亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Construction of semisimple categoryover generalized Yetter-Drinfeld modules

        2013-01-02 01:25:42ZhangXiaohuiWangShuanhong

        Zhang Xiaohui Wang Shuanhong

        (Department of Mathematics, Southeast University, Nanjing 211189, China)

        In 2007, Panaite and Staic[1]introduced the notion of generalized Yetter-Drinfeld modules which covered both Yetter-Drinfeld modules and anti-Yetter-Drinfeld modules. Liu and Wang[2]studied the notion of generalized weak Yetter-Drinfeld modules and made the category ofHWYDH(α,β) into a braided T-category[3]. The fusion category[4-6]plays an important role in classifying the semisimple Hopf algebra. The semisimple category is the first step to construct a fusion category. In this paper, we discuss the following question: how to make the category of generalized Yetter-Drinfeld modulesHYDH(α,β) into a semisimple category.

        Throughout this paper, we assume thatHis a Hopf algebra[7-8]with a bijective antipode over a fieldk. Denote the set of all the automorphisms ofHby AutHopf(H). Letα,β∈AutHopf(H).

        1 Preliminaries

        Definition1For anyα,β∈AutHopf(H), a (α,β)-Yetter-Drinfeld module is ak-moduleM, such thatMis a leftH-module (with notationh?m|→h·m) and a rightH-comodule (with notationm|→m(0)?m(1)) with the following compatibility condition:

        ρ(h·m)=h2·m(0)?β(h3)m(1)α(S-1(h1))

        for allh∈Handm∈M. The category of (α,β)-Yetter-Drinfeld modules andH-linearH-colinear maps is denoted byHYDH(α,β).

        Define the category of the generalized Yetter-Drinfeld module YD(H) as the disjoint union of allHYDH(α,β).

        Definition2Suppose thatM∈YD(H), thenMis called simple if it has no proper subobjects. A direct sum of simple objects is called semisimple. If every objectM∈YD(H) is semisimple, we call the category YD(H) semisimple.

        2 Making YD(H) into semisimple

        Lemma1[1]Suppose thatM∈HYDH(α,β) andN∈HYDH(γ,δ), thenM?N∈HYDH(αγ,δγ-1βγ) with the following structures

        h·(m?n)=γ(h1)·m?γ-1βγ(h2)·n

        m?n|→(m?n)(0)?(m?n)(1)=(m(0)?n(0))?n(1)m(1)

        Lemma2Ifkis a commutative ring,His a commutative Hopf algebra overk,M∈HYDH(α,β),N∈HYDH(γ,δ), andMis a finitely generated projectiveH-module, then

        1)Hhom(M,N) is anH-comodule, andHhomH(M,N)=Hhom(M,N)coH, where theH-coaction is given byρ(f)(m)=f0(m)?f1f(m0)0?f(m0)1S(m1).

        2)Hhom(M,N)∈HYDH(α,β), where theH-action is given by (h·f)(m)hf(m)=f(h·m).

        Proof1) Define a mapπ:Hhom(M,N)→Hhom(M,N?H) byπ(f)(m)=f(m0)0?f(m0)1S(m1).

        For anym∈M,h∈H, we have

        π(f)(h·m)=f((h·m)0)0?f((h·m)0)1S((h·m)1)=

        f(h2·m0)0?f(h2·m0)1S(β(h3)m1α(S-1(h1)))=

        h·f(m0)0?β(h3)β(S(h4))f(m0)1α(S-1(h2))·

        α(h1)S(m1)=h·f(m0)0?f(m0)1S(m1)=

        h·(π(f))(m))

        Thus,πis well defined. SinceMis a finitely generated projectiveH-module, we haveHhom(M,N?H)?Hhom(M,N)?H. So we obtain a map:

        ρ:Hhom(M,N)→Hhom(M,N)?H

        such thatρ(f)(m)=f(m0)0?f(m0)1S(m1), andHhom(M,N)∈MH.

        Now for anyf∈Hhom(M,N), iffisH-colinear, then

        ρ(f)(m)=f(m0)0?f(m0)1S(m1)=

        f(m0)?m1S(m2)=f(m)?1=(f?1)(m)

        Sofis coinvariant. Conversely, takef∈Hhom(M,N)coH, then we have

        ρN(f(m))=f(m0)0?f(m0)1ε(m1)=

        f(m0)0?f(m0)1S(m1)m2=f(m0)?m1

        for anym∈M, andfisH-linear. Thus,HhomH(M,N)=Hhom(M,N)coH.

        2) For anym∈M,h∈H, we have

        ((h·f)0?(h·f)1)(m)=(h·f(m0))0?

        (h·f(m0))1S(m1)=h2·f(m0)0?

        β(h3)f(m0)1α(S-1(h1))S(m1)=

        (h2·f0?β(h3)f1α(S-1(h1)))(m)

        Lemma3LetVbe ak-module andNbe anH-module, then

        1)Hhom(H?V,N) and hom(V,N) are isomorphic ask-modules, where the bijection is given byθ:Hhom(H?V,N)→hom(V,N),θ(f)(v)=f(1?v).

        2) IfVis a projectivek-module, thenH?Vis a projectiveH-module.

        Furthermore, ifV∈MH, thenH?Vis an object ofHYDH(α,β) via

        h·(h′?v)=hh′?v

        ρ(h?v)=h2?v0?β(h3)v1α(S-1(h1))

        Similar to Lemma 2, we can obtain the following lemmas.

        Lemma4LetV∈MHis a finitely generated projectivek-module. Then for anyH-comoduleN, we have hom(V,N)∈MH, where theH-coaction is given byρ(g)(v)=g(v0)0?g(v0)1S(v1). IfHis commutative, then for anyN∈HYDH(α,β), we can getHhom(H?V,N)∈HYDH(α,β).

        Lemma5Suppose thatHis commutative, andN∈HYDH(α,β).

        1) IfV∈MHis a finitely generated projectivek-module, thenHhom(H?V,N) and hom(V,N) are isomorphic asH-comodules.

        2) Ifkis a field,Vis a finite-dimensionalk-space and a projective rightH-comodule, thenH?Vis a projective object inHYDH(α,β).

        Proof1) It is straightforward.

        2) Obviously, we have

        HhomH(H?V,N)?Hhom(H?V,N)coH?

        hom(V,N)coH?homH(V,N)

        where the last isomorphism is due to the proof of Lemma 2. So the conclusion holds. From the above two lemmas, we have the following facts.

        Lemma6Letkbe a field, andM∈HYDH(α,β). ThenMis a finitely generatedH-module if and only if there exists a finite dimensionalH-comoduleVand anH-linearH-colinear epimorphismπ:H?V→M.

        LetH*be the linear dual ofH. IfM,N∈MH, then homk(M,N)∈H*Munder the followingH*-action

        (h*·f)(m)=h*(f(m0)1S(m1))·f(m0)0

        Lemma7Assume thatHis commutative, andM,N∈HYDH(α,β). ThenHhom(M,N) is a leftH*-submodule of homk(M,N).

        Furthermore,M∈H*Mis called rational if the leftH*-action onMis induced by a rightH-coaction onM.

        Proposition1Suppose thatHis commutative,kis a field,M,N∈HYDH(α,β), andMis a finitely generatedH-module. ThenHhom(M,N)∈HYDH(α,β).

        ProofBy Lemma 6, there exists a finite dimensionalH-comoduleVand anH-linearH-colinear epimorphismπ:H?V→M. So we obtain an injectivek-linear mapHhom(π,N):Hhom(M,N)→Hhom(H?V,N). For anyφ∈H*,v∈V,h∈H,f∈Hhom(M,N), we haveπ(h?v)=h·v,ρ(1?v)=1?v0?v1, and

        ((φ·f)°π)(1?v)=(φ·f)(v)=

        φ(f(v0)1S(v1))f(v0)0=

        φ(f(π(1?v0))1S(v1))f(π(1?v0))0=

        φ(f(π(1?v)0)1S(1?v)1)f(π(1?v)0)0=

        (φ·(f°π))(1?v)

        It follows thatHhom(π,N) isH*-linear. Then by Lemma 2,Hhom(H?V,N) is anH-comodule, and, therefore, a rationalH*-module. ThusHhom(M,N) is a rationalH*-submodule ofHhom(H?V,N). This means thatHhom(M,N) is anH-comodule. Then we obtainHhom(M,N)∈HYDH(α,β) by Lemma 2.

        We say thatHYDH(α,β) satisfies the exact condition if the following property holds: ifM∈HYDH(α,β) is a finitely generatedH-module, then the functorHhom(M,_):HYDH(α,β)→HYDH(α,β) is exact.

        By Proposition 1, ifHis commutative andMis a finitely generatedH-module, we haveHhom(M,N)∈HYDH(α,β) for anyN∈HYDH(α,β). ObviouslyHYDH(α,β) satisfies the exact condition ifHis semisimple.

        Proposition2Assume thatHis commutative, andHYDH(α,β) satisfies the exact condition and the functor (-)coH:HYDH(α,β)→kMis exact. Then any finitely generatedH-moduleM∈HYDH(α,β) is a projective object.

        Proofwe haveHhomH(M,_)?Hhom(M,_)coH=(-)coH°Hhom(M,_) which implies thatHhomH(M,_) is also an exact functor.

        Proposition3Under the same condition of Proposition 2, suppose thatHis noetherian. Then any finitely generatedH-moduleM∈HYDH(α,β) is a direct sum of a family of simple subobjects which are also finitely generated asH-modules inHYDH(α,β).

        ProofAssume thatNis a subobject ofM. ThenNandM/Nare finitely generatedH-modules sinceHis noetherian. Furthermore,NandM/Nare projective objects. So we have a split exact sequence inHYDH(α,β): 0→N→M→M/N→0.

        Thus the conclusion holds.

        TakeM∈HYDH(α,β) and anH-subcomoduleVofM. We set

        whereIis a finite set. ThenHVis a subobject ofMinHYDH(α,β) via:

        Theorem1LetHbe commutative and noetherian,HYDH(α,β) satisfies the exact condition and the functor (-)coH:HYDH(α,β)→kMis exact. Then everyM∈HYDH(α,β) is a direct sum of a family of simple subobjects ofMwhich are finitely generated asH-modules inHYDH(α,β). Therefore,HYDH(α,β) is a semisimple category.

        ProofFor anym∈M,mbelongs to a finite dimensionalH-subcomoduleVmofM. ThenVmis a finitely generatedH-module. By Proposition 3,Vmis a direct sum of a family of simple subobjects which are finitely generated. LetΩbe the set of all direct sumsN=?i∈INiwhere everyNiis both a finitely generatedH-module and a simple subobject ofMinHYDH(α,β). Then the sum of two elements inΩis also an object inΩ. ThusΩcontains a maximal elementM′ through Zorn’s Lemma. For anym∈M, we havem∈HVm∈Ω. This means thatHVm+M′=M′. SoM=M′. Thus, the conclusion holds.

        Corollary1LetHbe commutative and noetherian (particularly finite dimensional), semisimple and cosemisimple. Then eachM∈HYDH(α,β) is a direct sum of a family of simple subobjects ofMwhich are finitely generated asH-modules inHYDH(α,β). HenceHYDH(α,β) is a semisimple category.

        ProofSinceHis cosemisimple, the functor (-)coH:MH→kMis exact. Thus (-)coH:HYDH(α,β)→kMis exact. Furthermore, the semisimplicity implies thatHYDH(α,β) satisfies the exact condition. Then by Theorem 1, the conclusion holds.

        Theorem2As the disjoint union of allHYDH(α,β), the category of the generalized Yetter-Drinfeld modules YD(H) is also semisimple.

        [1]Panaite F, Staic M D. Generalized (anti) Yetter-Drinfeld modules as components of a braided T-category [J].IsraelJMath, 2007,158(1): 349-365.

        [2]Liu L, Wang S H. Constructing new braided T-categories over weak Hopf algebras [J].ApplCategorStruct, 2010,18(4): 431-459.

        [3]Turaev V.Homotopyquantumfieldtheory[M]. Bloomington: European Mathematical Society, 2010.

        [4]Etingof P, Nikshych D, Ostrik V. On fusion categories [J].AnnalsofMathematics, 2005,162(2): 581-642.

        [5]Drinfeld V, Gelaki S, Nikshych D, Ostrik V. On braided fusion categories Ⅰ [J].SelectaMathematica, 2010,16(1): 1-119.

        [6]Naidu D, Rowell E. A finiteness property for braided fusion categories [J].AlgebrRepresentTheor, 2011,14(5): 837-855.

        [7]Sweedler M.Hopfalgebras[M]. New York: Benjamin, 1969.

        [8]Montgomery S.Hopfalgebrasandtheiractionsonrings[M]. Rhode Island: American Mathematical Society, 1993.

        av免费资源在线观看| 内射中出无码护士在线| 三上悠亚精品一区二区久久| 国产乱子伦视频一区二区三区| 一区二区三区手机看片日本韩国 | 免费无遮挡禁18污污网站| 亚洲精品成人无百码中文毛片| 内射口爆少妇麻豆| 日韩电影一区二区三区| 久久精品成人91一区二区| 国产白浆大屁股精品视频拍| 亚洲精品国产综合久久| 国产精品免费一区二区三区四区| 亚洲av午夜福利精品一区| 国产免费丝袜调教视频| 国产精品美女久久久久久久| 中文字幕亚洲无线码a| 快射视频网站在线观看| 国产精品毛片va一区二区三区| 全免费a级毛片| 亚洲中文字幕精品久久久久久直播| 激情五月开心五月啪啪| 少妇粉嫩小泬喷水视频| 日产精品久久久久久久| 亚洲国产日韩av一区二区 | 亚洲av国产精品色a变脸| 亚洲av福利院在线观看| 久久99精品国产麻豆| 久久亚洲第一视频黄色| 一本色道久久88加勒比综合| 精品乱码一区内射人妻无码| 污污内射在线观看一区二区少妇| 精品久久人人妻人人做精品| 国产成人一区二区三区在线观看| 伊人久久网国产伊人| 一级做a爱视频在线播放| 久久精品亚洲熟女av蜜謦 | 亚洲av成人片在线观看| 久久97精品久久久久久久不卡| 少妇特殊按摩高潮不断| 久久精品中文少妇内射|