亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A Note on the Proof of the M oduli of Continuity for Stochastic Processes

        2012-09-13 01:44:06ZHANGJiesong
        關(guān)鍵詞:年刊淮北細(xì)化

        ZHANG Jie-song

        (School of Mathematical Sciences,Huaibei Normal University,235000,Huaibei,Anhui,China)

        A Note on the Proof of the M oduli of Continuity for Stochastic Processes

        ZHANG Jie-song

        (School of Mathematical Sciences,Huaibei Normal University,235000,Huaibei,Anhui,China)

        Abstract:There exists an ambiguous part in the proof ofmoduli of continuity and increments for stochastic processes in the article which was published on the Annals of Probability in 1992,while,this mistake can be remedied.In this paper,we give a specific proof by the method of decomposing and detailing.

        Key words:stochastic processes;moduli of continuity;monotone nondecreasing

        CLC number:O 211.4Document code:AArticle ID:2095-0691(2012)02-0015-03

        1 Introducion

        In many papers and monographs referring to the moduli of continuity of Wiener process,O-U process,fractional Wiener process etc.(e.g.[1-4]),a similar ambiguous conclusion is used.In other words,it is a mistake for us to consider that Ahis monotone nondecreasing.In fact,when h1≥h2,there is no inclusion between the region(0≤s≤1-h(huán)1,0≤t≤h1)and the region(0≤s≤1-h(huán)2,0≤t≤h2),so the function Ahwith respect to h may not be monotone nondecreasing.Here,we give a proof which does not use the ambiguous conclusion.

        2 Some prelim inaries

        Let B be a separable Banach space with norm‖‖ and let{Г(t),-∞<t<∞}be a stochastic process with values in B.Let P be the probability measure generated byΓ(·).Assume thatΓ(·)is P-almost surely continuous with respect to‖‖and that,with some t0,x*,h0,for|t|≤t0,0<x*≤x and 0<h≤h0,there exists a monotone nondecreasing functionσ(h)such that

        with some K,γ,β>0.

        Lemma 1[5]Assume that the stochastic process{Γ(t),-∞<t<∞}is as mentioned above and σ (·)is a regularly varying function at zero with a positive exponentα,namely

        where L(·)is a slowly varying function at zero,that is,it is measurable,positive and

        Then for anyε>0,there exist C=C(ε)>0 and 0<h0(ε)<1 such thatfor every x≥x*and 0<h≤h0(ε).

        The inequality(1)can be extended to any finite interval(T1,T2),-∞<T1<T2<∞,as follows.

        Lemma 2[5]Under the conditions of lemma 1,we have

        Remark The method of dealing with the difficulty caused by the generalization from the interval(0,1) to any finite interval(T1,T2)can refer to[6].

        3 M oduli of continuity for stochastic processes

        Theorem 1[5]Let{Γ(t),-∞<t<∞}and σ(h)be as in lemma 1.Then for any -∞<T1<T2<∞,we have

        Proof Without loss of generality,we take T1=0 and T2=1.Now we let

        and apply the inequality of(1)with x=(1+ε)2/β[(1/γ)log(1/h)]1/β>0.Then

        ChooseΛ>1/εand let h=hn=n-Λ,then

        and it follows from the Borel-Cantelli lemma that

        for allε>0.

        Because of(3),on considering now the case of hn+1<h<hn,and by letting Δhn=hn-h(huán)n+1,similar to [7],we have

        Obviously,I1≤Ahn+1,while,

        Hence

        By the definition of hn,when n is sufficiently large,

        Apply the equality of(2)with x=(1+ε)2/β[(1/γ)log(1/Δhn)]1/β,ε>0,and taking T1=0,T2=2,then

        And it follows from the Borel-Cantelli lemma that

        Consequently,by the inequalities of(4),(5)and(6),we obtain

        for allε>0,where the last inequality follows from the fact that for any given δ>0,when n is sufficiently large,then

        and

        This completes the proof of theorem 1.

        [1]LIN Zhengyan,LU Chuanrong,SU Zhonggen.Foundation of the theory of probability limit[M].Beijing:Higher Education Press,1999.

        [2]CSORGO M,REVESZ P.Strong approximations in probalility and stastistics[M].New York:Academic Press,1981.

        [3]LIN Zhengyan,LU Chuanrong,ZHANG Lixin.Property of trajectory of Gauss processes[M].Beijing:Science Press,2001.

        [4]CSAKI E,CSORGO M,LIN Zhengyan,et al.On infinite series of independent Ornstein-Uhlenbeck processes[J].Stochastic Process and their Applications,1991,39(1):25-44.

        [5]CSAKIE,CSORGO M.Inequalities for increments of stochastic processes and moduli of continuity[J].Annals of Probability,1992,20(2):1 031-1 052.

        [6]ZHANG Jiesong,YANG Lifeng.More result on the tail probability of Brown motion[J].Journal of Fuyang Teachers College:Natural Science,2008,25(1):29-31.

        [7]MIAO Baiqi,LU Jun.A Note on the proof of the modulus of continuity of Wiener process[J].Journal of Huaibei Coal Industry Teachers College:Natural Science,1992,13(2):1-3.

        關(guān)于隨機(jī)過程連續(xù)模定理證明的一個(gè)注記

        張節(jié)松

        (淮北師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,安徽 淮北 235000)

        1992年發(fā)表在概率年刊上關(guān)于隨機(jī)過程連續(xù)模及增量一文的證明中,存在一處模糊不清的地方,該漏洞是可以補(bǔ)救的,文章通過分解細(xì)化的辦法給出一個(gè)確定的證明.

        隨機(jī)過程;連續(xù)模;單調(diào)不減

        O 211.4

        A

        2095-0691(2012)02-0015-03

        Recieved date:2011-09-09

        Foundation item:The teaching and research project of Huaibei Normal University(jy09222)

        Biography:ZHANG Jie-song(1981- ),male,native of Qianshan,Anhui,lecturer,master,major in probability limit.

        猜你喜歡
        年刊淮北細(xì)化
        歡迎訂閱2022年刊
        歡迎訂閱2022年刊
        歡迎訂閱2021年刊
        歡迎訂閱2021年刊
        《淮北師范大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡則
        《淮北師范大學(xué)學(xué)報(bào)》(自然科學(xué)版)征稿簡則
        中小企業(yè)重在責(zé)任細(xì)化
        “細(xì)化”市場,賺取百萬財(cái)富
        “住宅全裝修”政策亟需細(xì)化完善
        《淮北枳》
        欧美在线成人午夜网站| 国产极品视觉盛宴| 97人妻精品一区二区三区| 国产精品内射后入合集| 自慰高潮网站在线观看| 国产在线一区二区三区香蕉| 亚洲成a人v欧美综合天堂| 无码国产午夜福利片在线观看| 一本大道久久东京热无码av| 中文字幕久久国产精品| 欧美熟妇另类久久久久久多毛 | 久久精品国产丝袜| 国产日产免费在线视频| 亚洲高清在线免费视频| 曰韩人妻无码一区二区三区综合部| 夜夜综合网| 亚洲av第二区国产精品| 无码少妇丰满熟妇一区二区 | 久久精品视频在线看99| 人妻无码人妻有码不卡| 成人av一区二区三区四区| 97精品人人妻人人| 黄色成人网站免费无码av| 蜜桃av无码免费看永久| 开心久久婷婷综合中文字幕| 中文字幕日韩一区二区不卡| 国产在线高清视频| 蜜桃精品国产一区二区三区| 久久久精品午夜免费不卡| 无码a∨高潮抽搐流白浆| 日韩精品久久久中文字幕人妻| 久久人妻少妇嫩草av蜜桃| 日韩av无码中文无码电影| 无码人妻一区二区三区在线视频 | 国产 国语对白 露脸| 伊人色综合九久久天天蜜桃| 亚洲一区二区三区激情在线观看| 狠狠色综合7777久夜色撩人ⅰ| 久久综合色鬼| 亚洲情精品中文字幕99在线| av无码国产精品色午夜|