亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the Equivalence of Short Sequences in Cyclic Groups of Prime Order

        2012-02-26 04:53:24-,
        大學(xué)數(shù)學(xué) 2012年6期

        -, -

        (Department of Mathematics,Dalian Maritime University,Dalian 116026,China)

        1 Introduction

        Amongnarbitrary integers one can choose several whose sum is divisible byn.In other words,each sequence of lengthnin the cyclic group of ordernhas a nonempty subsequence with sum zero.This article describes the sequences of length 2or 3in prime order cyclic group that fail the above property.

        Here and henceforth,nis a fixed integer greater than 1,and the cyclic group of ordernis identified with the additive groupZZn=ZZ/nZZof integers modulon.A sequenceSinZZnis called a zero-sum sequence of the sum of its terms is the zero element ofZZn.A sequence is zero-sum free if it does not contain nonempty zero subsequences,and we callSaminimal zero-sum sequence if it is a zero-sum sequence and every proper subsequence is zero-sum free.

        The object of study can be characterized in very simple terms.To be more specific,let us recall several standard notions.Ifgis an integer coprime ton,multiplication bygpreserves the zero sums in ZZnand does not introduce new ones.Hence asequenceα=(a1,…,ak)is zero-sum free if and only if the sequencegα=(ga1,…,gak)is zero-sum free,which motivates the following definition.

        For sequencesαandβinZZn,we say thatαis equivalent toβand writeαβifβcan be obtained fromαthrough multiplication by an integer coprime tonand rearrangement of terms.Clearlyis an equivalent relation.

        This statement reduces certain zero-sum problems in cyclic groups to the study of easy-todescribe positive integer sequences.

        The question of considering equivalent sequences(see Chapter 5in[1])arose when the following problem was posed at Algebra conference in Marseille,F(xiàn)rance:

        Letpbe a prime,whether each zero-sum sequenceSin cyclic groupZZpis equivalent to asequence whose sum of the least positive representatives isp?

        The answer to this question is no (see Theorem 2of[2]),Subsequently,several authors[2-6]obtained ahuge variety of results on the equivalent sequences.

        In this paper,we determine the upper bound of Index(S),whereSis asequence of length 2or 3 in prime order cyclic groupZZp.

        2 The Main Results

        [1]Geroldinger A and Halter-Koch F.Non-unique factorizations:algebraic,combinatorial and analytic theory[M].BocaRaton:Chapman & Hall/CRC,2006.

        [2]Scott T.Chapman,Michael Freeze,and William W Smith.Minimal zero-sequences and the strong davenport constant[J].Discrete Math.,1999,203:271-277.

        [3]Gao Weidong.Zero-sums in finite cyclic groups[J].INTEGERS:Electronic J.Combinatorial Number Theory 0(2000),#A12.

        [4]Ponomarenko V,Minimal zero sequences of finite cyclic groups[J].INTEGERS:Electronic J.Combinatorial Number Theory 4(2004),#A24.

        [5]Svetoslav Savchev,F(xiàn)ang Chen.Long zero-free sequences in finite cyclic groups[J].Discrete Math.,2007,307:2671-2679.

        [6]Pingzhi Yuan.On the index of minimal zero-sum sequences over finite cyclic groups[J].J.Combinatorial Theory(series A),2007,114:1545-1551.

        国产激情久久久久久熟女老人av| 在线亚洲精品免费视频| 加勒比东京热一区二区| 亚州中文字幕乱码中文字幕| 欧美xxxxx高潮喷水麻豆| 亚洲色欲色欲综合网站| 亚洲一区二区三区日本久久九| 午夜无码无遮挡在线视频| 视频一区二区不中文字幕| 亚洲一区二区三区日本久久九 | 精品人妻av区乱码| 又硬又粗又大一区二区三区视频 | 最新在线观看免费的a站国产| 丰满女人猛烈进入视频免费网站 | 亚洲人成人无码www| 国产亚洲情侣一区二区无| 亚洲va欧美va人人爽夜夜嗨| 青青草免费在线视频久草| 人妻少妇久久久久久97人妻| 国产成人av一区二区三区无码| 国产福利一区二区三区视频在线看 | 亚洲av第一区国产精品| 国产乱码一区二区三区爽爽爽| 亚洲视频天堂| 一本久道在线视频播放| 欧美激欧美啪啪片| 国产在线无码一区二区三区 | 亚洲精品国精品久久99热一| 无码成人AV在线一区二区| 亚洲av乱码二区三区涩涩屋 | 久久久久亚洲AV成人网毛片 | 亚洲欧美国产国产综合一区| 免费人成在线观看播放国产| 日本黄色特级一区二区三区| 无码av中文一区二区三区| 最新四色米奇影视777在线看| 极品美女销魂一区二区三| 日韩精品人妻久久久一二三| 夫妇交换刺激做爰视频| 东京热无码人妻中文字幕| 国产精品专区第一页天堂2019|