甘 露,閻 寧,張永明 (上海師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,上海 200234)
紫外輻射與生物膜同步耦合降解喹啉
甘 露,閻 寧,張永明*(上海師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,上海 200234)
紫外輻射光解與生物降解同步耦合的氣升式內(nèi)循環(huán)反應(yīng)器用于喹啉的降解.實驗過程中分別采用單獨紫外光解、單獨生物降解和紫外光解與生物降解同步耦合的方法對喹啉進行降解.結(jié)果表明,喹啉在紫外光解與生物降解同步耦合的作用下,其降解速率明顯提高.喹啉降解動力學(xué)分析結(jié)果表明,喹啉的生物降解可以用有抑制性的 Haldane模型描述.相比生物降解過程,單獨紫外光解對喹啉的降解速率可以忽略,但將紫外輻射與生物降解耦合在一起后,可以提高喹啉的最大降解速率近1倍并減小抑制常數(shù)36%,同時還可以提高喹啉的礦化程度.
喹啉;生物降解;紫外光解;生物膜;反應(yīng)器
喹啉是一種重要的精細化工原料,主要用于合成醫(yī)藥、染料、農(nóng)藥和多種化學(xué)助劑,因此每年都有大量喹啉進入環(huán)境系統(tǒng)中[1-2].喹啉又稱氮雜萘,分子式為C9H7N,是吡啶與苯并聯(lián)的化合物,且有兩種方式,分別成為喹啉和異喹啉,存在于煤焦油和骨焦油中.喹啉及其衍生物進入環(huán)境后會對動植物生長發(fā)育產(chǎn)生不良反應(yīng), 有致癌、致畸、致突變性[3-4],且在較高級的生物體中有通過食物積累的可能性,對地表水和地下水環(huán)境系統(tǒng)有較大的威脅,所以對喹啉降解的研究日益受到重視[5-6].
大量文獻表明喹啉及其衍生物可以被生物降解,并且已經(jīng)鑒定出了大量的喹啉及其衍生物的降解菌[7-12],通過篩選所得的菌種在喹啉的生物降解效果上得到了強化,但也有文章有提到,單獨的生物方法耗時較長,耐沖擊負荷的能力也不強[13-14].目前喹啉及其衍生物的生物降解研究有4種類型:好氧降解、厭氧降解、缺氧降解和共基質(zhì)降解[15].鑒于喹啉對微生物具有抑制作用,通常單獨的生物降解其效率較低.國內(nèi)外的不少學(xué)者采用了一些物化及高級氧化方法技術(shù)對喹啉及其衍生物進行處理,較為傳統(tǒng)的物化及高級氧化方法主要有:混凝法、吸附法等,以及催化氧化、電化降解、濕式氧化、光催化氧化、臭氧氧化、超臨界水氧化等高級氧化技術(shù)[16-21].其中紫外輻射光解或光催化是相對簡單、易于操作的高級氧化方法.但若單獨依賴紫外輻射將喹啉完全降解為二氧化碳和水,效率較低,且不經(jīng)濟.將紫外輻射光解與生物降解耦合在一起,通過兩者的協(xié)同作用,提高喹啉的降解效率.當將紫外輻射與生物降解結(jié)合后,喹啉中的C—C、C—N鍵吸收紫外光的能量而斷裂,使有機物逐漸降解,從而有利于生物降解,最后以CO2的形式離開體系[22].以往將紫外輻射光解或光催化與生物降解的耦合處理難降解有機廢水方面,大多采用分步耦合的方法進行處理,即將光解或光催化與生物降解分別在2個單元里分步進行[23-29].這存在一個最佳控制的問題,即光解或光催化時間過長,則總的效率下降;而時間過短則不利于后續(xù)的生物降解.為此,將光解或光催化與生物降解結(jié)合在一個單元里處理難降解有機物,則可以大大提高處理效率[30-31].本研究采用氣升式內(nèi)循環(huán)紫外光解與生物降解耦合反應(yīng)器,通過該反應(yīng)器將紫外輻射光解與生物降解有效地組合為一體,試圖實現(xiàn)高效降解喹啉.分別采用間歇和連續(xù)兩種方式,考查不同濃度的喹啉在單獨紫外光解、單獨生物降解以及紫外光結(jié)合生物降解過程中的降解規(guī)律.
氣升式內(nèi)循環(huán)光/生物一體化反應(yīng)器由石英玻璃制成,如圖1所示.反應(yīng)器中間設(shè)置一塊玻璃板,將反應(yīng)器分隔為紫外輻射光解區(qū)和生物降解區(qū).反應(yīng)器有效容積為 45mL.在距反應(yīng)器紫外輻射光解區(qū)一側(cè) 10cm是一功率為 24W,波長為254nm的紫外光源.實驗過程中,在生物降解區(qū)內(nèi)曝氣,可以驅(qū)動液體在反應(yīng)器的光解區(qū)和生物降解區(qū)之間循環(huán)流動,使有機物不斷的經(jīng)歷光解和生物降解,從而提高其降解效率.
喹啉和分析用藥品:重鉻酸鉀、硫酸,硫酸銀均為分析純,均購自上海國藥集團.模擬喹啉廢水是將喹啉直接稀釋到自來水中.先配制濃度為5g/L的母液置于冰箱備用,使用時,根據(jù)實驗設(shè)計要求,將濃度稀釋為100~1500mg/L.
污泥取自上海龍華水質(zhì)凈化廠的二沉池的回流污泥.馴化之前,用自來水清洗污泥,方法是將 600mL左右的污泥倒入 2L的量筒內(nèi),加入1400mL的自來水,讓污泥自由沉淀 30min后將上清液倒掉,重復(fù)上述步驟5遍,然后加入濃度為500mg/L的葡萄糖溶液,在 25~30℃條件下進行馴化培養(yǎng),此時污泥的SV為300mL/L.培養(yǎng)初期每天更換新鮮葡萄糖溶液,在最初30d的培養(yǎng)馴化周期內(nèi),逐漸減少葡萄糖用量,直至不再加入葡萄糖,同時逐漸增加喹啉的濃度,從 50mg/L至200mg/L.30d后,待微生物適應(yīng)環(huán)境,逐漸增加喹啉的投加量,使容器內(nèi)喹啉的濃度從200mg/L逐漸增加到1000mg/L.
1.4.1 空白實驗 在反應(yīng)器中分別裝入無生物膜的空白載體、滅活的生物膜對濃度為100mg/L、500mg/L的喹啉進行60min的對比實驗以了解載體、生物膜對喹啉的吸附情況.另外單純對喹啉溶液進行曝氣,以了解喹啉在曝氣過程中的揮發(fā)情況.其中滅活生物膜是將已形成的生物膜置于溫度為100℃的恒溫箱內(nèi)1h.
1.4.2 喹啉的間歇降解實驗和連續(xù)降解實驗分別采用單獨光解(P)、單獨生物降解(B)以及光解與生物降解同步耦合(P&B)的方法對不同濃度的喹啉進行間歇和連續(xù)降解實驗.間歇實驗中,通過曝氣驅(qū)動溶液在反應(yīng)器內(nèi)循環(huán)流動,在喹啉光解時,反應(yīng)器內(nèi)不裝填生物膜,開啟紫外燈;在喹啉生物降解時,反應(yīng)器內(nèi)裝入生物膜,同時關(guān)閉紫外燈;在光與生物協(xié)同降解喹啉時,反應(yīng)器內(nèi)裝入生物膜的同時開啟紫外燈對喹啉進行降解.在連續(xù)降解實驗中,分別針對初始濃度為 100, 500,1000mg/L的喹啉進行連續(xù)降解,停留時間為5h.連續(xù)降解過程中,首先進行單獨紫外光解,此時反應(yīng)器內(nèi)不加入生物膜,只開啟紫外燈.大約150h之后,關(guān)閉紫外燈,加入生物膜,進行單獨生物降解.300h之后,開啟紫外燈,進行紫外光解與生物降解同步耦合降解喹啉.實驗中,每間隔一定的時間取樣測定喹啉的濃度之外,并測定其COD的去除情況,以了解喹啉的礦化程度.
由于喹啉屬于難降解的含氮雜環(huán)化合物,對微生物具有一定的毒性和抑制性[32].通過對喹啉降解的動力學(xué)分析可以了解喹啉對生物膜的抑制情況.喹啉降解動力學(xué)可以通過喹啉的初始濃度C0與其初始去除速率 V0的關(guān)系求得.對于有抑制的降解動力學(xué)可以用Haldane模型來描述[33].
用美國產(chǎn)的Agilent 1100的高效液相色譜(配置波長250nm的紫外熒光器、型號為ZORBAX SB-C18反相色譜柱)測試喹啉,流動相為甲醇水溶液,體積比為甲醇:水(含1%醋酸) = 60:40 (V/V),流動速率為1mL/min,檢出限在0.1mg/L以上.COD分析采用型號為 KDB—Ⅲ微波消解儀(青島科迪博電子科技有限公司)進行消解,再用重鉻酸鉀溶液進行滴定,以求得COD濃度.
對初始濃度分別為100mg/L和500mg/L的喹啉進行空白對比實驗,以考察空白生物膜載體、滅活的生物膜對喹啉是否有吸附,以及喹啉在曝氣過程中的揮發(fā)情況,結(jié)果如圖2所示.結(jié)果表明,相比喹啉的生物降解,生物膜載體和滅活的生物膜對喹啉幾乎沒有吸附,同時喹啉在曝氣過程中的揮發(fā)也可以忽略.因此,在該體系內(nèi),生物膜或生物膜載體對喹啉的吸附作用很小,而后續(xù)的實驗過程中喹啉的去除可以認為是生物降解或光解的結(jié)果.
圖2 喹啉的吸附、揮發(fā)及降解的對比Fig.2 Comparison adsorption and volatile with degradation of quinoline
圖3 分別在生物降解和紫外光解與生物降解協(xié)同作用下喹啉的初始去除速率與初始濃度的關(guān)系Fig.3 Relationship of initial quinoline concentration and its initial removal rates under photolysis alone, biodegradation alone and intimate coupled photolysis and biodegradation
表1 喹啉降解動力學(xué)參數(shù)Table 1 Parameters of quinoline degradation
因此喹啉在方法B和方法P&B的降解過程中的動力學(xué)方程可以分別用下式表示:
單獨生物降解(方法B):
紫外光解與生物降解同步耦合(方法P&B):
從圖3也可以看出,它們的擬合程度相當高.從動力學(xué)常數(shù)的分析可以看出,通過紫外光解與生物膜的協(xié)同作用,抑制常數(shù)降低了約36%,同時最大降解速率也提高近1倍.這說明雖然單獨的紫外光解(P)對喹啉的降解作用相比單獨的生物降解(B)可以忽略,但紫外光解與生物膜協(xié)同作用后,即通過方法 P&B的作用,可以大大緩解喹啉對生物的抑制,同時也提高了喹啉的降解速率.
分別采用方法 P、B和 P&B對濃度為200mg/L的喹啉進行降解,其結(jié)果如圖4所示.從圖4中可以明顯地看出,采用方法P&B時,喹啉的降解速率明顯地高于其它2種方法.例如當采用方法P&B時,經(jīng)過8h后,200mg/L的喹啉已經(jīng)完全去除,而采用方法P和方法B時,8h之后,喹啉的去除率分別為5%和95%.從圖4中還可以看出,喹啉在方法P&B和方法B的降解過程中,其降解趨勢十分相近,但總是慢一點.根據(jù)動力學(xué)分析可知,喹啉濃度為200mg/L時,還沒有對生物膜產(chǎn)生抑制作用.但由于紫外輻射光解與生物降解的耦合還是提高了喹啉的降解效率.
圖4 喹啉分別在方法P、B和P&B作用下的降解規(guī)律Fig.4 Quinoline removal regularity under protocol P, B and P&B
同樣采用方法P、B和P&B 3種方法對喹啉進行連續(xù)流降解實驗.喹啉溶液的濃度分別為100,500,1000mg/L,停留時間均為5h.各濃度的喹啉在連續(xù)流降解的情況如圖5所示.
圖5 喹啉的連續(xù)降解Fig.5 Quinoline removal in continuous flow
根據(jù)圖5的結(jié)果可以計算喹啉在3種方法處理過程中的平均體積去除負荷 (VRR).其結(jié)果如圖6所示.從圖6可以看出,采用方法P&B時,喹啉的體積去除負荷明顯地高于方法B和P.其中方法B又高于方法P.但各方法中,隨著喹啉濃度的增加,體積去除負荷逐漸增大.將圖4與圖5和圖6比較,可以明顯看出,在連續(xù)流降解喹啉時,喹啉的去除速率高于間歇式去除喹啉的速率.這是因為在連續(xù)流過程中,喹啉降解后的中間產(chǎn)物可以及時排除反應(yīng)器,因而產(chǎn)物的抑制可大大減少.
圖6 連續(xù)流降解喹啉的體積去除負荷Fig.6 Volume removal rate of quinoline in continuous flow
對喹啉進行降解是希望能使其得到礦化,COD是衡量喹啉礦化程度的重要指標,為此針對連續(xù)流降解喹啉過程中進、出溶液測定其COD.喹啉所對應(yīng)的COD去除率如圖7所示.
圖7 連續(xù)降解喹啉時的COD去除率Fig.7 COD removal percentage for quinoline in continuous flow
從圖7中可以看出,采用方法P&B,對喹啉的礦化效果是最好的,而方法P和B對喹啉的礦化率均明顯低于方法 P&B.這一結(jié)果說明紫外光的參與降低了喹啉對生物膜的抑制作用.有資料表明,在 185/254nm的紫外光的輻照下,喹啉和異喹啉發(fā)生降解的主要途徑均有兩條[34]:(1)水的裂解產(chǎn)生的羥基與苯環(huán)加成,隨后開環(huán)降解;(2)底物發(fā)生光電離后形成的自由基與氧氣發(fā)生反應(yīng)形成過氧化物,隨后開環(huán)降解.喹啉的好氧生物降解途徑一般有四種,其共同點為[35-36]:一般情況下,首先是鄰近氮原子的羥基化,該反應(yīng)之后喹啉的苯環(huán)部分轉(zhuǎn)化為二羥基衍生物,然后環(huán)開裂.而由于反應(yīng)器的特性,喹啉在降解過程中不斷地在光解區(qū)和生物降解區(qū)之間循環(huán)流動,在兩種方式的共同作用下,上述單獨的紫外輻射光解和生物降解對喹啉的降解途徑就發(fā)生了一定的變化,兩者耦合在一起,喹啉中的C—C、C—N鍵吸收紫外光的能量而斷裂,使有機物逐漸降解,其結(jié)構(gòu)一被破壞便立即會被微生物所利用,最后以 CO2的形式離開體系,從而提高了生物降解的礦化能力.
3.1 紫外光解對喹啉的降解作用明顯低于生物降解,但將紫外光解與生物降解進行耦合之后,可以明顯地提高喹啉的降解速率,即耦合后的降解速率大于單獨光解與單獨生物降解之和.
3.2 喹啉的生物降解過程符合抑制型的Haldane方程,當紫外光解與生物膜耦合之后,可以降低抑制常數(shù) 36%,提高喹啉最大降解速率48%,即提高了生物膜對喹啉的親和程度,進而提高喹啉的降解速率.
3.3 紫外光解與生物膜耦合之后,喹啉的體積去除負荷明顯地高于單獨的生物降解和單獨的紫外光解,相應(yīng)的礦化程度也明顯提高.
[1] Kaiser J P, Feng Y C, Bollag J M. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions [J]. Microbiological Reviews, 1996, 60(3):483-498.
[2] Fetzner S. Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions [J]. Applied Microbiology and Biotechnology, 1998,49(3):237-250.
[3] Sideropoulos A S, Secht S M. Evaluation of microbial testing methods for the mutagenicity of quinoline and its derivatives [J]. Current Microbiology, 1984,11(2):59-66.
[4] Minako N, Takio Y, Yuko S, et al. Mutagenicities of quinoline and its derivatives [J]. Mutation Research, 1977,42: 335-342.
[5] Miethling R, Hecht V, Deckwer W D. Microbial degradation of quinoline: kinetic studies with comamonas acidovorans DSM 6426 [J]. Biotechnology and Bioengineering, 1993,42(5):589-595.
[6] Sutton S D, Pfaller S L, Shann J R, et al. Aerobic biodegradation of 4-methylquino-line by a soil bacterium [J]. Applied and Environment Microbiology, 1996,62(8):2910-2914.
[7] Zhang Y, Han L, Wang J, et al. An internal airlift loop bioreactor with Burkholderia pickttii immobilized onto ceramic honeycomb support for degradation of quinoline [J]. Biochemical Engineering Journal, 2002,11(2/3):149-157.
[8] Sun Q, Bai Y, Zhao C, et al. Aerobic biodegradation characteristics and metabolic products of quinoline by a Pseudomonas strain [J]. Bioresource Technology, 2009,100(21): 5030-5036.
[9] Qiao L, Wang J. Biodegradation characteristics of quinoline by Pseudomonas putida [J]. Bioresource Technology, 2010,101(19): 7683-7686.
[10] Wang J, Quan X, Han L, et al. Kinetics of co-metabolism of quinoline and glucose by Burkholderia pickettii [J]. Process Biochemistry, 2002,37(8):831-836.
[11] Wang J, Quan X, Han L, et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii [J]. Water Research, 2002,36(9):2288-2296.
[12] 柏耀輝,孫慶華,趙 翠,等.焦化廢水處理系統(tǒng)中喹啉降解菌的種群特征 [J]. 中國環(huán)境科學(xué), 2008,28(5):449-455.
[13] Bohlmann U, Bohnet M. Improvement of process stability of microbiological quinoline degradation in a three-phase fluidized bed reactor [J]. Engineering in Life Sciences, 2001,1(2):91-96.
[14] Buchtmann C, Kies U, Deckwer W-D, et al. Performance of three phase fluidized bed reactor for quinoline degradation on various supports at steady state and dynamic conditions [J]. Biotechnology and Bioengineering, 1997,56(3):295-303.
[15] 張翠萍,劉益平,朱麗紅.含喹啉廢水的處理和生物降解研究進展 [J]. 三峽環(huán)境與生態(tài), 2008,1(1):49-51.
[16] Thomas J K, Gunda K, Rehbein P, et al. Flow calorimetry and adsorption study of dibenzothiophene, quinoline and naphthalene over modifieed Y zeolites [J]. Applied Catalysis B: Environmental, 2010,94(3/4):225-233.
[17] Alexei N I, Kiwi J. Transient intermediate species active during the Fenton-mediated degradation of quinoline in oxidative media: pulsed laser spectroscopy [J]. Journal of Photochemistry and Photobiology A: Chemistoy, 1997,110(2):141-148.
[18] An T, Zhang W, Xiao X, et al. Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 161(2/3):233-242.
[19] Thomsen A B. Degradation of quinoline by wet Oxidation-kinetic aspects and reaction mechanisms [J]. Water Research, 1998, 32(1):136-146.
[20] 王小亻毛 ,黃 霞, 左晨燕,等.喹啉的O3及O3/UV降解規(guī)律 [J].中國環(huán)境科學(xué), 2003,23(2):134-138.
[21] Ogunsola O M. Decomposition of isoquinoline and quinoline by supercritical water [J]. Journal of Hazardous Materials, 2000, 74(3):187-195.
[22] 方景禮.強螯合物廢水的處理方法, 第三部分——紫外光氧化分解法處理螯合物廢水 [J]. 電鍍與涂飾, 2007,26(11):31-34.
[23] Alinsafi A, Evenou F, Abdulkarim E M, et al. Treatment of textile industry wastewater by supported photocatalysis [J]. Dyes and pigments, 2007,74(2):439-445.
[24] Balcioglu I A, Arslan I. Application of photocatalytic oxidation treatment to pretreated and raw effluents from the kraft bleaching process and textile industry [J]. Environmental Pollution, 1998, 103(2/3):261-268.
[25] Balcioglu I A, Cecen F. Treatability of kraft pulp bleaching wastewater by biochemical and photocatalytic oxidation [J]. Water Science and Technology, 1999,40(1):281-288.
[26] Hu C, Wang Y. Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater [J]. Chemosphere, 1999,39(12):2107-2115.
[27] Li X Z, Zhao Y G. Advanced treatment of dyeing wastewater for reuse [J]. Water Science and Technology, 1999,39(10/11): 249-255.
[28] Mohanty S, Rao N N, Khare P, et al. A coupled photocatalyticbiological process for degradation of 1-amino-8-naphthol-3, 6-disulfonic acid (H-acid) [J]. Water Research, 2005,39(20): 5064-5070.
[29] Reddy M P, Srinivas B, Kumari V D, et al. An integrated approach of solar photocatalytic and biological treatment of N-containing organic compounds in wastewater [J]. Toxicological and Environmental Chemistry, 2004,86(3):127-140.
[30] Marsolek M D, Torres C I, Hausner M, et al. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed bioflm reactor [J]. Biotechnology and Bioengineering, 2008,101(1):83-92.
[31] Zhang Y, Wang L, Rittmann B E. Integrated photocatalyticbiological reactor for accelerated phenol mineralization [J]. Applied Microbiology and Biotechnology, 2010,86(6):1977-1985.
[32] Thomsen A B, Kilen H H. Wet oxidation of quinoline: intermediates and by-product toxicity [J].Water Research, 1998, 32(11):3353-3361.
[33] 戚以政,汪叔雄.生物反應(yīng)動力學(xué)與反應(yīng)器[M]. 北京:化學(xué)工業(yè)出版社, 2007.
[34] 朱大章. N-雜環(huán)化合物真空紫外降解機理研究 [D]. 上海:同濟大學(xué), 2007.
[35] 孫麗娟, 李詠梅, 顧國維.含氮雜環(huán)化合物的生物降解研究進展 [J]. 四川環(huán)境, 2005,24(1):61-64.
[36] Dlicht S E, Ahring B K. Transformation of in-doleand quinoline by Desulfobacterium indolicum (DSM3383) [J]. Applied Microbiology and Biotechnology, 1997,47(2):167-172.
UV irradiation intimately coupling biofilm for quinoline degradation.
GAN Lu, YAN Ning, ZHANG Yong-ming*(College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, China). China Environmental Science, 2012,32(4):623~629
Internal loop photolytic biological reactor was used for quinoline degradation by means of three protocols: photolysis alone, biodegradation alone and photo-biodegradation. Experimental results indicated that quinoline removal rate was accelerated clearly under intimately coupled photolysis and biodegradation. Quinoline removal rate could be described with Haldane model as the inhibition to microorganism according to the analysis of quinoline removal kinetics. Compared with quinoline removal rate by biodegradation alone, the photolytic rates might be ignored. But the maximum quinoline removal rate was increased by one times after photolysis was intimately coupled with biodegradation for quinoline degradation, and the inhibition constant was decreased with 36%, at the same time, the quinoline mineralization degree was also increased by intimately coupled UV irradiation and biofilm.
quinoline;biodegradation;UV photolysis;biofilm;reactor
2011-07-14
國家自然科學(xué)基金項目(50978164,50678102);上海市基礎(chǔ)研究重點項目(11JC1409100);上海市重點學(xué)科建設(shè)項目(S30406)
* 責任作者, 教授, zhym@shnu.edu.cn
X703
A
1000-6923(2012)04-0623-07
甘 露(1987-),女,江西南昌人,上海師范大學(xué)生命與環(huán)境科學(xué)學(xué)院碩士研究生,主要從事難降解有機廢水處理技術(shù)的研究.