楊少宗,柳新紅,趙樹(shù)堂,王敏杰,盧孟柱*
(1 中國(guó)林業(yè)科學(xué)研究院林業(yè)研究所 國(guó)家林業(yè)局林木培育重點(diǎn)實(shí)驗(yàn)室,北京 100091;2 浙江省林業(yè)科學(xué)研究院,杭州 310023)
通過(guò)RNAi技術(shù)抑制楊樹(shù)c3h基因表達(dá)提高糖轉(zhuǎn)化效率
楊少宗1,2,柳新紅2,趙樹(shù)堂1,王敏杰1,盧孟柱1*
(1 中國(guó)林業(yè)科學(xué)研究院林業(yè)研究所 國(guó)家林業(yè)局林木培育重點(diǎn)實(shí)驗(yàn)室,北京 100091;2 浙江省林業(yè)科學(xué)研究院,杭州 310023)
利用克隆得到的毛白楊c3h1基因構(gòu)建其RNAi抑制表達(dá)載體,通過(guò)根癌農(nóng)桿菌介導(dǎo)的葉盤(pán)法轉(zhuǎn)化銀腺楊無(wú)性系84 K,Realtime PCR檢測(cè)表明其轉(zhuǎn)基因株系323、325和322中c3h1基因表達(dá)量較野生型植株分別下調(diào)89.04%、82.22%和68.38%;莖橫切片組化染色和顯微結(jié)構(gòu)觀察表明轉(zhuǎn)基因植株木質(zhì)部發(fā)育和木質(zhì)素沉積方式發(fā)生了改變;木質(zhì)素、纖維素含量測(cè)定及苯酚—硫酸法總糖含量與HPLC法可溶性總糖和單糖含量檢測(cè)結(jié)果表明:轉(zhuǎn)基因植株木質(zhì)素含量平均降低23.00%,最高可達(dá)39.71%;酸前處理效率最高提高了41.39%;未經(jīng)酸處理直接酶解的糖化效率是對(duì)照植株的2.34 ~ 2.72倍,322株系和323株系比對(duì)照植株經(jīng)酸前處理后再酶解的糖化效率高出81.18%和375.53%。
RNA干擾;楊樹(shù);c3h;木質(zhì)素;糖轉(zhuǎn)化效率
隨著人們對(duì)環(huán)境質(zhì)量和生活品質(zhì)的關(guān)注以及保障能源安全的需求,生物質(zhì)能源越來(lái)越受到公眾和科學(xué)界的重視[1~3]。生物乙醇是全球最廣泛利用的生物燃料[4~7],但由于目前生產(chǎn)生物乙醇的原料主要來(lái)自于谷物等糧食作物[8],在保證糧食安全的前提下解決能源危機(jī)問(wèn)題,必然聚焦于林木生物質(zhì)能源[9~10]。作為木本模式植物的楊樹(shù)由于其分布廣、實(shí)用性強(qiáng)、無(wú)性繁殖能力強(qiáng),加之其速生豐產(chǎn)、遺傳背景清楚等優(yōu)勢(shì),無(wú)可爭(zhēng)議地成為林木生物質(zhì)能源研究的首選[11~13]。林木生物質(zhì)能源發(fā)展面臨的最大技術(shù)難題是木質(zhì)纖維素的水解[14~19],由于木質(zhì)素與纖維素的緊密結(jié)合和對(duì)其保護(hù)作用是導(dǎo)致纖維素資源利用的主要障礙[9,20~22]。降低木質(zhì)素含量或改變其結(jié)構(gòu),將有利于纖維素的解聚和糖轉(zhuǎn)化效率的提高[23~24]。
C3H屬細(xì)胞色素P450類酶,是木質(zhì)素生物合成途徑中苯丙烷途徑的限速酶[25~28],決定木質(zhì)素單體的碳源流向。已報(bào)道的C3H分子量約為58 kDa,隨不同來(lái)源稍有差異[29~30]。Coleman等[31]利用RNAi技術(shù)抑制楊樹(shù)中C3H的表達(dá),結(jié)果木質(zhì)素總含量顯著下降,且伴隨著S/G比值改變。本研究通過(guò)RNAi技術(shù)抑制楊樹(shù)C3H基因表達(dá),獲得低木質(zhì)素含量、高糖轉(zhuǎn)化效率的轉(zhuǎn)基因植株,為生物質(zhì)能源楊樹(shù)的分子遺傳育種和更高效地開(kāi)發(fā)利用林木生物質(zhì)能源提供理論依據(jù)和技術(shù)支持。
1.1 材料
1.1.1 植物材料 毛白楊、84K楊無(wú)菌苗均為中國(guó)林科院林業(yè)所生物技術(shù)實(shí)驗(yàn)室保存并繁殖;大腸桿菌DH5α、農(nóng)桿菌GV3101菌種及pBIRNAi質(zhì)粒均由本實(shí)驗(yàn)室保存。
1.1.2 試劑 限制性內(nèi)切酶及DNA連接酶購(gòu)自NEB公司;DNA凝膠回收試劑盒、質(zhì)粒提取試劑盒購(gòu)自Axygen公司;pGEMa-T Easy Vector System購(gòu)自Promega公司;Taq DNA聚合酶購(gòu)自TaKaRa公司;纖維素酶Celluclast 1.5 L和纖維素二糖酶Novozyme 188購(gòu)自Sigma公司;其它試劑購(gòu)自國(guó)內(nèi)有關(guān)廠家;PCR引物合成及測(cè)序由Introvigen公司完成。
1.2 方法
1.2.1 毛白楊總RNA的提取 取毛白楊形成層材料,按Qiagen RNA提取試劑盒步驟操作提取總RNA。
1.2.2 RT-PCR合成毛白楊cDNA第一鏈 cDNA第一鏈合成按SuperScriptTM III First-Strand Synthesis System for RT-PCR操作步驟進(jìn)行
1.2.3 毛白楊c3h1基因全長(zhǎng)cDNA的克隆 以紫花苜蓿(Medicago sativa cv. regen)木質(zhì)素合成關(guān)鍵酶C3H(香豆酰莽草酸3-羥化酶)基因?yàn)樾畔⑻结?,根?jù)電子克隆的序列拼接結(jié)果設(shè)計(jì)PCR特異引物,以合成的毛白楊cDNA第一鏈為模板進(jìn)行PCR擴(kuò)增反應(yīng),PCR擴(kuò)增的條件為:94℃4 min預(yù)變性,(94℃30 s,55℃30 s,72℃90 s)共30個(gè)循環(huán),72℃延伸7 min。PCR產(chǎn)物膠回收按Axygen AxyPrep DNAgel Extraction Kit 操作說(shuō)明,回收純化的c3h1基因PCR產(chǎn)物亞克隆于pGEM-T Easy載體,質(zhì)粒提取按Axygen AxyPrep Plasmid miniprep Kit操作流程進(jìn)行。
圖1 c3h1基因的RNAi抑制表達(dá)載體pBIRNAi-c3h1R-i-c3h1L示意圖Figure 1 Scheme of pBIRNAi-c3h1R-i-c3h1L vector
1.2.4 c3h1基因RNAi抑制表達(dá)載體的構(gòu)建及轉(zhuǎn)化 根據(jù)已獲得的毛白楊c3h1基因序列和其他物種之間同源基因的多重比對(duì)分析,選取經(jīng)檢索比對(duì)后的354 bp保守序列作為目的片段,擴(kuò)增帶有雙酶切位點(diǎn)(BamH I/Pac I和Sac I/Age I)的正、反向片段分別連至pBIRNAi表達(dá)載體,在含有50 mg/L卡那霉素的LB固體平板上篩選抗性質(zhì)粒,經(jīng)PCR和雙酶切鑒定得到c3h1基因的RNAi抑制表達(dá)載體,命名為pBIRNAi-c3h1 R-i-c3h1L(圖1)。
將該質(zhì)粒用電擊法導(dǎo)入農(nóng)桿菌GV3101菌株的感受態(tài)細(xì)胞,經(jīng)PCR鑒定篩選出轉(zhuǎn)化子。通過(guò)根癌農(nóng)桿菌介導(dǎo)的RNAi抑制表達(dá)載體pBIRNAi-c3h1R-i-c3h1L葉盤(pán)法轉(zhuǎn)化銀腺楊無(wú)性系84K,經(jīng)農(nóng)桿菌的培養(yǎng)、侵染、共培養(yǎng)、選擇培養(yǎng)、繼代選擇培養(yǎng)和生根培養(yǎng),同時(shí)以轉(zhuǎn)化pBIRNAi空載體和未做侵染的葉片外植體作為對(duì)照,獲得卡那霉素抗性植株移栽溫室。
1.2.5 轉(zhuǎn)基因植株的PCR篩選 采用CTAB法提取轉(zhuǎn)基因植株和對(duì)照植株扦插繁殖新萌枝條葉片基因組DNA,以NPT-II基因及正、反向插入片段基因特異引物PCR檢測(cè)。PCR反應(yīng)程序?yàn)椋?4 oC預(yù)變性4 min;(94oC變性30 s,60oC退火30 s,72oC延伸30 s)共30個(gè)循環(huán);72oC延伸5 min。
1.2.6 Realtime PCR檢測(cè)c3h1基因的轉(zhuǎn)錄表達(dá)量變化 取扦插后轉(zhuǎn)基因植株和對(duì)照植株新萌枝條葉間隔期指數(shù)PI = 3 ~ 5間的莖段,以泛素蛋白基因ubiquitin作內(nèi)對(duì)照,定量PCR反應(yīng)按照SYBR? Premix Ex TaqTM(TaKaRa)試劑盒提供的方法進(jìn)行。
1.2.7 轉(zhuǎn)基因植株與對(duì)照植株莖橫切片組化染色 取PI = 3 ~ 5間莖段,冰凍切片法觀察轉(zhuǎn)基因植株與對(duì)照植株經(jīng)Wiesner組化染色的莖橫切顯微結(jié)構(gòu)。
1.2.8 轉(zhuǎn)基因植株與對(duì)照植株木質(zhì)素、纖維素、半纖維素含量測(cè)定 意大利VELP公司FIWE6纖維素測(cè)定儀,利用重量法通過(guò)計(jì)算得到樣品中纖維素、半纖維素和木質(zhì)素的含量。
1.2.9 苯酚-硫酸法測(cè)定轉(zhuǎn)基因植株與對(duì)照植株的可溶性總糖及糖轉(zhuǎn)化效率 樣品具體處理方法(圖2)中B、C、D、E處理組。其中,酶水解所用的酶為纖維素酶Celluclast 1.5 L和纖維素二糖酶Novozyme 188。
1.2.10 HPLC法測(cè)定轉(zhuǎn)基因植株與對(duì)照植株中的單糖含量 樣品具體處理方法(圖2)中A、C、D、E處理組。色譜分析條件為Waterson Super D糖柱 250 mm×4.6 mm 10 μL;流動(dòng)相為乙腈:水 = 70:30(超聲波脫氣,并經(jīng)0.45 μm濾膜過(guò)濾);流速1.00 mL/min;進(jìn)樣量20 μL;柱溫35 oC。
圖2 不同測(cè)定組的樣品處理方法Figure 2 Different treatments for five groups of samples
2.1 毛白楊c3h1基因cDNA克隆與分析
根據(jù)電子克隆,通過(guò)RT-PCR的方法獲得毛白楊c3h1基因的cDNA克隆,其完整的開(kāi)放讀碼框(ORF)1 527 bp共編碼508個(gè)氨基酸。
2.2 c3h1基因RNAi抑制表達(dá)載體pBIRNAi-c3h1R-i-c3h1L的構(gòu)建和鑒定
重組質(zhì)粒pGEM-T-c3h1(連有c3h1 cDNA的T載體)、pGEM-T-c3h1R(連有c3h1正向片段的T載體)、pGEM-T-c3h1L(連有c3h1反向片段的T載體)、pBIRNAi-c3h1R-I(連有c3h1正向片段的pBIRNAi載體)和pBIRNAi-c3h1R-i-c3h1L(含c3h1目標(biāo)片段發(fā)夾結(jié)構(gòu)的表達(dá)載體)的PCR、雙酶切鑒定和測(cè)序結(jié)果表明,攜帶毛白楊c3h1基因目標(biāo)片段發(fā)夾結(jié)構(gòu)的RNAi抑制表達(dá)載體構(gòu)建成功(圖3)。
圖3 pBIRNAi-c3h1R-i-c3h1L載體構(gòu)建過(guò)程中PCR產(chǎn)物及雙酶切結(jié)果電泳圖Figure 3 Electrophoresis of PCR products and recombinant plasmid DNA digested by BamH I/Pac I and Sac I/Age I during the construction of pBIRNAi-c3h1R-i-c3h1L
2.3 c3h1基因RNAi抑制表達(dá)載體pBIRNAi-c3h1R-i-c3hL遺傳轉(zhuǎn)化
根癌農(nóng)桿菌介導(dǎo)的c3h1基因RNAi抑制表達(dá)載體pBIRNAi-c3h1R-i-c3hL遺傳轉(zhuǎn)化銀腺楊無(wú)性系84 K,轉(zhuǎn)基因植株和對(duì)照植株移栽溫室后經(jīng)低溫誘導(dǎo)扦插繁殖,共得到8個(gè)轉(zhuǎn)基因株系25個(gè)單株。
圖4 楊樹(shù)葉盤(pán)法遺傳轉(zhuǎn)化及溫室栽培Figure 4 Poplar genetic transformation via leaf disc method and propagation in greenhouse
2.4 轉(zhuǎn)基因植株的NPT-II基因及目的基因片段PCR分析
8株轉(zhuǎn)基因陽(yáng)性植株和pBIRNAi-c3h1R-i-c3h1L質(zhì)粒均擴(kuò)增出一條750 bp的特征條帶,而野生型84K楊植株呈PCR陰性反應(yīng)。以pBIRNAi載體上內(nèi)含子序列intron down和c3h1基因特異序列為c3h1 FP引物對(duì)擴(kuò)增正向目的片段,intron up和c3h1 RP為引物對(duì)擴(kuò)增反向目的片段,轉(zhuǎn)基因陽(yáng)性植株均擴(kuò)增出一條400 bp的特征條帶,而野生型和轉(zhuǎn)空載對(duì)照植株呈PCR陰性反應(yīng)(圖5)。
圖5 轉(zhuǎn)c3h1基因植株NPT-II基因和c3h1基因特異引物PCR檢測(cè)結(jié)果電泳圖Figure 5 c3h1 transgenic plants screened by PCR with NPT-II and c3h1 gene-specific primers
2.5 轉(zhuǎn)基因植株基因表達(dá)量
轉(zhuǎn)基因株系中c3h1基因表達(dá)量下調(diào)由高到低順序?yàn)?23(0.1096)>325(0.1778)>322(0.3162),較野生型ck植株分別下調(diào)了89.04%、82.22%和68.38%。
2.6 莖橫切冰凍切片顯微結(jié)構(gòu)觀察
圖6 莖橫切片(20×)顯微結(jié)構(gòu)Figure 6 Microscopic structure of stem cross-section
與野生型對(duì)照組相比,轉(zhuǎn)基因植株的木質(zhì)部細(xì)胞層數(shù)增多,但細(xì)胞相對(duì)較小,導(dǎo)管發(fā)育過(guò)程中出現(xiàn)管壁塌陷現(xiàn)象,而對(duì)照植株則較為規(guī)則;野生型植株韌皮部發(fā)育正常,韌皮纖維細(xì)胞數(shù)量較多,形狀規(guī)則,染色較均一,而轉(zhuǎn)基因植株的韌皮部較野生型少,韌皮纖維細(xì)胞數(shù)量少,染色區(qū)域不規(guī)則;轉(zhuǎn)基因植株木質(zhì)部細(xì)胞次生壁出現(xiàn)不規(guī)則加厚現(xiàn)象,而對(duì)照植株次生壁的木質(zhì)素沉積則較為均勻(圖6)。
2.7 轉(zhuǎn)基因植株木質(zhì)素、纖維素、半纖維素含量
各株系酸性木質(zhì)素含量為323(10.31 mg/g) < 325 (11.74 mg/g) < ck(17.10 mg/g) < 322(17.45 mg/g),323和325株系較野生型分別降低了39.71%和31.35%;轉(zhuǎn)基因株系纖維素含量均高于野生型對(duì)照組(圖7)。
2.8 轉(zhuǎn)基因植株總糖及糖轉(zhuǎn)化效率
以72%硫酸處理后再稀酸高溫水解得到的糖作為細(xì)胞壁物質(zhì)總糖,分析不同處理?xiàng)l件下各株系的糖轉(zhuǎn)化效率。結(jié)果表明:經(jīng)酸前處理的糖轉(zhuǎn)化效率325 (13.46%)>323(9.70%)>ck(9.52%)>322(7.18%);酸處理后再經(jīng)纖維素復(fù)合酶水解,各株系糖轉(zhuǎn)化效率為325(25.76%)>ck(23.38%)>322(11.32%)>323(3.80%);未經(jīng)酸處理直接酶解的糖轉(zhuǎn)化效率均明顯高于對(duì)照植株:322(20.51%)>323(18.07%)>325(17.59%)>ck(7.53%),322和323株系比經(jīng)酸處理后再酶解的相應(yīng)株系糖化效率高出81.18%和375.53%(圖8)。
圖7 不同株系木質(zhì)素、纖維素和半纖維素含量分析Figure 7 Content of lignin, hemicellulose and cellulose in different lines
2.9 轉(zhuǎn)基因植株HPLC法可溶性總糖及單糖含量
4組不同方法處理的樣品經(jīng)HPLC測(cè)定,可溶性總糖含量為:322(12.18 mg/g)>ck(11.01 mg/g)>323 (10.86 mg/g)>325(10.08 mg/g);經(jīng)酸前處理的單糖含量為325(138.26 mg/g)>323(135.02 mg/g)>322 (108.16 mg/g)>ck(89.54 mg/g);酸處理后再酶水解的單糖僅有葡萄糖322(43.99 mg/g)>325(43.71 mg/g)>323(38.59 mg/g)>ck(37.77 mg/g);未經(jīng)酸處理直接酶解得到的單糖均高于對(duì)照植株:323(87.77 mg/g)>322(80.11 mg/g)>325(57.09 mg/g)>ck(51.96 mg/g)。未經(jīng)酸前處理直接酶解的323和322株系葡萄糖的得率與對(duì)照植株ck相比,分別提高了57.42%和47.91%,比經(jīng)酸處理后再酶解的相應(yīng)株系高出73.70%和43.17%,而對(duì)照植株則無(wú)顯著變化(圖9)。
圖8 不同株系糖化效率Figure 8 Histogram of saccharification efficiency of c3h1 transgenic lines
圖9 各株系不同處理組可溶性總糖和單糖含量測(cè)定Figure 9 Soluable sugar and monomeric sugar in c3h1 transgenic lines by the phenol-sulfuric acid assay and HPLC
(1)對(duì)扦插繁殖后的轉(zhuǎn)基因植株323、325和322三個(gè)株系和對(duì)照植株的Realtime PCR定量檢測(cè)和莖橫切組化染色及顯微結(jié)構(gòu)觀察結(jié)果表明,c3h1基因受抑制的轉(zhuǎn)基因植株次生木質(zhì)部細(xì)胞層數(shù)增多,暗示其可能的早期生長(zhǎng)加速,但由于細(xì)胞較小,故外部形態(tài)未見(jiàn)明顯變化;導(dǎo)管壁的塌陷和次生壁的區(qū)域性加厚顯示轉(zhuǎn)基因植株木質(zhì)素沉積方式發(fā)生了改變[32]。
(2)木質(zhì)素、纖維素和半纖維素含量的測(cè)定結(jié)果表明,轉(zhuǎn)基因植株木質(zhì)素含量的降低與c3h1基因的轉(zhuǎn)錄表達(dá)量大體一致,木質(zhì)素降低的轉(zhuǎn)基因植株均表現(xiàn)為纖維素含量較高,而半纖維素含量無(wú)明顯變化。抑制其他基因如PAL、C4H、C3’H等基因表達(dá)多表現(xiàn)為木質(zhì)素含量的降低和組成成分比例的改變[29,31~35],反義抑制煙草omt基因木質(zhì)素降低了62%,但在楊樹(shù)中木質(zhì)素含量未發(fā)生改變,楊樹(shù)中木質(zhì)素含量下調(diào)最高約45%的為轉(zhuǎn)4cl基因反義抑制結(jié)構(gòu)。323株系下調(diào)了39.71%,與抑制其他木質(zhì)素合成關(guān)鍵酶基因相比效果較好,故RNAi抑制C3H1基因表達(dá)可有效降低楊樹(shù)木質(zhì)素含量。
(3)總糖含量及糖轉(zhuǎn)化效率的分析表明,木質(zhì)素含量的降低與纖維素的糖轉(zhuǎn)化效率的提高緊密相關(guān)。酸前處理水解的底物主要為半纖維素,經(jīng)酸前處理去除大部分半纖維素,殘留物再經(jīng)酶水解的水解效率代表了纖維素的糖轉(zhuǎn)化效率。酸前處理解除了半纖維素與纖維素的結(jié)合,纖維素晶狀結(jié)構(gòu)發(fā)生解聚,增加了酶與纖維素的可及度,酶解效率增高。未經(jīng)酸前處理直接酶解的轉(zhuǎn)基因植株糖化效率明顯高于對(duì)照植株,甚至高于經(jīng)酸前處理后再酶處理的糖化效率,說(shuō)明木質(zhì)素含量的降低使得酶與纖維素的接觸幾率更大,酶解效率更高。
(4)可溶性總糖和單糖含量HPLC檢測(cè)結(jié)果表明,木質(zhì)素含量的降低導(dǎo)致細(xì)胞可溶性糖含量的增加及纖維素糖轉(zhuǎn)化效率的提高。細(xì)胞壁物質(zhì)經(jīng)酸處理后酶解得到的葡萄糖來(lái)自于纖維素的酶水解,其含量多少代表了纖維素的糖化效率高低。未經(jīng)酸前處理直接酶解的轉(zhuǎn)基因株系葡萄糖得率比對(duì)照植株高,323株系比經(jīng)酸處理后再酶解的相應(yīng)株系高出73.70%,說(shuō)明了木質(zhì)素含量的降低可能引發(fā)細(xì)胞中可溶性糖和纖維素的代償性增加,由于木質(zhì)素含量降低,減輕了對(duì)纖維素的束縛作用,游離的纖維素增多,酶的可及度增大,使得酶解糖化效率顯著提高。木質(zhì)素含量最低的轉(zhuǎn)基因323株系,表現(xiàn)為基因表達(dá)量下調(diào)最多,細(xì)胞壁總糖、可溶性總糖及纖維素的糖化效率最高。
本研究結(jié)果表明,通過(guò)基因調(diào)控降低木質(zhì)素含量,將有可能在一定程度上打破細(xì)胞壁物質(zhì)的糖化作用障礙,使得轉(zhuǎn)基因植株的可溶性糖含量升高,纖維素的酶解糖化效率增強(qiáng)。轉(zhuǎn)基因株系323的優(yōu)良表現(xiàn),尤其是其不經(jīng)酸前處理直接酶解即可達(dá)到經(jīng)酸前處理后再酶解所能達(dá)到的水解效率,為更好地利用木質(zhì)纖維素生物質(zhì)能源提供了一個(gè)有積極意義的信息。
[1] Pedersen J F,Vogel K P,F(xiàn)unnell D L. Impact of reduced lignin on plant fitness[J]. Crop Sci,2005,45(3):812-819.
[2] Yuan J S,Tiller K H,Al-Ahmad H,et al. Plants to power: bioenergy to fuel the future[J]. Trends Plant Sci,2008,13(8):421-429.
[3] Ruane J,Sonnino A,Agostini A. Bioenergy and the potential contribution of agricultural biotechnologies in developing countries[J]. Biom Bioener,2010,34(10):1 427-1 439.
[4] Nagle N,Ibsen K,Jennings E. A process economic approach to develop a dilute-acid cellulose hydrolysis process to produce ethanol from biomass[J]. App Biochem Biotech,1999,79(1 ~ 3):595-607.
[5] Petersson A,Thomsen M,Hauggaard-Nielsen H,et al. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean[J]. Biom Bioener,2007,31(11 ~ 12):812-819.
[6] Sassner P,Martensson C G,Galbe M,et al. Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol[J]. Biores Tech, 2008,99(1):137-145.
[7] Sticklen M. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol[J]. Nature Reviews Genetics,2008(9):433 -443.
[8] Pimentel D,Patzek T. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower[J]. Natural Resour Res,2005(14):65-76.
[9] Rubin E. Genomics of cellulosic biofuels[J]. Nature,2008(454):841-845.
[10] 何蒲明. 基于糧食安全的林業(yè)生物質(zhì)能發(fā)展[J]. 林業(yè)經(jīng)濟(jì)問(wèn)題,2008,28(4):314-318.
[11] 魏建華,宋艷茹. 木質(zhì)素生物合成途徑及調(diào)控的研究進(jìn)展[J]. 植物學(xué)報(bào)(英文版),2001,43(8):771-779.
[12] Lin Z,Xu Y. Lignin biosynthesis and its molecular regulation[J]. Progress in Natural Science,2003,13(5):321-328.
[13] 趙華燕,魏建華,路靜,等. 利用反義CCoAOMT基因培育低木質(zhì)素含量毛白楊的研究[J]. 自然科學(xué)進(jìn)展,2004,14(9):1 067-1 071.
[14] Wyman C E. Ethanol from lignocellulosic biomass: Technology, economics, and opportunities[J]. Bioresour Tech,1994,50(1):3-15.
[15] Zhang M,F(xiàn)randen M A,Newman M,et al. Promising ethanologens for xylose fermentation: Scientific note[J]. App Bioch Biotech, 1995, 52 (1):527-536.
[16] Dale B E,Leong C K,Pham T K,et al. Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process[J]. Bioresour Tech,1996,56(1):111-116.
[17] Gregg D J,Saddler J N. Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integratedwood to ethanol process[J]. Biotech Bioeng,1996,51(4):375-383.
[18] Lee J. Biological conversion of lignocellulosic biomass to ethanol[J]. J Biotech,1997,56(1):1-24.
[19] Virkajarvi I,Niemel M,Hasanen A,et al. Cellulosic ethanal via biochemical processing poses a challenge for developers and implementers[J]. BioResources,2009,4(4):1 718-1 735.
[20] Elander R T,Hsu T. Processing and economic impacts of biomass delignification for ethanol production[J]. App Biochem Biotech, 1995, 52 (1):463-478.
[21] Iconomou L,Psarianos C,Koutinas A. Ethanol fermentation promoted by delignified cellulosic material[J]. J Fermen Bioeng, 1995,79(3):294-296.
[22] 宋東亮,沈君輝,李來(lái)庚. 高等植物細(xì)胞壁中纖維素的合成[J]. 植物生理學(xué)通訊,2008,44(4):791-796.
[23] Chen F,Dixon R. Lignin modification improves fermentable sugar yields for biofuel production[J]. Nat Biotech,2007,25(7):759-761.
[24] Li X,Weng J,Chapple C. Improvement of biomass through lignin modification[J]. Plant J,2008,54(4):569-581.
[25] Whetten R,Sederoff R. Lignin Biosynthesis[J]. Plant Cell,1995,7(7):1 001-1 013.
[26] Schoch G,Goepfert S,Morant M,et al. CYP98A3 from Arabidopsis thaliana is a 3’-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway[J]. J Biol Chem,2001,276(39):36 566-36 574.
[27] Boerjan W,Ralph J,Baucher M. Lignin Biosythesis[J]. Ann Rev Plant Biol,2003(54):519-546.
[28] 李金花,張綺紋,牛正田,等. 木質(zhì)素生物合成及其基因調(diào)控的研究進(jìn)展[J]. 世界林業(yè)研究,2007,20(1):29-37.
[29] Franke R,Humphreys J,Hemm M,et al. The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism[J]. Plant J, 2002,30(1):33-45.
[30] Abdulrazzak N,Pollet B,Ehlting J,et al. A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth[J]. Plant Physiol, 2006,140(1):30-48.
[31] Coleman H,Park J,Nair R,et al. RNAi-mediated suppression of p-coumaroyl-CoA 3'-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism[J]. Proceed Nati Acad Sci,2008,105(11):4 501-4 506.
[32] Gullo M,Salleo S,Piaceri E,et al. Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus corris[J]. Plant, Cell & Environ,1995,18(6):661-669.
[33] Elkind Y,Edwards R,Mavandad M,et al. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene[J]. Proceed Nat Acad Sci USA,1990,87(22):9057-9061.
[34] Sewalt VJH,Ni W,Blount JW,et al. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase[J]. Plant Physiol,1997,115(1):41-50.
[35] Blount JW,Korth KL,Masoud SA,et al. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway[J]. Plant Physiol,2000,122(1):107-116.
Downregulation of Coumaroyl Shikimate 3-hydroxylase in Poplar by RNAi Technique
YANG Shao-zong1,2,LIU Xin-hong2,ZHAO Shu-tang1,WANG Min-jie1,LU Meng-zhu1*
(1. Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100091, China; 2. Zhejiang Forestry Academy, Hangzhou 310023, China)
Efficient hydrolysis of lignocellulose is the biggest technical challenges on forest bioenergy development due to lignin hindrance to bioconversion from lignocellulose to ethanol in poplar. Experiments were conducted to genetically modify poplar to decrease lignin content in order to enhance fermentable sugars which can be converted to ethanol. c3h1 gene in Populus tomentosa was cloned and its RNAi vector expressing ds-RNA was constructed. 8 transgenic lines harboring the RNAi constructs were obtained via the leaf-disc method and propagated by cutting for each lines in the greenhouse. The transcription level of c3h1 in RNAi inhibition transgenic lines analyzed by real-time PCR decreased 89.04%, 82.22% and 68.38% in the RNAi inhibition line 323, 325 and 322 compared with the control. Stem cross-section staining and microstructure observations showed that the xylem development and lignin deposition pattern in transgenic plant changed. Transgenic plants with lowest lignin content generally matched with the highest content of cellulose and soluble total sugars and the highest sacchrification efficiency. The results indicated that lignin is probably the major factor in recalcitrance of cell walls to saccharification. Moreover, it demonstrated that genetic reduction of lignin content effectively overcame cell wall recalcitrance to bioconversion.
RNAi; poplar; c3h; lignin; sacchrification
S718.4
A
1001-3776(2012)03-0001-08
2011-12-20;
2012-03-10
863項(xiàng)目“高產(chǎn)優(yōu)質(zhì)多抗楊樹(shù)分子與細(xì)胞高效育種技術(shù)及品種創(chuàng)制”(2006AA100109-1),863項(xiàng)目“特色植物高效轉(zhuǎn)化技術(shù)的建立”(2007AA10Z182),863項(xiàng)目“楊樹(shù)木材發(fā)育的基因調(diào)控研究”(2006AA10Z122)
楊少宗(1974-),男,安徽阜陽(yáng)人,助理研究員,從事林木遺傳育種研究;*通訊作者。