亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A Note on the Proof of the M oduli of Continuity for Stochastic Processes

        2012-09-13 01:44:06ZHANGJiesong
        關(guān)鍵詞:年刊淮北細(xì)化

        ZHANG Jie-song

        (School of Mathematical Sciences,Huaibei Normal University,235000,Huaibei,Anhui,China)

        A Note on the Proof of the M oduli of Continuity for Stochastic Processes

        ZHANG Jie-song

        (School of Mathematical Sciences,Huaibei Normal University,235000,Huaibei,Anhui,China)

        Abstract:There exists an ambiguous part in the proof ofmoduli of continuity and increments for stochastic processes in the article which was published on the Annals of Probability in 1992,while,this mistake can be remedied.In this paper,we give a specific proof by the method of decomposing and detailing.

        Key words:stochastic processes;moduli of continuity;monotone nondecreasing

        CLC number:O 211.4Document code:AArticle ID:2095-0691(2012)02-0015-03

        1 Introducion

        In many papers and monographs referring to the moduli of continuity of Wiener process,O-U process,fractional Wiener process etc.(e.g.[1-4]),a similar ambiguous conclusion is used.In other words,it is a mistake for us to consider that Ahis monotone nondecreasing.In fact,when h1≥h2,there is no inclusion between the region(0≤s≤1-h(huán)1,0≤t≤h1)and the region(0≤s≤1-h(huán)2,0≤t≤h2),so the function Ahwith respect to h may not be monotone nondecreasing.Here,we give a proof which does not use the ambiguous conclusion.

        2 Some prelim inaries

        Let B be a separable Banach space with norm‖‖ and let{Г(t),-∞<t<∞}be a stochastic process with values in B.Let P be the probability measure generated byΓ(·).Assume thatΓ(·)is P-almost surely continuous with respect to‖‖and that,with some t0,x*,h0,for|t|≤t0,0<x*≤x and 0<h≤h0,there exists a monotone nondecreasing functionσ(h)such that

        with some K,γ,β>0.

        Lemma 1[5]Assume that the stochastic process{Γ(t),-∞<t<∞}is as mentioned above and σ (·)is a regularly varying function at zero with a positive exponentα,namely

        where L(·)is a slowly varying function at zero,that is,it is measurable,positive and

        Then for anyε>0,there exist C=C(ε)>0 and 0<h0(ε)<1 such thatfor every x≥x*and 0<h≤h0(ε).

        The inequality(1)can be extended to any finite interval(T1,T2),-∞<T1<T2<∞,as follows.

        Lemma 2[5]Under the conditions of lemma 1,we have

        Remark The method of dealing with the difficulty caused by the generalization from the interval(0,1) to any finite interval(T1,T2)can refer to[6].

        3 M oduli of continuity for stochastic processes

        Theorem 1[5]Let{Γ(t),-∞<t<∞}and σ(h)be as in lemma 1.Then for any -∞<T1<T2<∞,we have

        Proof Without loss of generality,we take T1=0 and T2=1.Now we let

        and apply the inequality of(1)with x=(1+ε)2/β[(1/γ)log(1/h)]1/β>0.Then

        ChooseΛ>1/εand let h=hn=n-Λ,then

        and it follows from the Borel-Cantelli lemma that

        for allε>0.

        Because of(3),on considering now the case of hn+1<h<hn,and by letting Δhn=hn-h(huán)n+1,similar to [7],we have

        Obviously,I1≤Ahn+1,while,

        Hence

        By the definition of hn,when n is sufficiently large,

        Apply the equality of(2)with x=(1+ε)2/β[(1/γ)log(1/Δhn)]1/β,ε>0,and taking T1=0,T2=2,then

        And it follows from the Borel-Cantelli lemma that

        Consequently,by the inequalities of(4),(5)and(6),we obtain

        for allε>0,where the last inequality follows from the fact that for any given δ>0,when n is sufficiently large,then

        and

        This completes the proof of theorem 1.

        [1]LIN Zhengyan,LU Chuanrong,SU Zhonggen.Foundation of the theory of probability limit[M].Beijing:Higher Education Press,1999.

        [2]CSORGO M,REVESZ P.Strong approximations in probalility and stastistics[M].New York:Academic Press,1981.

        [3]LIN Zhengyan,LU Chuanrong,ZHANG Lixin.Property of trajectory of Gauss processes[M].Beijing:Science Press,2001.

        [4]CSAKI E,CSORGO M,LIN Zhengyan,et al.On infinite series of independent Ornstein-Uhlenbeck processes[J].Stochastic Process and their Applications,1991,39(1):25-44.

        [5]CSAKIE,CSORGO M.Inequalities for increments of stochastic processes and moduli of continuity[J].Annals of Probability,1992,20(2):1 031-1 052.

        [6]ZHANG Jiesong,YANG Lifeng.More result on the tail probability of Brown motion[J].Journal of Fuyang Teachers College:Natural Science,2008,25(1):29-31.

        [7]MIAO Baiqi,LU Jun.A Note on the proof of the modulus of continuity of Wiener process[J].Journal of Huaibei Coal Industry Teachers College:Natural Science,1992,13(2):1-3.

        關(guān)于隨機(jī)過程連續(xù)模定理證明的一個(gè)注記

        張節(jié)松

        (淮北師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,安徽 淮北 235000)

        1992年發(fā)表在概率年刊上關(guān)于隨機(jī)過程連續(xù)模及增量一文的證明中,存在一處模糊不清的地方,該漏洞是可以補(bǔ)救的,文章通過分解細(xì)化的辦法給出一個(gè)確定的證明.

        隨機(jī)過程;連續(xù)模;單調(diào)不減

        O 211.4

        A

        2095-0691(2012)02-0015-03

        Recieved date:2011-09-09

        Foundation item:The teaching and research project of Huaibei Normal University(jy09222)

        Biography:ZHANG Jie-song(1981- ),male,native of Qianshan,Anhui,lecturer,master,major in probability limit.

        猜你喜歡
        年刊淮北細(xì)化
        歡迎訂閱2022年刊
        歡迎訂閱2022年刊
        歡迎訂閱2021年刊
        歡迎訂閱2021年刊
        《淮北師范大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡則
        《淮北師范大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡則
        中小企業(yè)重在責(zé)任細(xì)化
        “細(xì)化”市場,賺取百萬財(cái)富
        “住宅全裝修”政策亟需細(xì)化完善
        《淮北枳》
        黄色av三级在线免费观看| 丝袜美腿一区二区三区| 92午夜少妇极品福利无码电影 | 中文字幕久久精品一二三区| 伊人狠狠色丁香婷婷综合| 熟妇人妻中文字幕无码老熟妇| 成年男女免费视频网站| 99热国产在线| 久久精品日韩免费视频| 人妻无码aⅴ中文系列久久免费| 欧美a在线播放| 加勒比东京热久久综合| 懂色av一区二区三区网久久 | 在厨房拨开内裤进入毛片| 国精品人妻无码一区免费视频电影| 亚洲av综合a色av中文| 国内精品伊人久久久久影院对白 | 九九精品国产亚洲av日韩| 国产精品一区二区 尿失禁 | 最新无码国产在线播放| 国产精品不卡无码AV在线播放| 亚洲人av毛片一区二区| 亚洲av成熟国产精品一区二区| 婷婷色精品一区二区激情| 日韩视频在线观看| 欧美成a人片在线观看久| 国产一区二区牛影视| 按摩师玩弄少妇到高潮hd| av网址大全在线播放| 免费人成黄页网站在线一区二区| 日本a级一级淫片免费观看| 日本黄色3级一区二区| 免费av一区二区三区无码| 国模欢欢炮交啪啪150| 狠狠噜天天噜日日噜| 日韩国产欧美| 国产一起色一起爱| 精品熟女视频一区二区三区国产| 福利视频一区二区三区| 蜜臀性色av免费| 看黄网站在线|