andt(s). We have

        Now we compute the normal toS. A routine computation shows

        rs=σ′(s)+vl′(s)=(1-κvcosα)t-vsinα(τ+α′)n+

        vcosα(τ+α′)b

        rv=l(s)=cosα·n+sinα·b

        Then the normal of the surface is

        (14)

        whereΔ=(1-κvcosα)2+v2(τ+α′)2.

        Assume that surfaceSis a constant angle surface. Then there is a fixed directionkand a constant angleθsuch that 〈N,k〉=cosθ. Substituting Eq.(14) into this expression and comparing the coefficients in the vanishing polynomial expression of the second order inv, we find the following relationships:

        〈m,k〉2=cos2θ

        (15)

        κsinα(〈m,k〉2-cos2θ)+(τ+α′)〈t,k〉〈m,k〉=0

        (16)

        κ2cos2α(〈m,k〉2-cos2θ)+(τ+α′)2(〈t,k〉2-cos2θ)+

        2κcosα〈m,k〉〈t,k〉(τ+α′)=0

        (17)

        We claim thatτ+α′≡0. Suppose thatτ+α′≠0. A contradiction will be deduced. From Eq.(15), we have

        〈m,k〉=±cosθ

        (18)

        From Eqs.(16) and (17), we obtain

        (τ+α′)2(〈t,k〉2-cos2θ)=0

        and thus〈t,k〉2=cos2θ=〈m,k〉2.

        At the same time, Eq.(16) shows that 〈t,k〉 〈m,k〉=0, which implies that 〈t,k〉=〈m,k〉=0. Taking the derivative in Eq.(18) and using 〈t,k〉=0, we obtain that 〈l,k〉=0. This is impossible sincekcannot be orthogonal to allt,l,m. Thus, we prove thatτ+α′≡0.

        Our aim is to showSis locally isometric to a plane or a cylinder. Ifκ≡0 locally, thenτ≡0 and α is a constant, which means thatSis locally a piece of a plane. So we only need to consider the case ofκ≠0. Taking the derivative into Eq.(18), we have

        κ〈t,k〉sinα=(α′+τ) 〈l,k〉=0

        When sin≡0,l≡nandSis a piece of a plane by Ref.[8]. When sinα≠0, 〈t,k〉=0 locally. We have the following computations:

        〈t,k〉 =0?〈t′,k〉=0?κ〈l,k〉cosα=κ〈m,k〉 sinα?

        κ〈cosα·n+sinα·b,k〉cosα=

        κ〈-sinα·n+cosα·b,k〉sinα?

        〈n,k〉=0?〈n′,k〉=0?τ〈b,k〉=0

        where 〈b,k〉 cannot be zero sincekcannot be orthogonal to allt,n,b. Thenτ≡0 locally. Recall thatτ+α′≡0. We know thatαis a constant andSis locally a cylindrical surface.

        In the end, our second main theorem reads as follows.

        Theorem2Assume that the ruled surfaceS:r(s,v)=σ(s)+v(cosα(s)·n(s)+sinα(s)·b(s)) is a constant angle surface. ThenSis locally isometric to a plane or a cylindrical surface.

        [1]Dillen F, Fastenakels J, van der Veken J, et al. Constant angle surfaces inS2×R[J].MonatsheftefürMathematik, 2007,152(2): 89-96.

        [2]Dillen F, Munteanu M I. Surfaces inH+×R[C]//ProceedingsoftheConferencePureandAppliedDifferentialGeometry. Brussels, Belgium, 2007: 185-193.

        [3]Dillen F, Munteanu M I. Constant angle surfaces inH2×R[J].BullBrazMathSoc, 2009,40(1): 85-97.

        [4]Munteanu M I, Nistor A I. A new approach on constant angle surfaces inE3[J].TurkishJMath, 2009,33(2): 169-178.

        [5]López R, Munteanu M I. Constant angle surfaces in Minkowski space [J].BullBelgMathSocSimonStevin, 2011,18(2): 271-286.

        [6]Munteanu M I. From golden spirals to constant slope surfaces [J].JournalofMathematicalPhysics, 2010,51(7): 073507.

        [7]Di Scala A J, Ruiz-Hernández G. Helix submanifolds of euclidean spaces [J].MonatsheftefürMathematik, 2009,157(3): 205-215.

        [8]Nistor A I. Certain constant angle surfaces constructed on curves [J].IntElectronJGeom, 2011,4(1): 79-87.

        天堂av一区一区一区| 300部国产真实乱| 精品国产看高清国产毛片| 久久高潮少妇视频免费| 一本之道日本熟妇人妻| 97人妻人人做人碰人人爽| 欧美俄罗斯乱妇| 久久99精品久久久久久国产人妖| 日韩在线一区二区三区中文字幕| 中国美女a级毛片| 国产一区二区不卡老阿姨| 国产精品无码久久久久下载| va精品人妻一区二区三区| 国产精品爽爽ⅴa在线观看| 又粗又大又黄又爽的免费视频| 日韩精人妻无码一区二区三区 | 麻豆五月婷婷| av手机天堂在线观看| 国产精品国产三级国产av品爱| 欧洲精品免费一区二区三区| 男人j进女人p免费视频| av有码在线一区二区三区| √天堂资源中文www| 精品无码专区久久久水蜜桃| 国产成人av综合色| 蜜桃视频在线免费视频| 男ji大巴进入女人的视频小说| 久久AV中文一区二区三区| 久久精品国语对白黄色| 免费国产线观看免费观看| 免费a级毛片无码a| 东京热加勒比日韩精品| 国产熟女露脸91麻豆| 曰韩无码二三区中文字幕| 日本在线观看不卡| 国产精品麻豆一区二区三区 | 国产精品无圣光一区二区| 精品国产性色av网站| 人妻少妇被粗大爽视频| 女人和拘做受全程看视频| 中文字幕亚洲综合久久菠萝蜜|