亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A Note on the Proof of the M oduli of Continuity for Stochastic Processes

        2012-09-13 01:44:06ZHANGJiesong
        關(guān)鍵詞:年刊淮北細(xì)化

        ZHANG Jie-song

        (School of Mathematical Sciences,Huaibei Normal University,235000,Huaibei,Anhui,China)

        A Note on the Proof of the M oduli of Continuity for Stochastic Processes

        ZHANG Jie-song

        (School of Mathematical Sciences,Huaibei Normal University,235000,Huaibei,Anhui,China)

        Abstract:There exists an ambiguous part in the proof ofmoduli of continuity and increments for stochastic processes in the article which was published on the Annals of Probability in 1992,while,this mistake can be remedied.In this paper,we give a specific proof by the method of decomposing and detailing.

        Key words:stochastic processes;moduli of continuity;monotone nondecreasing

        CLC number:O 211.4Document code:AArticle ID:2095-0691(2012)02-0015-03

        1 Introducion

        In many papers and monographs referring to the moduli of continuity of Wiener process,O-U process,fractional Wiener process etc.(e.g.[1-4]),a similar ambiguous conclusion is used.In other words,it is a mistake for us to consider that Ahis monotone nondecreasing.In fact,when h1≥h2,there is no inclusion between the region(0≤s≤1-h(huán)1,0≤t≤h1)and the region(0≤s≤1-h(huán)2,0≤t≤h2),so the function Ahwith respect to h may not be monotone nondecreasing.Here,we give a proof which does not use the ambiguous conclusion.

        2 Some prelim inaries

        Let B be a separable Banach space with norm‖‖ and let{Г(t),-∞<t<∞}be a stochastic process with values in B.Let P be the probability measure generated byΓ(·).Assume thatΓ(·)is P-almost surely continuous with respect to‖‖and that,with some t0,x*,h0,for|t|≤t0,0<x*≤x and 0<h≤h0,there exists a monotone nondecreasing functionσ(h)such that

        with some K,γ,β>0.

        Lemma 1[5]Assume that the stochastic process{Γ(t),-∞<t<∞}is as mentioned above and σ (·)is a regularly varying function at zero with a positive exponentα,namely

        where L(·)is a slowly varying function at zero,that is,it is measurable,positive and

        Then for anyε>0,there exist C=C(ε)>0 and 0<h0(ε)<1 such thatfor every x≥x*and 0<h≤h0(ε).

        The inequality(1)can be extended to any finite interval(T1,T2),-∞<T1<T2<∞,as follows.

        Lemma 2[5]Under the conditions of lemma 1,we have

        Remark The method of dealing with the difficulty caused by the generalization from the interval(0,1) to any finite interval(T1,T2)can refer to[6].

        3 M oduli of continuity for stochastic processes

        Theorem 1[5]Let{Γ(t),-∞<t<∞}and σ(h)be as in lemma 1.Then for any -∞<T1<T2<∞,we have

        Proof Without loss of generality,we take T1=0 and T2=1.Now we let

        and apply the inequality of(1)with x=(1+ε)2/β[(1/γ)log(1/h)]1/β>0.Then

        ChooseΛ>1/εand let h=hn=n-Λ,then

        and it follows from the Borel-Cantelli lemma that

        for allε>0.

        Because of(3),on considering now the case of hn+1<h<hn,and by letting Δhn=hn-h(huán)n+1,similar to [7],we have

        Obviously,I1≤Ahn+1,while,

        Hence

        By the definition of hn,when n is sufficiently large,

        Apply the equality of(2)with x=(1+ε)2/β[(1/γ)log(1/Δhn)]1/β,ε>0,and taking T1=0,T2=2,then

        And it follows from the Borel-Cantelli lemma that

        Consequently,by the inequalities of(4),(5)and(6),we obtain

        for allε>0,where the last inequality follows from the fact that for any given δ>0,when n is sufficiently large,then

        and

        This completes the proof of theorem 1.

        [1]LIN Zhengyan,LU Chuanrong,SU Zhonggen.Foundation of the theory of probability limit[M].Beijing:Higher Education Press,1999.

        [2]CSORGO M,REVESZ P.Strong approximations in probalility and stastistics[M].New York:Academic Press,1981.

        [3]LIN Zhengyan,LU Chuanrong,ZHANG Lixin.Property of trajectory of Gauss processes[M].Beijing:Science Press,2001.

        [4]CSAKI E,CSORGO M,LIN Zhengyan,et al.On infinite series of independent Ornstein-Uhlenbeck processes[J].Stochastic Process and their Applications,1991,39(1):25-44.

        [5]CSAKIE,CSORGO M.Inequalities for increments of stochastic processes and moduli of continuity[J].Annals of Probability,1992,20(2):1 031-1 052.

        [6]ZHANG Jiesong,YANG Lifeng.More result on the tail probability of Brown motion[J].Journal of Fuyang Teachers College:Natural Science,2008,25(1):29-31.

        [7]MIAO Baiqi,LU Jun.A Note on the proof of the modulus of continuity of Wiener process[J].Journal of Huaibei Coal Industry Teachers College:Natural Science,1992,13(2):1-3.

        關(guān)于隨機(jī)過程連續(xù)模定理證明的一個(gè)注記

        張節(jié)松

        (淮北師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,安徽 淮北 235000)

        1992年發(fā)表在概率年刊上關(guān)于隨機(jī)過程連續(xù)模及增量一文的證明中,存在一處模糊不清的地方,該漏洞是可以補(bǔ)救的,文章通過分解細(xì)化的辦法給出一個(gè)確定的證明.

        隨機(jī)過程;連續(xù)模;單調(diào)不減

        O 211.4

        A

        2095-0691(2012)02-0015-03

        Recieved date:2011-09-09

        Foundation item:The teaching and research project of Huaibei Normal University(jy09222)

        Biography:ZHANG Jie-song(1981- ),male,native of Qianshan,Anhui,lecturer,master,major in probability limit.

        猜你喜歡
        年刊淮北細(xì)化
        歡迎訂閱2022年刊
        歡迎訂閱2022年刊
        歡迎訂閱2021年刊
        歡迎訂閱2021年刊
        《淮北師范大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡則
        《淮北師范大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡則
        中小企業(yè)重在責(zé)任細(xì)化
        “細(xì)化”市場,賺取百萬財(cái)富
        “住宅全裝修”政策亟需細(xì)化完善
        《淮北枳》
        在教室伦流澡到高潮hgl动漫| 99久久亚洲精品加勒比| 丝袜美腿在线观看视频| 欧美性猛交aaaa片黑人| 精品av天堂毛片久久久| 九九精品无码专区免费| 亚洲天堂一区二区精品| 青青草狠吊色在线视频| 国产成人a人亚洲精品无码| 一级二级中文字幕在线视频| 日本人妻伦理片在线观看 | 日韩中文字幕在线观看一区| 亚洲啪av永久无码精品放毛片| 激情综合欧美| 日韩高清av一区二区| 日韩精品在线免费视频| 曰韩人妻无码一区二区三区综合部 | 国产高清乱理伦片| 亚洲综合网站精品一区二区| 亚洲综合中文日韩字幕| 深夜福利啪啪片| 99久久免费精品高清特色大片| AV在线中出| 久久本道久久综合伊人| 国产综合无码一区二区辣椒 | 国产成人一区二区三区高清| 各类熟女熟妇激情自拍| 天堂网www资源在线| 亚洲中文字幕乱码| 精品一区二区三区女同免费| 成人影院在线视频免费观看| 久久水蜜桃亚洲av无码精品麻豆| 亚洲阿v天堂2018在线观看| 国产精品女同一区二区免| 日本中国内射bbxx| 国产成+人+综合+亚洲 欧美| 亚洲精品一区二区三区av| 国产精品妇女一区二区三区 | 大陆国产乱人伦| 婷婷亚洲综合五月天小说| 免费美女黄网站久久久|