付 博,袁希鋼,陳淑勇,劉伯潭,余國(guó)琮
氣液界面?zhèn)髻|(zhì)過(guò)程Rayleigh對(duì)流模擬的格子Boltzmann方法
付 博,袁希鋼,陳淑勇,劉伯潭,余國(guó)琮
(天津大學(xué)化工學(xué)院化學(xué)工程聯(lián)合國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072)
濃度梯度導(dǎo)致的Rayleigh對(duì)流是一種通常在傳質(zhì)過(guò)程中觀察到的界面現(xiàn)象.為了模擬乙醇吸收CO2氣液傳質(zhì)過(guò)程中界面?zhèn)髻|(zhì)引發(fā)的Rayleigh對(duì)流現(xiàn)象,提出了描述界面擾動(dòng)的隨機(jī)擾動(dòng)模型,并建立了帶有雙分布模型的二維格子Boltzmann方法(LBM).模擬二維液相Rayleigh對(duì)流過(guò)程中,假設(shè)界面上CO2濃度為常數(shù).通過(guò)模擬研究,確定了隨機(jī)擾動(dòng)模型的2個(gè)參數(shù):局部擾動(dòng)概率P和濃度擾動(dòng)大小ρD.模擬結(jié)果表明,當(dāng)0<ρD≤10-9,kg/m3、10-6≤P≤10-1時(shí),平均液相傳質(zhì)系數(shù)存在一個(gè)穩(wěn)定值:(1.09±0.02)×10-5,m/s.通過(guò)考察濃度分布結(jié)構(gòu),分析了Rayleigh對(duì)流的時(shí)空演化過(guò)程.根據(jù)模擬結(jié)果定義并計(jì)算了傳質(zhì)增強(qiáng)因子,其證明了Rayleigh對(duì)流能夠有效地強(qiáng)化界面?zhèn)髻|(zhì).
Rayleigh對(duì)流;格子Boltzmann方法;界面?zhèn)髻|(zhì);液相傳質(zhì)系數(shù);傳質(zhì)增強(qiáng)因子
在相際傳質(zhì)過(guò)程中,由物質(zhì)在相界面上的傳遞而導(dǎo)致的濃度梯度會(huì)產(chǎn)生密度梯度,若密度梯度與重力作用方向相反,則稱之為界面Rayleigh不穩(wěn)定.此時(shí)若遇擾動(dòng),則會(huì)出現(xiàn)界面失穩(wěn)進(jìn)而引發(fā)的界面流體流動(dòng)現(xiàn)象,稱之為Rayleigh對(duì)流.Rayleigh對(duì)流的發(fā)生對(duì)界面?zhèn)髻|(zhì)有顯著影響[1],因而,研究Rayleigh對(duì)流對(duì)精餾、吸收等化工過(guò)程具有重要的意義.以往的實(shí)驗(yàn)研究和理論研究主要集中在采用光學(xué)測(cè)試手段如投影法、紋影法、激光全息干涉法等觀察Rayleigh對(duì)流結(jié)構(gòu)[2-4]、Rayleigh對(duì)流開始的不穩(wěn)定性分析[5-6]、傳質(zhì)速率的測(cè)量[7]以及傳質(zhì)系數(shù)關(guān)聯(lián)式的建立[8].其中實(shí)驗(yàn)研究只能得到傳質(zhì)過(guò)程的宏觀信息,而不能得到界面?zhèn)髻|(zhì)的微觀信息;理論研究雖然能夠預(yù)測(cè)傳質(zhì)過(guò)程中Rayleigh對(duì)流發(fā)生時(shí)的臨界點(diǎn),但不能給出Rayleigh對(duì)流發(fā)生后的具體傳質(zhì)信息.因此,有必要對(duì)Rayleigh對(duì)流發(fā)生后詳細(xì)的流動(dòng)及傳質(zhì)情況進(jìn)行研究.隨著計(jì)算機(jī)技術(shù)的發(fā)展,數(shù)值模擬為更好地考察Rayleigh對(duì)流及其在強(qiáng)化界面?zhèn)髻|(zhì)中的作用提供了更多可能性,研究結(jié)果將有助于了解Rayleigh對(duì)流強(qiáng)化界面?zhèn)髻|(zhì)的機(jī)理.格子Boltzmann方法(lattice Boltzmann method,LBM)作為一種新興的數(shù)值計(jì)算方法,由于其在介觀尺度上具有物理?xiàng)l件清晰、邊界處理容易實(shí)現(xiàn)、計(jì)算效率和數(shù)值精度高等優(yōu)勢(shì),已經(jīng)被成功地應(yīng)用于Rayleigh對(duì)流的數(shù)值模擬中.在氣液傳質(zhì)過(guò)程中,以往針對(duì)液相Rayleigh對(duì)流的格子Boltzmann模擬通常假設(shè)界面存在一個(gè)或多個(gè)始終存在、位置固定并且濃度恒定的高濃度區(qū)域[9-10].但是,在真實(shí)界面?zhèn)髻|(zhì)過(guò)程中,界面Rayleigh不穩(wěn)定失穩(wěn)引發(fā)的Rayleigh對(duì)流是復(fù)雜的,界面會(huì)出現(xiàn)來(lái)自各個(gè)方面的隨機(jī)擾動(dòng),如局部濃度不均勻、物理震動(dòng)甚至界面的分子熱運(yùn)動(dòng)等.因此有必要提出一個(gè)求解真實(shí)界面?zhèn)髻|(zhì)過(guò)程中Rayleigh對(duì)流的格子Boltzmann方法.
筆者首先引入一種隨機(jī)擾動(dòng)模型來(lái)描述界面濃度擾動(dòng)過(guò)程,以乙醇吸收CO2界面?zhèn)髻|(zhì)為對(duì)象,采用帶有雙分布模型的格子Boltzmann方法模擬液相中二維非穩(wěn)態(tài)Rayleigh對(duì)流過(guò)程.通過(guò)模擬,分析和計(jì)算了不同模型參數(shù)下Rayleigh對(duì)流的特征:液相傳質(zhì)系數(shù)和濃度分布,通過(guò)傳質(zhì)增強(qiáng)因子考察了Rayleigh對(duì)流對(duì)界面?zhèn)髻|(zhì)的影響.
1.1 雙分布模型
本文采用雙分布模型[11]建立了界面?zhèn)髻|(zhì)引發(fā)Rayleigh對(duì)流現(xiàn)象模擬的格子Boltzmann方法.該模型假設(shè)雙組分流體由溶劑A和溶質(zhì)B組成,且B的含量遠(yuǎn)小于A.雙分布模型包含2個(gè)粒子分布函數(shù)fAi和gBi,分別用于求解流場(chǎng)和濃度場(chǎng).無(wú)外力項(xiàng)時(shí),基于如圖1所示D2Q9格子模型[12],則溶劑和溶質(zhì)的LBGK演化方程[13]為
式中:ci為離散速度,m/s;i為基于D2Q9模型的粒子運(yùn)動(dòng)方向,i=1,··,9;Δt為單位時(shí)間步長(zhǎng),s;τ為無(wú)因次松弛時(shí)間;fAi(x,t)和gBi(x,t)分別表示t時(shí)刻在x位置沿著i方向的溶劑A和溶質(zhì)B的粒子分布函數(shù).
圖1 二維九速模型(D2Q9模型)Fig.1 Two-dimensional nine-velocity model(D2Q9,model)
溶劑A和溶質(zhì)B的平衡分布函數(shù)[11]為
式中:c為格子速度,c=Δx/Δt,一般取為1;Δx為單位網(wǎng)格步長(zhǎng),m;uA為宏觀速度,m/s;ρ′A為宏觀密度,kg/m3;ρB為溶液中溶質(zhì)的濃度,kg/m3;ωi為權(quán)重系數(shù),ω1=ω2=ω3=ω4=1/9,ω5=ω6=ω7=ω8= 1/36,ω9=4/9.
通過(guò)粒子分布函數(shù)可以計(jì)算流場(chǎng)的宏觀變量(密度、速度和濃度),即
液體的黏度和溶質(zhì)在溶劑中的擴(kuò)散系數(shù)表達(dá)式[11]為
式中:ν為液體的運(yùn)動(dòng)黏度,m2/s;D為溶質(zhì)在溶劑中的擴(kuò)散系數(shù),m2/s.
1.2 外力處理
本文引入Boussinesq近似[14],即假設(shè)除密度外流場(chǎng)的其他物性(擴(kuò)散系數(shù)、黏度等)為常數(shù),因而體系所受的外力僅考慮密度變化導(dǎo)致的體積力.本文假設(shè)流體密度是濃度的線性函數(shù),因此傳質(zhì)導(dǎo)致的濃度的變化是流體所受外部力(即重力)的唯一來(lái)源.類似于溫度梯度導(dǎo)致的Rayleigh-Bénard對(duì)流中體積力處理方法[14],則Rayleigh對(duì)流中體積力可近似表示為
式中:F為Rayleigh對(duì)流中單位體積的體積力,N/m3;g為重力加速度,m/s2;ρ0為溶液的初始濃度,kg/m3;Δρ′為純?nèi)軇┡c飽和溶液之間的密度差,kg/m3;ΔρB為純?nèi)苜|(zhì)與飽和溶液之間的濃度差,kg/m3.
通過(guò)修正平衡分布函數(shù)中的變量速度uA來(lái)體現(xiàn)外力F對(duì)流體的影響.則平衡分布函數(shù)中的速度和流場(chǎng)速度將分別被修正為u*和u[15],即
1.3 邊界處理
對(duì)于流場(chǎng)和濃度場(chǎng),左右邊界均采用周期邊界;下邊界均采用反彈邊界.對(duì)于上邊界,濃度場(chǎng)采用恒濃度邊界[16];流場(chǎng)采用鏡面對(duì)稱邊界[17].其中鏡面對(duì)稱邊界用于處理無(wú)變形氣液自由界面時(shí)能夠保證水平速度沿豎直方向上的梯度為0,考慮流場(chǎng)被均勻網(wǎng)格覆蓋,其具體做法是假設(shè)上邊界外還有一層虛擬結(jié)點(diǎn),令虛擬結(jié)點(diǎn)的分布函數(shù)與上邊界結(jié)點(diǎn)的分布函數(shù)沿二者的中心線對(duì)稱相等.
1.4 隨機(jī)擾動(dòng)模型
在界面Rayleigh不穩(wěn)定條件下,一旦有界面擾動(dòng),界面會(huì)產(chǎn)生Rayleigh對(duì)流.界面擾動(dòng)可能是任何隨機(jī)事件,如機(jī)械振動(dòng)、分子的熱運(yùn)動(dòng)導(dǎo)致的局部濃度擾動(dòng)等,因而具有隨機(jī)特征.對(duì)于在靜止氣液接觸系統(tǒng)的等溫傳質(zhì)過(guò)程,可以認(rèn)為擾動(dòng)僅僅為濃度擾動(dòng).因此這里提出了基于濃度擾動(dòng)的隨機(jī)擾動(dòng)模型來(lái)模型化界面擾動(dòng)過(guò)程,該模型采用2個(gè)參數(shù)描述其隨機(jī)特征:局部擾動(dòng)概率P表示液相界面上每個(gè)結(jié)點(diǎn)出現(xiàn)濃度擾動(dòng)的概率;因擾動(dòng)導(dǎo)致的濃度凈增量ρD,即濃度擾動(dòng)大小(設(shè)ρD遠(yuǎn)小于界面濃度ρI).在LBM模擬中液相界面上每個(gè)結(jié)點(diǎn)的濃度0Ιρ表達(dá)式為
式中Βρδ為濃度擾動(dòng)增量.計(jì)算中每個(gè)結(jié)點(diǎn)均產(chǎn)生一個(gè)隨機(jī)數(shù),如果該隨機(jī)數(shù)小于P,則Βρδ=±ρD,否則δρΒ=0,且δρΒ的時(shí)均值為0.
模擬對(duì)象為乙醇溶液吸收CO2過(guò)程中,由于CO2通過(guò)界面向液體乙醇中擴(kuò)散所導(dǎo)致的Rayleigh對(duì)流現(xiàn)象.二維計(jì)算區(qū)域如圖2所示,為靜止的液體乙醇,其高為H、寬為L(zhǎng),傳質(zhì)開始前液相為純乙醇.計(jì)算區(qū)域的上邊界為氣液自由界面,CO2通過(guò)上邊界進(jìn)入液相,下邊界為可視為剛性邊壁.乙醇吸收二氧化碳的氣液傳質(zhì)過(guò)程是Rayleigh不穩(wěn)定的和Marangoni穩(wěn)定的[4].
圖2 Rayleigh對(duì)流計(jì)算區(qū)域示意Fig.2 Computational domain of Rayleigh convection
模擬基于以下2個(gè)假設(shè):①液膜控制傳質(zhì)過(guò)程,界面上氣液兩相達(dá)到平衡狀態(tài),即界面濃度ρI可視為恒定值[18],取為4.70,kg/m3;②忽略氣液傳質(zhì)過(guò)程中的熱效應(yīng),且自由界面沒(méi)有變形.模擬初始條件:液相主體中各結(jié)點(diǎn)速度均為零,CO2濃度為零.取單位網(wǎng)格步長(zhǎng)為5×10-5,m,此時(shí)可以獲得可接受的準(zhǔn)確結(jié)果.其中在298.15,K、101.325,kPa條件下,純乙醇及其飽和CO2溶液物性[4,19-20]見表1.表中:0ρ′為純乙醇密度;Bρ?為界面平衡濃度;μ0為純乙醇的動(dòng)力黏度.
表1 在298.15,K、101.325,kPa條件下純乙醇及其飽和二氧化碳溶液物性Tab.1 Physical properties of ethanol and CO2saturated solution at 298.15,K and 101.325,kPa
2.1 模型參數(shù)的確定
傳質(zhì)系數(shù)是反映傳質(zhì)能力的重要基礎(chǔ)數(shù)據(jù),可以通過(guò)考察模型參數(shù)對(duì)傳質(zhì)系數(shù)的影響來(lái)確定P和ρD的合適取值區(qū)間.取計(jì)算區(qū)域高H=5,mm、寬L= 5,mm,網(wǎng)格劃分為100×100.
t時(shí)間內(nèi)平均液相傳質(zhì)系數(shù)kavg,t(m/s)可表示為
式中:V為溶液體積,m3;AI為界面面積,m2;ρt為t時(shí)刻溶液中溶質(zhì)的平均濃度,kg/m3.
圖3給出了不同局部擾動(dòng)概率P時(shí)t=300,s內(nèi)平均液相傳質(zhì)系數(shù)kavg隨濃度擾動(dòng)大小Dρ的變化關(guān)系.
圖3 不同P時(shí)kavg隨ρD的變化關(guān)系Fig.3 Variations of kavgwith ρDfor different P
從圖3中可以看出,給定P,kavg隨著ρD的減小呈現(xiàn)出先減小后趨于穩(wěn)定的變化趨勢(shì):當(dāng)ρD>10-9kg/m3時(shí),kavg隨著ρD的減小而減??;當(dāng)0<ρD≤10-9kg/m3時(shí),kavg與ρD的取值基本無(wú)關(guān).在0<ρD≤10-9kg/m3的條件下,當(dāng)10-6≤P≤10-1時(shí),kavg存在一個(gè)穩(wěn)定值,為(1.09±0.02)×10-5m/s,則相應(yīng)的平均液相傳質(zhì)通量為(5.12±0.094)×10-5kg/(m2·s),與文獻(xiàn)[21]實(shí)驗(yàn)測(cè)量結(jié)果(300,s內(nèi)平均液相傳質(zhì)通量約為6×10-5kg/(m2·s))吻合較好,從而說(shuō)明了模型參數(shù)P和ρD取值范圍的合理性.
2.2 Rayleigh對(duì)流結(jié)構(gòu)
取計(jì)算區(qū)域高H=10,mm、寬L=20,mm,網(wǎng)格劃分為200×400.圖4給出了50,s、55,s、60,s和65,s時(shí)不同模型參數(shù)下溶質(zhì)的濃度分布.當(dāng)P=0.1、ρD= 10-12,kg/m3時(shí),從圖4(a)~(d)可以觀察到Rayleigh對(duì)流的時(shí)空演化過(guò)程:在有界面擾動(dòng)條件下,溶質(zhì)首先在近界面發(fā)生擴(kuò)散,約50,s左右,界面由于Rayleigh不穩(wěn)定開始發(fā)生變形(見圖4(a));55,s時(shí)界面對(duì)流已經(jīng)在多個(gè)Rayleigh不穩(wěn)定區(qū)域開始發(fā)生(見圖4(b));隨后對(duì)流發(fā)展成羽狀對(duì)流結(jié)構(gòu),界面處高濃度液體以羽狀對(duì)流結(jié)構(gòu)逐步向下發(fā)展至液相主體(見圖4(c)和(d)).這種Rayleigh對(duì)流的時(shí)空演化特征同實(shí)驗(yàn)觀察結(jié)果基本一致[2-4].
圖4 50,s、55,s、60,s和65,s時(shí)不同模型參數(shù)下溶質(zhì)的濃度分布Fig.4 Transient contours of solute concentration for different model parameters after 50,s,55,s,60,s,65,s
對(duì)比圖4(d)和圖4(e)可知,當(dāng)局部擾動(dòng)概率P一定時(shí),羽狀對(duì)流結(jié)構(gòu)的數(shù)量、大小及產(chǎn)生位置與濃度擾動(dòng)大小ρD基本無(wú)關(guān).對(duì)比圖4(e)和圖4(f)可知,當(dāng)ρD一定時(shí),P對(duì)羽狀對(duì)流結(jié)構(gòu)的產(chǎn)生位置有一定的影響,但對(duì)其數(shù)量及大小基本無(wú)影響.
2.3 傳質(zhì)增強(qiáng)因子
發(fā)生Rayleigh對(duì)流時(shí),液相傳質(zhì)系數(shù)比只依靠擴(kuò)散傳質(zhì)時(shí)大,因此引出傳質(zhì)增強(qiáng)因子這一概念,將其定義為存在Rayleigh對(duì)流時(shí)的液相傳質(zhì)系數(shù)與只有擴(kuò)散傳質(zhì)存在時(shí)(由滲透理論計(jì)算)的液相傳質(zhì)系數(shù)之比[8].
根據(jù)模擬獲得的濃度場(chǎng),t時(shí)刻瞬時(shí)液相傳質(zhì)系數(shù)kins,t(m/s)計(jì)算式為
式中ΔT為時(shí)間間隔,取值為0.1,s.
由滲透理論預(yù)測(cè)的瞬時(shí)液相傳質(zhì)系數(shù)k0(m/s)ins,t可表示為
則瞬時(shí)傳質(zhì)增強(qiáng)因子可表示為
取計(jì)算區(qū)域高H=10,mm、寬L=20,mm,網(wǎng)格劃分為200×400.圖5給出了P=0.1、ρD=10-12,kg/m3條件下瞬時(shí)傳質(zhì)增強(qiáng)因子Fins隨時(shí)間的變化關(guān)系.由圖5可知,瞬時(shí)傳質(zhì)增強(qiáng)因子介于1~7之間,因此Rayleigh對(duì)流可以大大提高氣液傳質(zhì)速率.
圖5 P=0.1、ρD=10-12,kg/m3條件下Fins隨時(shí)間t變化關(guān)系Fig.5 Variation of Finswith time t at P=0.1,and ρD=10-12,kg/m3
通過(guò)引入隨機(jī)擾動(dòng)模型,建立了模擬Rayleigh對(duì)流的帶有雙分布模型的二維格子Boltzmann方法.運(yùn)用該方法對(duì)靜止乙醇吸收CO2傳質(zhì)過(guò)程中液相Rayleigh對(duì)流現(xiàn)象進(jìn)行模擬,結(jié)果發(fā)現(xiàn),300,s內(nèi)平均液相傳質(zhì)系數(shù)kavg隨著ρD的減小呈現(xiàn)出先減小后趨于穩(wěn)定的變化趨勢(shì);當(dāng)0<ρD≤10-9,kg/m3、10-6≤P≤10-1時(shí),kavg存在一個(gè)穩(wěn)定值(1.09± 0.02)×10-5,m/s.通過(guò)考察濃度分布結(jié)構(gòu),分析了Rayleigh對(duì)流的時(shí)空演化過(guò)程.另外,傳質(zhì)增強(qiáng)因子的模擬結(jié)果證明了Rayleigh對(duì)流能夠有效地提高傳質(zhì)速率.因此,建立的LBM方法可有效模擬界面?zhèn)髻|(zhì)引發(fā)的Rayleigh對(duì)流現(xiàn)象,有助于加強(qiáng)對(duì)真實(shí)氣液傳質(zhì)過(guò)程中Rayleigh對(duì)流的理解,為進(jìn)一步探討強(qiáng)化界面?zhèn)髻|(zhì)的機(jī)理和途徑提供幫助.
[1] Grahn A. Two-dimensional numerical simulations of Marangoni-Bénard instabilities during liquid-liquid mass transfer in a vertical gap[J]. Chemical Engineering Science,2006,61(11):3586-3592.
[2] 沙 勇,李樟云,林芬芬,等. 氣液傳質(zhì)界面湍動(dòng)現(xiàn)象投影觀察[J]. 化工學(xué)報(bào),2010,61(4):844-847. Sha Yong,Li Zhangyun,Lin Fenfen,et al. Shadowgraph observation on interfacial turbulence phenomena in gas-liquid mass transfer[J]. CIESC Journal,2010,61(4):844-847(in Chinese).
[3] Barbosa J R,Ortolan M A. Experimental and theoretical analysis of refrigerant absorption in lubricant oil[J]. HVAC and R Research,2008,14(1):141-158.
[4] Okhotsimskiis A,Hozawa M. Schlieren visualization of natural convection in binary gas-liquid systems[J]. Chemical Engineering Science,1998,53(14):2547-2573.
[5] Sun Z F. Onset of Rayleigh-Bénard-Marangoni convection with time-dependent nonlinear concentration profiles[J]. Chemical Engineering Science,2012,68 (1):579-594.
[6] Tan K K,Tey B T,Tan Y W. Onset of natural convection in gas-gas system induced by bottom-up transient mass diffusion[J]. Engineering Applications of Computational Fluid Mechanics,2010,4(4):475-482.
[7] 陳 煒. 氣液界面Rayleigh-Bénard-Marangoni對(duì)流現(xiàn)象實(shí)驗(yàn)測(cè)量及傳質(zhì)研究[D]. 天津:天津大學(xué)化工學(xué)院,2010. Chen Wei. Experimental Measurement of Gas-Liquid Interfacial Rayleigh-Bénard-Marangoni Convection and Mass Transfer[D]. Tianjin:School of Chemical Engineering,Tianjin University,2010 (in Chinese).
[8] Sun Z F,Yu K T,Wang S Y,et al. Absorption anddesorption of carbon dioxide into and from organic solvents:Effect of Rayleigh and Marangoni instability[J]. Ind Eng Chem Res,2002,41(7):1905-1913.
[9] 付 博,袁希鋼,陳淑勇,等. Rayleigh對(duì)流及其對(duì)界面?zhèn)髻|(zhì)影響模擬的格子Boltzmann方法[J]. 化工學(xué)報(bào),2011,62(11):2993-3000. Fu Bo,Yuan Xigang,Chen Shuyong,et al. Rayleigh convection and its effect on interfacial mass transfer by lattice Boltzmann simulation[J]. CIESC Journal,2011,62(11):2993-3000(in Chinese).
[10] Fu Bo,Yuan Xigang,Liu Botan,et al. Characterization of Rayleigh convection in interfacial mass transfer by lattice Boltzmann simulation and experimental verification[J]. Chinese Journal of Chemical Engineering,2011,19(5):845-854.
[11] Inamuro T,Yoshino M,Inoue H,et al. A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem[J]. Journal of Computational Physics,2002,179(1):201-215.
[12] Qian Y H,D'Humieres D,Lallemand P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters,1992,17(6):479-484.
[13] Bhatnagar P L,Gross E P,Krook M. A model for collision processes in gases. Ⅰ. small amplitude processes in charged and neutral one-component systems[J]. Physical Review,1954,94(3):511-525.
[14] Shan X W. Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method[J]. Physical Review E,1997,55(3):2780-2788.
[15] Buick J M,Greated C A. Gravity in a lattice Boltzmann model[J]. Physical Review E,2000,61(5):5307-5320.
[16] Sukop M C,Thorne D T Jr. Lattice Boltzmann Modeling:An Introduction for Geoscientists and Engineers[M]. Netherlands:Springer,2006.
[17] Shi Y,Zhao T S,Guo Z L. Finite difference-based lattice Boltzmann simulation of natural convection heat transfer in a horizontal concentric annulus[J]. Computers and Fluids,2006,35:1-15.
[18] Tan K K,Thorpe R B. The onset of convection induced by buoyancy during gas diffusion in deep fluids[J]. Chemical Engieering Science,1999,54:4179-4187.
[19] Arce A,Arce A Jr,Rodil E,et al. Density,refractive index,and speed of sound for 2-ethoxy-2-methylbutane+ ethanol+water at 298. 15,K[J]. Journal of Chemical and Engineering Data,2000,45(4):536-539.
[20] Takahashi M,Kobayashi Y. Diffusion coefficients and solubilities of carbon dioxide in binary mixed solvents[J]. Journal of Chemical and Engineering Data,1982,27(3):328-331.
[21] 林芬芬. 界面湍動(dòng)現(xiàn)象的實(shí)驗(yàn)研究[D]. 廈門:廈門大學(xué)化學(xué)化工學(xué)院,2009. Lin Fenfen. Experimental Study on the Interfacial Turbulence Phenomena[D]. Xiamen:College of Chemistry and Chemical Engineering,Xiamen University,2009(in Chinese).
Simulation of Rayleigh Convection in Gas-Liquid Interfacial Mass Transfer Process by Lattice Boltzmann Method
FU Bo,YUAN Xi-gang,CHEN Shu-yong,LIU Bo-tan,YU Kuo-tsung
(State Key Laboratory of Chemical Engineering,School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China)
Concentration gradient driven Rayleigh convection is an interfacial phenomenon usually observed in mass transfer processes. A random perturbation model characterizing interfacial disturbance was proposed and a twodimensional lattice Boltzmann method(LBM)with a double distribution model was implemented for simulating the interfacial mass transfer induced Rayleigh convection in gas-liquid mass transfer process of CO2absorption into liquid ethanol. In the simulation of the two-dimensional liquid-phase Rayleigh convection,CO2concentration at the interface was assumed to be constant. Through simulation,two parameters for the random perturbation model—the local perturbation possibility P and the perturbation magnitude ρD—were identified. The simulated results show that an average liquid-phase mass transfer coefficient has a stable value of(1.09±0.02)×10-5,m/s with the parameter values of 0<ρD≤10-9kg/m3and 10-6≤P≤10-1. Through investigating concentration contour patterns,the temporal-spatial evolution of the convection was analyzed. A mass transfer enhancement factor was defined and evaluated based on the simulated results,and the interfacial mass transfer was shown to be effectively enhanced by the Rayleigh convection.
Rayleigh convection;lattice Boltzmann method(LBM);interfacial mass transfer;liquid-phase mass transfer coefficient;mass transfer enhancement factor
TQ021.4
A
0493-2137(2012)07-0585-06
2012-01-14;
2012-04-19.
國(guó)家自然科學(xué)基金資助項(xiàng)目(20736005).
付 博(1984— ),男,博士研究生,fubo@tju.edu.cn.
袁希鋼,yuanxg@tju.edu.cn.