亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Constant angle surfaces constructed on curves

        2013-01-02 01:25:44WangXiaoliuChaoXiaoli

        Wang Xiaoliu Chao Xiaoli

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        Since the 19th century, the ruled surfaces have captured the attention of mathematicians and the main properties of these surfaces have been illuminated in almost all the monographs and books on differential geometry. Motivated again by their flatness property, in this paper we classify some ruled surfaces endowed with the constancy angle property. The constant angle surfaces was initially studied in the setting of the product spaceS2×R(see Ref.[1]). Then the surfaces with this property in other ambient spaces, namelyH2×RandR3, were investigated[2-4]. One may also find other relative references in Refs.[5-7].

        1 Preliminaries

        t′(s)=κ(s)n(s)

        n′(s)=-κ(s)t(s)+τ(s)b(s)

        (1)

        b′(s)=-τ(s)n(s)

        whereτ(s) is the torsion of curveσats.

        2 Main Theorems and Their Proof

        First, we consider ruled surfaceS

        r(s,v)=σ(s)+vl(s)

        (2)

        where

        l(s)=cosα(s)·t(s)+sinα(s)·n(s)

        Set

        m(s)=-sinα(s)·t(s)+cosα(s)·n(s)

        It is easy to know thatm(s) is orthogonal to bothl(s) andb(s). Moreover, we have

        A direct computation shows that

        rs=σ′(s)+vl′(s)=(1-vα′sinα-vκsinα)t+

        v(κ+α′)cosα·n+vτsinα·b

        rv=l(s)=cosα·t+sinα·n

        The normal of the surface is

        (3)

        whereΔ=(sinα-v(α′+κ))2+v2τ2sin2α.

        If surfaceSis a constant angle surface; i.e., the normalNmakes a constant angleθwith the fixed directionk, namely ∠(N,k)=θ; equivalently, 〈N,k〉=cosθ. Substituting (3) into this expression, we obtain a vanishing polynomial expression of the second order inv. So all the coefficients must be identically zero, that is

        sin2α(〈b,k〉2-cos2θ)=0

        (4)

        sinα(α′+κ)(〈b,k〉2-cos2θ)-τsin2α〈b,k〉〈m,k〉=0

        (5)

        (α′+κ)2(〈b,k〉2-cos2θ)-2τ〈b,k〉sinα(α′+κ)〈m,k〉+

        τ2sin2α〈m,k〉2-τ2sin2αcos2θ=0

        (6)

        If sinα≡0, thenSis a tangent developmental surface which is given by[8]

        r(u,v)=(ucosθ(cosv,sinv)+γ(v),usinθ)

        (7)

        with

        (8)

        and

        (9)

        whereλis a nonzero constant.

        If sinα≠0, from Eq.(4) we have

        〈b,k〉=±cosθ

        (10)

        Then Eq.(5) results in

        τ〈b,k〉 〈m,k〉=0

        (11)

        Whenτ≡0,σis a plane curve whose binormal coincides with the normal of the plane, soSis a ruled surface with plane curveσas the generating curve andl(s) as the rulings. Obviously,Sis a piece of a plane.

        Whenτ≠0, we claim that 〈b,k〉〈m,k〉=0. Indeed, if 〈b,k〉=0 at somewhere ofS, from Eq.(10), we obtain that cosθ=0 at the same point. Then Eq.(6) results in

        〈m,k〉=0

        (12)

        On the other hand, if 〈m,k〉=0 at somewhere ofS, then from Eq.(6) we obtain that cosθ=0 at the same point; i.e., 〈b,k〉=0. Thus, the claim is true. Now differentiating in 〈b,k〉=0 yields 〈n,k〉=0. Combining 〈m,k〉=0, we can obtain that 〈t,k〉=0. Now we deduce thatkis orthogonal to allt,nandb, which is impossible.

        Thus we prove our first main theorem.

        Theorem1Assume that the ruled surfaceS:r(s,v)=σ(s)+v(cosα(s)·t(s)+sinα(s)·n(s)) is a constant angle surface. ThenSis locally isometric to one of the following surfaces:

        1) A surface is given by

        r(u,v)=(ucosθ(cosv,sinv)+γ(v),usinθ)

        2) A piece of a plane.

        Remark1We have known that the tangent developmental constant angle surfaces are generated by cylindrical helices and the normal constant angle surfaces are generated by planar curves (see Theorem 1 and Theorem 5 in Ref.[8]). From the proof of Theorem 1, the generating curves of the constant angle surfacesr(s,v)=σ(s)+v(cosα(s)·t(s)+sinα(s)·n(s)) are also planar curves provided sinα(s)≠0.

        In the sequel we consider another kind of ruled surfaceS, which is defined by

        r(s,v)=σ(s)+vl(s)

        (13)

        where

        l(s)=cosα(s)·n(s)+sinα(s)·b(s)

        Set

        m(s)=-sinα(s)·n(s)+cosα(s)·b(s)

        It is easy to know thatm(s) is orthogonal to bothl(s) andt(s). We have

        Now we compute the normal toS. A routine computation shows

        rs=σ′(s)+vl′(s)=(1-κvcosα)t-vsinα(τ+α′)n+

        vcosα(τ+α′)b

        rv=l(s)=cosα·n+sinα·b

        Then the normal of the surface is

        (14)

        whereΔ=(1-κvcosα)2+v2(τ+α′)2.

        Assume that surfaceSis a constant angle surface. Then there is a fixed directionkand a constant angleθsuch that 〈N,k〉=cosθ. Substituting Eq.(14) into this expression and comparing the coefficients in the vanishing polynomial expression of the second order inv, we find the following relationships:

        〈m,k〉2=cos2θ

        (15)

        κsinα(〈m,k〉2-cos2θ)+(τ+α′)〈t,k〉〈m,k〉=0

        (16)

        κ2cos2α(〈m,k〉2-cos2θ)+(τ+α′)2(〈t,k〉2-cos2θ)+

        2κcosα〈m,k〉〈t,k〉(τ+α′)=0

        (17)

        We claim thatτ+α′≡0. Suppose thatτ+α′≠0. A contradiction will be deduced. From Eq.(15), we have

        〈m,k〉=±cosθ

        (18)

        From Eqs.(16) and (17), we obtain

        (τ+α′)2(〈t,k〉2-cos2θ)=0

        and thus〈t,k〉2=cos2θ=〈m,k〉2.

        At the same time, Eq.(16) shows that 〈t,k〉 〈m,k〉=0, which implies that 〈t,k〉=〈m,k〉=0. Taking the derivative in Eq.(18) and using 〈t,k〉=0, we obtain that 〈l,k〉=0. This is impossible sincekcannot be orthogonal to allt,l,m. Thus, we prove thatτ+α′≡0.

        Our aim is to showSis locally isometric to a plane or a cylinder. Ifκ≡0 locally, thenτ≡0 and α is a constant, which means thatSis locally a piece of a plane. So we only need to consider the case ofκ≠0. Taking the derivative into Eq.(18), we have

        κ〈t,k〉sinα=(α′+τ) 〈l,k〉=0

        When sin≡0,l≡nandSis a piece of a plane by Ref.[8]. When sinα≠0, 〈t,k〉=0 locally. We have the following computations:

        〈t,k〉 =0?〈t′,k〉=0?κ〈l,k〉cosα=κ〈m,k〉 sinα?

        κ〈cosα·n+sinα·b,k〉cosα=

        κ〈-sinα·n+cosα·b,k〉sinα?

        〈n,k〉=0?〈n′,k〉=0?τ〈b,k〉=0

        where 〈b,k〉 cannot be zero sincekcannot be orthogonal to allt,n,b. Thenτ≡0 locally. Recall thatτ+α′≡0. We know thatαis a constant andSis locally a cylindrical surface.

        In the end, our second main theorem reads as follows.

        Theorem2Assume that the ruled surfaceS:r(s,v)=σ(s)+v(cosα(s)·n(s)+sinα(s)·b(s)) is a constant angle surface. ThenSis locally isometric to a plane or a cylindrical surface.

        [1]Dillen F, Fastenakels J, van der Veken J, et al. Constant angle surfaces inS2×R[J].MonatsheftefürMathematik, 2007,152(2): 89-96.

        [2]Dillen F, Munteanu M I. Surfaces inH+×R[C]//ProceedingsoftheConferencePureandAppliedDifferentialGeometry. Brussels, Belgium, 2007: 185-193.

        [3]Dillen F, Munteanu M I. Constant angle surfaces inH2×R[J].BullBrazMathSoc, 2009,40(1): 85-97.

        [4]Munteanu M I, Nistor A I. A new approach on constant angle surfaces inE3[J].TurkishJMath, 2009,33(2): 169-178.

        [5]López R, Munteanu M I. Constant angle surfaces in Minkowski space [J].BullBelgMathSocSimonStevin, 2011,18(2): 271-286.

        [6]Munteanu M I. From golden spirals to constant slope surfaces [J].JournalofMathematicalPhysics, 2010,51(7): 073507.

        [7]Di Scala A J, Ruiz-Hernández G. Helix submanifolds of euclidean spaces [J].MonatsheftefürMathematik, 2009,157(3): 205-215.

        [8]Nistor A I. Certain constant angle surfaces constructed on curves [J].IntElectronJGeom, 2011,4(1): 79-87.

        国产av丝袜旗袍无码网站| 久久精品伊人久久精品伊人| 免费人人av看| 经典黄色一区二区三区| 偷拍色图一区二区三区| 久久久久亚洲av无码专区首| 最新系列国产专区|亚洲国产| 亚洲av日韩av高潮潮喷无码| 日韩欧美国产自由二区| 在线视频播放观看免费| 亚洲天堂亚洲天堂亚洲色图| 人人妻人人添人人爽欧美一区| 国产一区二区精品久久| 亚洲色欲久久久综合网 | a级三级三级三级在线视频| 精品香蕉99久久久久网站 | 98bb国产精品视频| 日本最新一区二区三区视频| 自拍偷区亚洲综合激情| 少妇伦子伦情品无吗| 三年中文在线观看免费大全| 人人妻人人澡人人爽精品欧美| 国产日韩一区二区精品| 亚洲精品第一页在线观看| 黑人巨大精品欧美一区二区| 亚洲熟妇在线视频观看| 亚洲一区二区三区精品久久| 一本色道久久亚洲加勒比| 欧美乱妇高清无乱码在线观看| 久久亚洲av成人无码国产| 狠狠亚洲婷婷综合久久久| 成年人一区二区三区在线观看视频| 亚洲va韩国va欧美va| 国产成人av一区二区三区在线 | 免费黄网站永久地址进入| 欧美成人猛片aaaaaaa| 曰本女人牲交全视频免费播放| 久久福利资源国产精品999| 国内自拍视频在线观看h| 国产三级国产精品国产专区50| 人妻aⅴ中文字幕|