亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Stability of Fredholm Integral Equation of the First Kind in Reproducing Kernel Space?

        2012-12-27 07:06:02DUHONGANDMULIHUA
        關(guān)鍵詞:古意孩子

        DU HONG AND MU LI-HUA

        (Department of Mathematics and Mechanics,Heilongjiang Institute of Science and Technology, Harbin,150027)

        Stability of Fredholm Integral Equation of the First Kind in Reproducing Kernel Space?

        DU HONG AND MU LI-HUA

        (Department of Mathematics and Mechanics,Heilongjiang Institute of Science and Technology, Harbin,150027)

        It is well known that the problem on the stability of the solutions for Fredholm integral equation of the first kind is an ill-posed problem in C[a,b]or L2[a,b]. In this paper,the representation of the solution for Fredholm integral equation of the first kind is given if it has a unique solution.The stability of the solution is proved in the reproducing kernel space,namely,the measurement errors of the experimental data cannot result in unbounded errors of the true solution.The computation of approximate solution is also stable with respect toor.A numerical experiment shows that the method given in this paper is stable in the reproducing kernel space.

        Freholm integral equation,ill-posed problem,reproducing kernel space

        74S30

        1 Introduction

        The Fredholm integral equation of the first kind is of the form

        It is well known that the problem on the stability for Fredholm integral equation of the first kind is an ill-posed problem in C[a,b]or L2[a,b].Some related works can be found in[1–6]. Namely,when given the right-hand side f(x)a perturbation,it could be caused large errors of solution u(y)in L2[0,π].

        Many problems in science and engineering lead to seeking for the solution of the first kind of linear integral equations.In[1,7],the 1D heat conduction equation with initial and

        boundary conditions

        is given.The solution of(1.2)is

        In this paper,the representation of the solution is obtained for Fredholm integral equation of the first kind in the reproducing kernel space[a,b].The reproducing kernel space[a,b]was de fi ned in[8].The computation of approximate solution is also stable when a perturbation is convergent to zero in the sense oforin the reproducing kernel space.We illustrate a numerical experiment in the last section of this paper.

        2 The Solution of(1.1)

        In this section,if the solution of(1.1)is unique,then the representation of the solution is given in the reproducing kernel space for the Fredholm integral equation of the first kind as follows:

        Lemma 2.1The operatorAde fi ned in(2.1)is a bounded linear operator from[a,b]to[a,b]under the conditions(2.2)and(2.3).

        In order to obtain the representation of the solution of(2.1),set the reproducing kernel Ry(x)in[a,b]as

        Therefore,(2.7)is the solution of(2.1).

        (ii)If(2.1)has solutions,then any solution could be represented as

        3 The Stability of the Solution

        It is well known that the problem on the stability of the solution for(2.1)may be an illposed problem in the space C[a,b]or L2[a,b].In this section,we discuss it in the reproducing kernel space[a,b].

        他怎么可以說我是個(gè)沒媽的孩子?我又怎么可能沒有媽呢?如果沒有媽,我是古意從哪里弄來的?而且從六歲的時(shí)候,我就已經(jīng)知道了康美娜的存在。

        Now,the stability of the solution for(2.1)in[a,b]can be de fi ned.

        De fi nition 3.1Letu(x)be a solution of(2.1).We say that the approximate method for the solutionu(x)in relation tou(n)(x),which is the solution of(2.1)with the right-hand sidef(n)(x),is stable in[a,b],if

        Proof.Since the spaceΨand ?2are isometric-isomorphism,and ?2is complete,we see thatΨis complete.This completes the proof.

        Therefore,the discussion of the stability of any solution for(2.1)is equivalent to that of the stability of the minimal norm solution for(2.1).

        4 Numerical Experiments

        In this section,we seek for the approximate solution of(1.3)with the right-hand side given a perturbation in the reproducing kernel space W12[a,b].

        Take t=1,and

        The true solution is u(x)=sinx.We calculate the approximate solution?u(x).All computations are performed by the Mathematica software package.We present the numerical results in Tables 4.1 and 4.2 when the right-hand side of(1.3)is put on perturbations ε=0.05 and ε=0.005,respectively,in the space[0,π].

        Table 4.1 The error of solution u(x)with perturbations ε=0.05

        Table 4.2 The error of solution u(x)with perturbations ε=0.005

        It illustrates that the new method given in the paper is valid.

        [1]Groestch C W.Inverse Problems in the Mathematical Sciences.Braunschweig:Vieweg,1993.

        [2]Bojarki N N.Inverse black body radiation.IEEE Trans.Antennas and Propagation,1982,30: 778–780.

        [3]Hansen J,Maier D,Honerkamp J,Richtering W,Horn M F,Sen ffH.Size distributions out of static light scattering:Inclusions of distortions from the experimental set.J Colloid Interf.Sci., 1999,215:72–84.

        [4]Hadamard J.Lectures on the Cauchy Problems in Partial differential Equation.New Haven: Yale Univ.Press,1923.

        [5]Tikhonov A N,Arsenin V Y.Solutions of Ill-posed Problems.New York:John Wiley and Sons, 1977.

        [6]Yildiz B,Yetiskin H,Sever A.A stability estimate on the regularized solution of the backward heat equation.Appl.Math.Comput.,2003,135:561–567.

        [7]Kirsch A.An Introduction to the Mathematical Theory of Inverse Problems.New York: Springer-Verlag New York Incorporated,1996.

        [8]Li C L,Cui M.The exact solution for solving a class nonlinear operator equation in reproducing kernel space.Appl.Math.Comput.,2003,143:393–399.

        Communicated by Ma Fu-ming

        A

        1674-5647(2012)02-0121-06

        date:Apirl 26,2006.

        NSF(A201015)of Heilongjiang Province.

        猜你喜歡
        古意孩子
        中正平和——王棟山水畫中的古意
        金橋(2022年2期)2022-03-02 05:43:02
        尋找古意的配色
        古意流轉(zhuǎn)——評(píng)改琦《紅樓夢(mèng)》畫的藝術(shù)風(fēng)格
        孩子的畫
        孩子(2017年2期)2017-02-13 18:20:51
        孩子的畫
        孩子(2016年5期)2016-05-06 12:24:50
        化古意而為今聲
        孩子的畫
        孩子(2016年4期)2016-04-13 12:28:43
        孩子的畫
        孩子(2016年3期)2016-03-11 12:32:40
        古意悠悠醉客情——雕塑家曹春生的寫意人物畫欣賞
        亚洲综合偷拍一区二区| 国产精品福利自产拍在线观看| 性一交一乱一伧国产女士spa| 国产人妻黑人一区二区三区| 亚洲高清国产品国语在线观看| 亚洲天堂av免费在线| 亚洲最大一区二区在线观看| 国产成人亚洲精品无码青| 日本一卡2卡3卡4卡无卡免费网站 亚洲av无码一区二区三区不卡 | 九色综合九色综合色鬼| 成人性做爰aaa片免费看| 91热久久免费精品99| 中文字幕日本韩国精品免费观看| 亚洲色图偷拍自拍在线| 亚洲精品无码永久中文字幕| 麻豆国产在线精品国偷产拍| 激情97综合亚洲色婷婷五| 中文字幕亚洲综合久久| 麻豆国产精品久久天堂| 精品国产av一区二区三区四区| 久久亚洲av无码西西人体| 免费黄色电影在线观看| 久久久精品国产亚洲麻色欲| 久久久久亚洲AV无码专| 中文熟女av一区二区| 一区二区高清免费日本| 99国产精品99久久久久久 | 日韩在线精品在线观看| 日本高清在线一区二区| 亚洲中文字幕精品乱码2021| 被黑人猛烈30分钟视频| 中文乱码人妻系列一区二区| 日本五十路熟女在线视频| 免费看黄视频亚洲网站| 免费欧洲毛片a级视频老妇女| 亚洲av无码专区在线电影| 国产精品无码mv在线观看| 国产精品日韩亚洲一区二区| 偷柏自拍亚洲综合在线| 中文字幕人妻丝袜乱一区三区| 久久亚洲精品ab无码播放|