丁旭敏,王曉冬,王磊,張麗
(中國(guó)地質(zhì)大學(xué)(北京)能源學(xué)院,北京 100083)
壓力積分函數(shù)在不穩(wěn)定試井分析中的應(yīng)用
丁旭敏,王曉冬,王磊,張麗
(中國(guó)地質(zhì)大學(xué)(北京)能源學(xué)院,北京 100083)
實(shí)測(cè)試井?dāng)?shù)據(jù)常常由于噪音的存在而嚴(yán)重影響試井曲線的擬合精度,通過引入壓力積分函數(shù)的概念,提出了一種減少數(shù)據(jù)噪音、提高數(shù)據(jù)擬合精度的新方法。在考慮井筒儲(chǔ)集效應(yīng)及表皮效應(yīng)的情況下,通過求解無限大均質(zhì)油藏中的無量綱壓力積分函數(shù),繪制了壓力積分、壓力導(dǎo)數(shù)積分及壓力積分比值典型曲線新圖版,并對(duì)曲線特征進(jìn)行了描述;推導(dǎo)得出了應(yīng)用壓力積分函數(shù)進(jìn)行常規(guī)半對(duì)數(shù)分析和典型曲線擬合的方法。在此基礎(chǔ)上進(jìn)行實(shí)例分析,結(jié)果表明,壓力積分函數(shù)應(yīng)用于不穩(wěn)定試井分析,可有效減少噪音影響,簡(jiǎn)化擬合過程,提高擬合精度,結(jié)果可靠。
壓力積分函數(shù);不穩(wěn)定試井;半對(duì)數(shù)分析;典型曲線擬合;試井解釋
在不穩(wěn)定試井中,實(shí)測(cè)井筒壓力數(shù)據(jù)是試井分析的基礎(chǔ)。然而,當(dāng)實(shí)測(cè)數(shù)據(jù)波動(dòng)較大時(shí),使用壓力和壓力導(dǎo)數(shù)方法進(jìn)行試井分析通常會(huì)產(chǎn)生誤差,且壓力導(dǎo)數(shù)試井分析常常會(huì)由于數(shù)據(jù)的隨機(jī)誤差或數(shù)據(jù)噪音而失真[1]。盡管可以采用多種平滑方法減少數(shù)據(jù)噪音,但這些平滑方法可能會(huì)改變數(shù)據(jù)的本質(zhì)特征。針對(duì)壓力試井分析的上述不足,1989年,Blasingame等人[2]提出了壓力積分函數(shù)的概念,并給出了各個(gè)流動(dòng)階段的壓力積分函數(shù)解;之后,學(xué)者們[3-4]相繼建立了均質(zhì)、垂直裂縫和天然裂縫油藏的壓力積分函數(shù)典型曲線進(jìn)行試井解釋;1993年,Onur等人[5-6]證明了壓力積分函數(shù)可以用來確定半對(duì)數(shù)直線段。前人的研究表明,使用壓力積分函數(shù)可以從本質(zhì)上消除由壓力和壓力導(dǎo)數(shù)數(shù)據(jù)表現(xiàn)出來的噪音,提高試井解釋的精度。
首先在國(guó)際單位制下定義無量綱量。無量綱壓力pD、無量綱時(shí)間tD、無量綱井筒儲(chǔ)集系數(shù)CD及無量綱壓力導(dǎo)數(shù)pD′分別定義如下:
式中:K為儲(chǔ)層滲透率,μm2;h為儲(chǔ)層有效厚度,m;Δp為壓差,MPa;pi為原始地層壓力,MPa;pwf為井底流動(dòng)壓力,MPa;pws為關(guān)井井底恢復(fù)壓力,MPa;pws,Δt=0為關(guān)井時(shí)刻的井底流動(dòng)壓力,MPa;Δt為關(guān)井時(shí)間,h;q為地面流體產(chǎn)量,m3/d;B為流體體積系數(shù);μ為地層流體黏度,mPa·s;t為生產(chǎn)時(shí)間,h;φ為孔隙度;Ct為綜合壓縮系數(shù),MPa-1;rw為井筒半徑,m;C為井筒存儲(chǔ)系數(shù),m3/MPa。
壓力積分函數(shù)I(t)和壓力導(dǎo)數(shù)積分函數(shù)I′(t)分別定義為壓力對(duì)時(shí)間的積分平均和壓力導(dǎo)數(shù)對(duì)時(shí)間的積分平均,即
I(t),I′(t)分別具有與壓力和壓力導(dǎo)數(shù)相同的特征。二者的無量綱定義分別為
式中:ΔI為壓差積分函數(shù),MPa;Iwf為井底流動(dòng)壓力積分函數(shù),MPa;Iws為關(guān)井井底恢復(fù)壓力積分函數(shù),MPa。
結(jié)合無量綱壓力導(dǎo)數(shù)的定義,可以得到:
在未知壓力導(dǎo)數(shù)的情況下,可利用式(9)計(jì)算壓力導(dǎo)數(shù)積分函數(shù)。
式中:S為表皮系數(shù)。
結(jié)合壓力積分函數(shù)的定義,得到無量綱井底壓力積分函數(shù)Iw,D的求解公式:
對(duì)于壓力降落試井,將壓力積分函數(shù)的無量綱定義代入式(11),得到:
可以看出,ΔI-t在半對(duì)數(shù)圖中呈直線關(guān)系。直線段的斜率為
由此可求得地層流動(dòng)系數(shù)Kh/μ,地層系數(shù)Kh及地層平均滲透率K。取t=1 h,由壓降試井?dāng)?shù)據(jù)計(jì)算表皮因子的公式為
對(duì)于壓力恢復(fù)試井,根據(jù)壓降疊加原理,壓力恢復(fù)階段的無量綱井底恢復(fù)壓力積分函數(shù)
式中:tp為關(guān)井前生產(chǎn)時(shí)間,h。
結(jié)合無量綱定義,得到壓力積分函數(shù)的有量綱表達(dá)式為
可以看出,ΔI-(tp+Δt)/Δt在半對(duì)數(shù)圖中呈直線關(guān)系。同理,可由半對(duì)數(shù)直線段的斜率求得滲透率K。結(jié)合式(11),(12),(16)及無量綱定義,推導(dǎo)得到包含表皮系數(shù)S的關(guān)井井底恢復(fù)壓力積分函數(shù)表達(dá)式[7]為
3.1 壓力積分函數(shù)解
假定1口生產(chǎn)井以定產(chǎn)量在平面無限大油藏中生產(chǎn),油藏儲(chǔ)層厚度均勻,介質(zhì)微可壓縮且各向同性[8],滲透率、流體黏度和體積系數(shù)等不隨壓力變化,并忽略重力和毛管力的影響,由此引起儲(chǔ)層中的平面徑向不定常滲流。通過Duhamel褶積和Laplace變換,得到考慮井筒儲(chǔ)集效應(yīng)和表皮效應(yīng)影響時(shí)的Laplace空間壓力分布解式為[9]
根據(jù)Laplace變換性質(zhì),函數(shù)積分的Laplace變換等于此函數(shù)的Laplace變換除以Laplace算子,即可巧妙地求出無量綱井底壓力積分在Laplace空間的計(jì)算式:
式中:L表示拉氏變換。
對(duì)式(20)進(jìn)行Stehfest[10]數(shù)值反演,即可計(jì)算得到實(shí)空間的壓力積分此壓力積分再除以時(shí)間tD即可得到實(shí)空間的壓力積分函數(shù)Iw,D。文中提到的典型曲線都是基于壓降試井的解,若假設(shè)可以應(yīng)用Agarwal等效時(shí)間[11],這些典型曲線也可以用來分析壓力恢復(fù)數(shù)據(jù)。
3.2 新典型曲線的繪制
Gringarten-Bourdet經(jīng)典圖版(見圖1)[12]為無量綱壓力及壓力導(dǎo)數(shù)關(guān)于時(shí)間的雙對(duì)數(shù)曲線,可參照該圖版構(gòu)造新的典型曲線。由式(20)得到Iw,D,進(jìn)一步利用式(9)直接計(jì)算Iw,D′。以tD/CD為橫坐標(biāo),以Iw,D和Iw,D′為縱坐標(biāo),以CDe2S作為曲線參數(shù),即可構(gòu)造出無量綱壓力積分函數(shù)和無量綱壓力導(dǎo)數(shù)積分函數(shù)的雙對(duì)數(shù)典型曲線(見圖2),其中,CDe2S分別取0.1,3,102,108,1020,1060。可以看出,與Gringarten-Bourdet經(jīng)典圖版對(duì)比,壓力積分函數(shù)曲線與壓力曲線的特征基本相同,在早期的純井筒儲(chǔ)集階段均為斜率為1的直線,徑向流段近似水平;由于壓力導(dǎo)數(shù)積分函數(shù)代表的是壓力導(dǎo)數(shù)在時(shí)間段[0,tD]上的積分平均,二者的導(dǎo)數(shù)曲線在徑向流段差別較明顯,雖然都趨近于0.5水平線,但導(dǎo)數(shù)積分曲線收斂于0.5水平線的時(shí)間更晚一些。
1988年,Onur和Reynolds[13]提出了基于壓力與其壓力導(dǎo)數(shù)比值的典型曲線pw,D/(2pw,D′)-tD/CD[14-16]。 類似地,可以用壓力積分函數(shù)構(gòu)建相應(yīng)的典型曲線,即Ιw,D/(2Ιw,D′)-tD/CD壓力積分比值典型曲線(見圖3)??梢钥闯?,該曲線在純井筒儲(chǔ)集階段為0.5水平線,在徑向流階段與壓力積分曲線一致,這2個(gè)階段的特征都可以通過理論推導(dǎo)[17]得到解釋。此外,也可用此典型曲線判斷半對(duì)數(shù)直線段[17]。
圖1 Gringarten-Bourdet經(jīng)典圖版
圖2 壓力積分函數(shù)的新Gringarten-Bourdet圖版
圖3 壓力積分比值典型曲線
4.1 新Gringarten-Bourdet圖版
對(duì)已給的試井問題,在雙對(duì)數(shù)圖上作ΔI-t和ΔI′-t關(guān)系曲線,將其與Iw,D-tD/CD和Iw,D′-tD/CD理論圖版進(jìn)行擬合,得到擬合點(diǎn)后,即可求出儲(chǔ)層滲透率、井筒儲(chǔ)集系數(shù)和表皮系數(shù),計(jì)算公式如下:
式中:M代表擬合點(diǎn)。
4.2 壓力積分比值典型曲線
由壓力積分函數(shù)的無量綱定義可得:Iw,D/(2Iw,D′)=ΔI/(2ΔI′),可以看出,實(shí)測(cè)數(shù)據(jù)圖ΔI/(2ΔI′)-t的垂向值自動(dòng)與相應(yīng)的Iw,D/(2Iw,D′)-tD/CD垂向值相等。因此,壓力積分比值典型曲線的最大優(yōu)點(diǎn)是其擬合過程只需通過水平移動(dòng)即可完成?;谶@一特性,也將此新的壓力積分函數(shù)比值稱為歸一化壓力積分函數(shù)。歸一化壓力積分函數(shù)簡(jiǎn)化了典型曲線的擬合過程,減少了擬合中的不確定性,其求取參數(shù)的過程與Gringarten-Bourdet圖版相同。
均質(zhì)油藏中某井定產(chǎn)生產(chǎn)一段時(shí)間后進(jìn)行壓力恢復(fù)試井,其壓力數(shù)據(jù)受井筒儲(chǔ)集效應(yīng)和表皮效應(yīng)影響。已知rw=0.122 m,h=22.25 m,φ=0.2,B=1.3,μ=0.5 mPa·s,Ct=14.5×10-4MPa-1。關(guān)井前q=238.48 m3/d,tp=18.04 h,pws,Δt=0=15.41 MPa。引入Agarwal等效時(shí)間te=(tpΔt)/(tp+Δt),實(shí)測(cè)數(shù)據(jù)的壓力積分采用數(shù)值積分方法進(jìn)行計(jì)算[2]。
5.1 半對(duì)數(shù)分析
由徑向流數(shù)據(jù)點(diǎn)作Horner半對(duì)數(shù)曲線 (見圖4),得到2條直線段的斜率和截距,由此進(jìn)行參數(shù)計(jì)算。根據(jù)壓力半對(duì)數(shù)圖,斜率為0.71 MPa/對(duì)數(shù)周期,截距為17.508 MPa,pws(1)=16.60 MPa,計(jì)算得出:K=20.81× 10-3μm2,S=-3.67;根據(jù)壓力積分半對(duì)數(shù)圖,斜率為0.72 MPa/對(duì)數(shù)周期,截距為17.2 MPa,Iws(1)=16.28 MPa,計(jì)算得出:K=20.52×10-3μm2,S=-3.71。
5.2 典型曲線分析
5.2.1 壓力典型曲線
對(duì)實(shí)測(cè)壓力數(shù)據(jù)和壓力導(dǎo)數(shù)數(shù)據(jù)進(jìn)行典型曲線擬合,得到曲線擬合值CDe2S=3,壓力擬合值(pw,D/Δp)M= 1.668,時(shí)間擬合值(tD/CD)M=10.3(見圖5)。由此計(jì)算出:K=21.41×10-3μm2,C=2.09 m3/MPa,S=-3.53。
5.2.2 壓力積分典型曲線
對(duì)壓力積分?jǐn)?shù)據(jù)和壓力導(dǎo)數(shù)積分?jǐn)?shù)據(jù)進(jìn)行典型曲線擬合(見圖6),得到曲線擬合值CDe2S=3,壓力擬合值(pw,D/Δp)M=1.668,時(shí)間擬合值(tD/CD)M=10.9。由公式(21)—(23)求得:K=21.41×10-3μm2,C=1.98 m3/MPa,S=-3.50。
圖4 Horner半對(duì)數(shù)曲線
圖5 壓力及壓力導(dǎo)數(shù)典型曲線擬合
圖6 壓力積分及壓力導(dǎo)數(shù)積分典型曲線擬合
5.2.3 歸一化壓力積分函數(shù)典型曲線擬合
對(duì)壓力積分函數(shù)典型曲線歸一化(見圖7),得到曲線擬合值CDe2S=3,壓力擬合值(pw,D/Δp)M=1.668,時(shí)間擬合值(tD/CD)M=10.9。由此得出:K=21.41×10-3μm2,C= 1.98 m3/MPa,S=-3.50。
圖7 歸一化壓力積分函數(shù)曲線擬合
5.3 結(jié)果分析
1)不同方法得到的參數(shù)值大體相符。由試井解釋可知,該井為均質(zhì)油藏中的非污染井,具有井筒儲(chǔ)集效應(yīng),未測(cè)得外邊界反映。
2)由壓力積分函數(shù)法計(jì)算得出的各參數(shù)值與壓力法所得結(jié)果十分接近,這表明利用新函數(shù)進(jìn)行試井解釋的結(jié)果是可靠的。
3)對(duì)比圖5和圖6可以發(fā)現(xiàn),實(shí)測(cè)壓力導(dǎo)數(shù)曲線數(shù)據(jù)較嘈雜,積分后數(shù)據(jù)點(diǎn)變得十分整齊,這表明積分曲線能夠提高擬合精度。
4)利用歸一化壓力積分函數(shù)曲線進(jìn)行擬合時(shí),實(shí)測(cè)曲線自動(dòng)與相應(yīng)典型曲線垂向?qū)R,由此簡(jiǎn)化了擬合過程。
當(dāng)壓力和壓力導(dǎo)數(shù)數(shù)據(jù)噪音較大時(shí),利用壓力積分函數(shù)進(jìn)行不穩(wěn)定試井分析可有效提高擬合精度,簡(jiǎn)化擬合過程。由于氣井的測(cè)試數(shù)據(jù)波動(dòng)較大,此新函數(shù)和新方法對(duì)氣井試井尤為有效。文中研究對(duì)象為均質(zhì)油藏,下步將針對(duì)裂縫性油藏和氣藏開展研究,望能贏得廣大讀者的繼續(xù)關(guān)注。
[1]張文昌,羅沛,郝寧,等.試井資料多解性來源的探討[J].斷塊油氣田,2003,10(4):86-88. Zhang Wenchang,Luo Pei,Hao Ning,et al.Discussion on more explain character of well test results[J].Fault-Block Oil&GasField,2003,10(4):86-88.
[2]Blasingame T A,Johnston J L,Lee W J.Type curve analysis using the pressure integral method[A].SPE 18799,1989.
[3]Blasingame T A.Analysis of tests in wells with multiphase flow and wellbore storage distortion[D].Texas:A&M University,1989.
[4]Blasingame T A,Johnston J L,Thrasher T S,et al.Pressure integral typecurveanalysis-Ⅱ:Applicationoffieldcases[A].SPE20535,1990.
[5]Onur M,Peres A,Reynolds A C.New well testing pressure functions with applications[A].SPE 19514,1993.
[6]Onur M,Peres A,Reynolds A C.New well testing functions with applications to interference tests[A].SPE 26214,1993.
[7]劉能強(qiáng).實(shí)用現(xiàn)代試井解釋方法[M].北京:石油工業(yè)出版社,2003:6-9. Liu Nengqiang.Practical modern well testing interpretation method[M].Beijing:Petroleum Industry Press,2003:6-9.
[8]張艷玉,何艷萍.均質(zhì)地層變井儲(chǔ)試井分析[J].斷塊油氣田,1997,4(4):34-37. Zhang Yanyu,He Yanping.Well-test analysis with changing wellbore storage in homogeneous reservoir[J].Fault-Block Oil&Gas Field,1997,4(4):34-37.
[9]孔祥言.高等滲流力學(xué)[M].合肥:中國(guó)科學(xué)技術(shù)大學(xué)出版社,2010:313-314. Kong Xiangyan.Advanced mechanics of fluid flow in porous media[M].Hefei:Press of University of Science and Technology of China,2010:313-314.
[10]StehfestH.Numericalinversion ofLaplace transforms[J]. Communicationsof the ACM,1970,13(1):47-49.
[11]Agarwal R G.A new method to account for producing time effects when drawdown type curves are used to analyze pressure buildup and other test data[A].SPE 9289,1980.
[12]楊萬霞,趙國(guó)力,王小衛(wèi),等.不穩(wěn)定試井在濮城油田注水井的應(yīng)用[J].斷塊油氣田,2004,11(1):87-88. Yang Wanxia,Zhao Guoli,Wang Xiaowei,et al.Applications of transient well test in water injection well of Pucheng Oilfield[J].Fault-Block Oil&Gas Field,2004,11(1):87-88.
[13]Onur M,Reynolds A C.A new approach for constructing type curves for well test analysis[A].SPE 16473,1988.
[14]Onur M,Yeh N,Reynolds A C.New applications of the pressure derivative in well test analysis[A].SPE 16810,1989.
[15]Duong A N.A new set of type curves for well test interpretation using the pressure derivative ratio[A].SPE 16812,1987.
[16]Yeh N S,Agarwal R G.Development and application of new type curves for pressure transient analysis[A].SPE 17567,1988.
[17]Onur M,Peres A,Reynolds A C.New pressure functions for well test analysis[A].SPE 19819,1989.
(編輯 劉文梅)
Application of pressure integral functions in transient well test analysis
Ding Xumin,Wang Xiaodong,Wang Lei,Zhang Li
(College of Energy Resources,China University of Geosciences,Beijing 100083,China)
Well test data are often ambiguous due to the existence of data noise and it seriously affect the accuracy of typical curve matching.By means of the introduction of pressure integral functions,we present a new method which can reduce data noise and can improve the accuracy of well test data matching.With the considering of the effect of wellbore storage and skin factor,the dimensionless pressure integral solution is established in an infinite homogeneous reservoir.The corresponding type curve plates are drawn out based on pressure integral and pressure integral derivative functions as well as pressure integral ratio.We also demonstrate the characteristics of type curves.In addition,the method of conventional semi-log analysis and typical curve matching on well test data is derived using the pressure integral functions.Finally,a field example analysis is performed.It is shown that with the application of the new pressure functions,the noisy data becomes much smoother after being integrated,the matching process is simplified and the matching accuracy is improved.
pressure integral function;transient well test;semi-log analysis;typical curve matching;well test interpretation
國(guó)家科技重大專項(xiàng)“致密砂巖氣有效開發(fā)評(píng)價(jià)技術(shù)”(2011ZX05013-002)
TE353
:A
1005-8907(2012)02-0208-05
2011-07-06;改回日期:2012-01-10。
丁旭敏,女,1987年生,中國(guó)地質(zhì)大學(xué)(北京)能源學(xué)院石油與天然氣工程專業(yè)在讀碩士研究生,從事油氣田開發(fā)理論與方法方面的研究。E-mail:dingxuminstu@126.com。
丁旭敏,王曉冬,王磊,等.壓力積分函數(shù)在不穩(wěn)定試井分析中的應(yīng)用[J].斷塊油氣田,2012,19(2):208-212. Ding Xumin,Wang Xiaodong,Wang Lei,et al.Application of pressure integral functions in transient well test analysis[J].Fault-Block Oil&Gas Field,2012,19(2):208-212.