徐文珊,陸金健,陳修平,王一濤
(澳門大學中藥質量研究國家重點實驗室、中華醫(yī)藥研究院,澳門 999078)
惡性腫瘤是嚴重危害人類健康且尚難以攻克的頑癥之一,防治惡性腫瘤的藥物研發(fā)已成為當今藥學界普遍關心的問題。當前,針對腫瘤細胞內不同信號通路或靶點的藥物設計、篩選和評價已成為抗腫瘤藥物研發(fā)的重要策略。因此結合現(xiàn)代腫瘤學、生物化學、細胞生物學、藥理學等學科,發(fā)現(xiàn)新的有價值的抗腫瘤藥物靶點或信號通路對于抗腫瘤藥物的有效研發(fā)具有重要意義。本文主要介紹基于內質網(wǎng)應激(endoplasmic reticulum stress,ERS)的抗腫瘤藥物研發(fā)概況,并試圖分析存在的問題及其今后發(fā)展方向。
內質網(wǎng)是真核細胞的重要細胞器,是蛋白質合成、修飾、折疊、組裝、分泌的場所。此外,內質網(wǎng)還參與脂質的合成與代謝、鈣的儲存、糖類代謝等。細胞在缺氧、糖基化抑制、鈣代謝紊亂、氧化應激、缺乏營養(yǎng)、突變蛋白質表達等作用下,未折疊蛋白或錯誤折疊蛋白在內質網(wǎng)腔內聚集,損傷內質網(wǎng)的正常生理功能,引起ERS[1]。ERS可激活未折疊蛋白反應(unfolded protein response,UPR),以保護ERS引起的細胞損傷。哺乳動物細胞的UPR信號轉導涉及3條通路,即雙鏈RNA依賴的蛋白激酶樣ER激酶(double-strand RNA-activated protein kinase-like ER kinase,PERK)通路、活化轉錄因子6(activating transcription factor 6,ATF6)通路及肌醇需酶1 (inositol-requiring enzyme 1,IRE1)通路。PERK、ATF6和IRE1都是內質網(wǎng)跨膜蛋白。在穩(wěn)定狀態(tài)下,分別與內質網(wǎng)分子伴侶免疫球蛋白重鏈結合蛋白(heavy chain-binding protein,BiP),又稱葡萄糖調節(jié)蛋白78(glucose-regulated protein of 78 ku,GRP78)相結合形成復合物。在ERS狀態(tài)下,跨膜蛋白與BiP解離而被激活[2],可引發(fā)相關信號轉導而促進細胞生存[3]。長時間或嚴重的ERS也會通過這3條信號通路激活下游的凋亡信號,如C/EBP同源蛋白(C/EBP-homologous protein,CHOP),也叫生長抑制 DNA損傷基因 153 (growth arrestand DNA damage-inducible gene 153,GADD153)、c-Jun N端蛋白激酶(c-Jun NH2-terminal kinases,JNK)以及caspases等[1]。
腫瘤細胞糖代謝迅速,且實體瘤的生長速度大于其血液供應,因此,腫瘤一般處于缺糖、酸中毒及嚴重缺氧狀態(tài),表達不能正確折疊的突變體蛋白,導致腫瘤細胞內質網(wǎng)中未折疊/錯誤折疊蛋白的積累,引發(fā)ERS,激活UPR。UPR使腫瘤細胞得以存活,并導致腫瘤向更惡性的方向發(fā)展[4],同時也是腫瘤細胞保持惡性及發(fā)生耐藥性的重要機制之一[4]。已有許多研究報道[5],在乳腺癌、肝癌、胃癌、食管腺癌中檢測到UPR相關蛋白如X盒結合蛋白1(X-box-binding protein 1,XBP-1)、ATF6、CHOP和BiP等的表達增加。因此基于ERS的藥物設計、篩選和評價有可能成為抗腫瘤藥物研發(fā)的重要策略。
2.1 針對PERK、ATF6和IRE1信號通路 早期ERS,PERK、IRE1和ATF6通路被激活,可針對這3條信號通路或相關分子建立模型進行抗腫瘤藥物的篩選。PERK活化后直接引起真核生物起始因子2的α亞單位(eukaryotic initiation factor 2α,eIF2α)磷酸化失活,抑制蛋白質翻譯,并激活核因子κB(nuclear factor-κB,NF-κB),促進細胞生存[1]。雖然目前針對PERK信號通路的抑制劑幾乎未見報道,但已建立有一定選擇性的抑制劑藥效團篩選模型,并證實與其中3種激酶活性位點的結合是 PERK抑制劑所必須的,即與PERK殘留的Met7位點的較強范德華力;與N末端活化環(huán)的相互作用以及與Asp144支鏈的靜電互補[6]。ATF6進入高爾基體后被降解,胞質側的片斷進入細胞核內,可以誘導CHOP和內質網(wǎng)相關性降解(endoplasmic reticulum-associated degradation,ERAD)基因表達[7]。目前對于ATF6信號通路的調節(jié)劑報道也很少,有待進一步研究。IRE1的活化一方面導致核酸內切酶切割XBP-1的mRNA前體,表達的蛋白轉移至細胞核內,并激活一系列內質網(wǎng)分子伴侶和酶的表達,從而促進蛋白質折疊、運輸以及錯誤折疊蛋白的降解,有利于腫瘤生存[8]。針對IRE1信號通路的化合物如irestatin[Fig 1(1)],它是IRE1α抑制劑,可抑制IRE1核酸內切酶,從而抑制對XBP-1的切割。該化合物對缺氧處理48 h后的人纖維肉瘤HT1080細胞的克隆形成和其皮下移植瘤的生長都具有明顯抑制作用[9]。trierxin[Fig 1(2)]是一種新型的XBP-1抑制劑,可劑量依賴性抑制ERS誘導的子宮頸癌細胞HeLa的XBP-1切割,并抑制其細胞增殖[10]。
2.2 針對BiP和CHOP BiP可利用ATP/ADP循環(huán)來協(xié)助蛋白質的正確折疊、組裝,維持細胞穩(wěn)定;還可直接與一些位于內質網(wǎng)上的促凋亡因子結合而抑制其活性(如caspase-7),防止細胞色素C從線粒體釋放[11]。已有研究證明[12],通過siRNA降低BiP表達可減緩腫瘤細胞生長,并提高其對藥物敏感性。但是開發(fā)小干擾RNA為藥物,在目前情況下還存在諸多困難,如容易降解、不穩(wěn)定等。因此開發(fā)針對BiP的小分子抑制劑可能是基于ERS的抗腫瘤藥物研發(fā)的較好策略。versipelostatin[Fig 1(3)]是BiP啟動子的選擇性抑制劑,可使葡萄糖饑餓的細胞出現(xiàn)明顯凋亡,克隆形成嚴重抑制,且單獨或與順鉑聯(lián)合作用都可抑制移植瘤生長[13]。(-)-epigallocatechin gallate[EGCG,F(xiàn)ig 1(4)]是一種BiP抑制劑,可直接作用于BiP的ATP結合位點,使BiP失活,還可干擾BiP-caspase-7復合物的形成,增強依托泊苷誘導的細胞凋亡[14]。
ERS可引起CHOP表達量增加,并引起一系列反應,如抑制Bcl-2表達,促進Bax表達。CHOP激動劑lonafarnib[Fig 1(5)]處理人肺癌H1792細胞可使其CHOP表達上調,并繼而上調死亡受體5的表達,引起 caspases家族激活[15]。青蒿素類化合物的重要代表二氫青蒿素(dihydroartemisinin)[Fig 1(6)]可明顯升高結腸癌HCT116細胞中CHOP的mRNA和蛋白質表達水平,同時促進其入核,并誘導腫瘤細胞生長抑制[16]。
Fig 1 Chemical structures of compounds against ERS
2.3 針對ERAD 腫瘤細胞ERS中未折疊/錯誤折疊蛋白多于正常細胞,這些蛋白需要通過蛋白逆向運轉和泛素-蛋白酶降解體系從ERS中清除,此過程即為ERAD。ERAD受到干擾時,未折疊/錯誤折疊蛋白無法清除,也會誘導腫瘤細胞凋亡[8]。因此干擾ERAD是基于ERS的抗腫瘤藥物研發(fā)的又一策略。bortezomib[Fig 1(7)]是一種高選擇性的26S蛋白酶體抑制劑,可通過抑制蛋白酶活性而引起腫瘤細胞ERS中錯誤折疊蛋白的積聚和ERS相關性細胞凋亡[17]。eeyarestatinⅠ[Fig1(8)]是一種ERAD抑制劑,已顯示出較好的抗腫瘤作用。eeyarestatin I可抑制 p97復合物相關ERAD底物的脫泛素作用,從而抑制ERAD[18]。
研究顯示,化合物也可通過誘導ERS產(chǎn)生抗腫瘤效果,天然來源的化學成分種類繁多,藥理活性獨特。對天然產(chǎn)物進行有效篩選有可能發(fā)現(xiàn)有效基于ERS的抗腫瘤化合物。Tab 1總結了目前有報道的天然來源的ERS誘導劑(其化學結構式見Fig 2)。由表可知,其中大部分化合物屬于多酚類和萜類,且大多以促進eIF2α的磷酸化、上調BiP和CHOP表達為主。值得指出的是,由于使用模型、處理程序以及化合物濃度等的不同,不同研究者對于同一化合物的研究可能得出不同的結論,如Yue等[19]用30 nmol·L-1紫杉酚處理人前列腺癌細胞0 h~16 h,在不同的時間點檢測BiP和CHOP的表達,結果顯示BiP在后期才有輕微升高,而CHOP則沒有明顯變化;Li等[20]用2 μmol·L-1的紫杉酚處理乳腺癌細胞,6 h~12 h CHOP和磷酸化eIF2α均有明顯升高。此外,這些化合物在升高CHOP的同時也往往伴隨著BiP的表達升高,因此如能同時激動CHOP并抑制BiP的化合物或許能獲得更好的抗腫瘤效果。
ERS與腫瘤的發(fā)生、發(fā)展、凋亡等密切相關,有可能開發(fā)出基于ERS的抗腫瘤藥物,但基于ERS的抗腫瘤藥物研發(fā)還存在如下問題:(1)重要理論性問題尚未闡明。如ERS對腫瘤促進存活和引發(fā)凋亡兩種作用的平衡點并不清楚,這就意味著相關分子的確切作用還需要更多的研究??梢哉f這些理論性問題是該類抗腫瘤藥物研發(fā)的瓶頸。(2)相關篩選模型不健全。目前所知的ERS通路調節(jié)劑和被證明的很多ERS誘導劑本身具有多種抗腫瘤機制,多數(shù)并非專一性的ERS誘導劑,這對于基于ERS的抗腫瘤藥物研發(fā)無疑增添了很多不確定性。今后急需建立和完善相關藥物篩選模型,對天然來源化合物及合成化合物進行有效篩選并進一步進行選擇性評價,以發(fā)現(xiàn)專一性更好的抑制劑或激動劑。(3)已知基于ERS的抗腫瘤化合物的研究還不夠深入。除部分本身具有其他抗腫瘤機制的化合物外(如Bortezomib),多數(shù)化合物的抗腫瘤研究僅集中在體外細胞水平,急需動物水平抗腫瘤效果、藥物代謝特征、毒性等相關方面的研究。
Fig 2 Chemical structures of ERS inducers from natural products
盡管基于ERS的抗腫瘤藥物研發(fā)剛剛起步,但由于ERS在腫瘤發(fā)生、發(fā)展中的重要性,相關研究已經(jīng)引起國內外科研人員的重視。隨著相關研究的不斷深入,基于ERS的抗腫瘤藥物研發(fā)有可能取得新的突破。
[1] Xu J,Zhou Q,Xu W,et al.Endoplasmic reticulum stress and diabetic cardiomyopathy[J].Exp Diabetes Res,2012,2012: 827971.
[2] Li X,Zhang K,Li Z.Unfolded protein response in cancer:the physician's perspective[J].J Hematol Oncol,2011,4:8-17.
[3] Ma Y,Hendershot L M.The role of the unfolded protein response in tumour development:friend or foe[J].Nat Rev Cancer,2004,4(12):966-77.
[4] Tsai Y C,Weissman A M.The unfolded protein response,degradation from endoplasmic reticulum and cancer[J].Genes Cancer,2010,1(7):764-78.
[5] Boelens J,Lust S,Offner F,et al.Review.The endoplasmic reticulum:a target for new anticancer drugs[J].In Vivo,2007,21 (2):215-26.
[6] Wang H,Blais J,Ron D,et al.Structural determinants of PERK inhibitor potency and selectivity[J].Chem Biol Drug Des,2010,76(6):480-95.
[7] Teske B F,Wek S A,Bunpo P,et al.The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress[J].Mol Biol Cell,2011,22(22): 4390-405.
[8] Wang G,Yang Z Q,Zhang K.Endoplasmic reticulum stress response in cancer:molecular mechanism and therapeutic potential[J].Am J Transl Res,2010,2(1):65-74.
[9] Feldman D,Koong A C.Irestatin,a potent inhibitor of IRE1 and the unfolded protein response,is a hypoxia-selective cytotoxin and impairs tumor growth[J].J Clin Oncol,2007,25(18): 3514.
[10]Tashiro E,Hironiwa N,Kitagawa M,et al.Trierixin,a novel Inhibitor of ER stress-induced XBP1 activation from Streptomyces sp.1.Taxonomy,fermentation,isolation and biological activities[J].J Antibiot(Tokyo),2007,60(9):547-53.
[11]Lee A S.GRP78 induction in cancer:therapeutic and prognostic implications[J].Cancer Res,2007,67(8):3496-9.
[12]Wang Y,Wang W,Wang S,et al.Down-regulation of GRP78 is associated with the sensitivity of chemotherapy to VP-16 in small cell lung cancer NCI-H446 cells[J].BMC Cancer,2008,8:372-80.
[13]Park H R,Tomida A,Sato S,et al.Effect on tumor cells of blocking survival response to glucose deprivation[J].J Natl Cancer Inst,2004,96(17):1300-10.
[14]Ermakova S P,Kang B S,Choi B Y,et al.(-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78[J].Cancer Res,2006,66(18):9260-9.
[15]Sun S Y,Liu X,Zou W,et al.The farnesyltransferase inhibitor lonafarnib induces CCAAT/enhancer-binding protein homologous protein-dependent expression of death receptor 5,leading to induction of apoptosis in human cancer cells[J].J Biol Chem,2007,282(26):18800-9.
[16]Lu J J,Chen S M,Zhang X W,et al.The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells[J].Invest New Drugs,2011,29(6):1276-83.
[17]Fels D R,Ye J,Segan A T,et al.Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways[J].Cancer Res,2008,68(22):9323-30.
[18]Wang Q,Li L,Ye Y.Inhibition of p97-dependent protein degradation by Eeyarestatin I[J].J Biol Chem,2008,283(12):7445-54.
[19]Wu Y,F(xiàn)abritius M,Ip C.Chemotherapeutic sensitization by endoplasmic reticulum stress:increasing the efficacy of taxane against prostate cancer[J].Cancer Biol Ther,2009,8(2):146-52.
[20]Lee W L,Wen T N,Shiau J Y,et al.Differential proteomic profiling identifies novel molecular targets of paclitaxel and phytoagent deoxyelephantopin against mammary adenocarcinoma cells[J].J Proteome Res,2010,9(1):237-53.
[21]Cheng A C,Tsai M L,Liu C M,et al.Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosis[J].Food Funct,2010,1(3):301-7.
[22]Lin C C,Kuo C L,Lee M H,et al.Wogonin triggers apoptosis in human osteosarcoma U-2 OS cells through the endoplasmic reticulum stress,mitochondrial dysfunction and caspase-3-dependent signaling pathways[J].Int J Oncol,2011,39(1):217-24.
[23]Lee J H,Li Y C,Ip S W,et al.The role of Ca2+in baicalein-induced apoptosis in human breast MDA-MB-231 cancer cells through mitochondria-and caspase-3-dependent pathway[J].Anticancer Res,2008,28(3A):1701-11.
[24]Sun X,Huo X,Luo T,et al.The anticancer flavonoid chrysin induces the unfolded protein response in hepatoma cells[J].J Cell Mol Med,2011,15(11):2389-98.
[25]Park I J,Kim M J,Park O J,et al.Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells[J].Apoptosis,2012,17(3):248-57.
[26]Cheng C Y,Su C C.TanshinoneⅡA inhibits Hep-J5 cells by increasing calreticulin,caspase 12 and GADD153 protein expression[J].Int J Mol Med,2010,26(3):379-85.
[27]Law B Y,Wang M,Ma D L,et al.Alisol B,a novel inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+ATPase pump,induces autophagy,endoplasmic reticulum stress,and apoptosis[J].Mol Cancer Ther,2010,9:718-30.
[28]Pae H O,Jeong S O,Jeong G S,et al.Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells[J].Biochem Biophys Res Commun,2007,353(4):1040-5.
[29]Yeh T C,Chiang P C,Li T K,et al.Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult[J].Biochem Pharmacol,2007,73(6):782-92.
[30]Lien Y C,Kung H N,Lu K S,et al.Involvement of endoplasmic reticulum stress and activation of MAP kinases in beta-lapachone-induced human prostate cancer cell apoptosis[J].Histol Histopathol,2008,23(11):1299-308.
[31]Liu K C,Yen C Y,Wu R S,et al.The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells[J].Environ Toxicol,2012[Epub ahead of print].
[32]Salazar M,Carracedo A,Salanueva I J,et al.Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells[J].J Clin Invest,2009,119(5): 1359-72.
[33]Lin J J,Hsu H Y,Yang J S,et al.Molecular evidence of anti-leukemia activity of gypenosides on human myeloid leukemia HL-60 cells in vitro and in vivo using a HL-60 cells murine xenograft model[J].Phytomedicine,2011,18(12):1075-85.
[34]Xu Y,Chiu J F,He Q Y,et al.Tubeimoside-1 exerts cytotoxicity in HeLa cells through mitochondrial dysfunction and endoplasmic reticulum stress pathways[J].J Proteome Res,2009,8(3):1585-93.
[35]馬麗媛,李 林,江 玉.油茶皂苷通過內質網(wǎng)應激途徑誘導人肝癌細胞HepG2凋亡的研究[J].中國藥理學通報,2011,27(11):1523-7.
[35]Ma L Y,Li L,Jiang Y,et al.Cells apoptosis of HepG2 induced through endoplasmic reticulum stress pathway by sasanquasaponins[J].Chin Pharmacol Bull,2011,27(11):1523-7.
[36]姜莉鋮.人參皂苷Rg3誘導小鼠腫瘤細胞內質網(wǎng)應激反應性細胞凋亡的實驗研究[D].山東:泰山醫(yī)學院,2008.
[36]Jiang L C.Cells apoptosis induced through endoplasmic reticulum stress pathway by ginsenoside Rg3 in mice cancer[D].Shandong:Taishan Med Univ,2008.
[37]楊 洋.雷公藤內酯醇誘導內質網(wǎng)應激并增強硼替佐米的促骨髓瘤細胞凋亡活性[D].西安:第四軍醫(yī)大學,2010.
[37]Yang Y.Triptolide induced endoplasmic reticulum stress and enhanced bortezomib-induced apoptosis in multiple myeloma cell[D].Xi'an:The Fourth Military Medical University,2010.
[38]Wang W B,F(xiàn)eng L X,Yue Q X,et al.Paraptosis accompanied by autophagy and apoptosis was induced by celastrol,a natural compound with influence on proteasome,ER stress and Hsp90[J].J Cell Physiol,2012,227(5):2196-206.
[39]霍軍麗,甄海寧,劉衛(wèi)平,等.藏紅花素誘導人膠質瘤U251細胞內質網(wǎng)應激性凋亡的研究[J].現(xiàn)代生物醫(yī)學進展,2011,11(22):4212-4.
[39]Huo J L,Zhen H N,Liu W P,et al.Crocin induces endoplasmic reticulum stress-associated apoptosis in human glioma U251 Cells[J].Prog Modern Biomed,2011,11(22):4212-4.
[40]Wang H M,Ye Y,Chu J H,et al.Proteomic and functional analyses reveal the potential involvement of endoplasmic reticulum stress and alpha-CP1 in the anticancer activities of oridonin in HepG2 cells[J].Integr Cancer Ther,2011,10(2):160-7.
[41]King F W,F(xiàn)ong S,Griffin C,et al.Timosaponin AⅢis preferentially cytotoxic to tumor cells through inhibition of mTOR and induction of ER stress[J].PLoS One,2009,4(9):e7283.
[42]Choi M J,Park E J,Min K J,et al.Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells[J].Toxicol In Vitro,2011,25(3):692-8.
[43]Zhu S,Jin J,Wang Y,et al.The endoplasmic reticulum stress response is involved in apoptosis induced by aloe-emodin in HK-2 cells[J].Food Chem Toxicol,2012,50(3-4):1149-58.
[44]Hsia T C,Yang J S,Chen G W,et al.The roles of endoplasmic reticulum stress and Ca2+on rhein-induced apoptosis in A-549 human lung cancer cells[J].Anticancer Res,2009,29(1):309-18.
[45]Eom K S,Kim H J,So H S,et al.Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction[J].Biol Pharm Bull,2010,33(10):1644-9.
[46]Sanchez A M,Martinez-Botas J,Malagarie-Cazenave S,et al.Induction of the endoplasmic reticulum stress protein GADD153/ CHOP by capsaicin in prostate PC-3 cells:a microarray study[J].Biochem Biophys Res Commun,2008,372(4):785-91.
[47]Wang H C,Hsieh S C,Yang J H,et al.Diallyl Trisulfide Induces Apoptosis of Human Basal Cell Carcinoma Cells via Endoplasmic Reticulum Stress and the Mitochondrial Pathway[J].Nutr Cancer,2012,64(5):770-80.
[48]Li J,Xia X,Ke Y,et al.Trichosanthin induced apoptosis in HL-60 cells via mitochondrial and endoplasmic reticulum stress signaling pathways[J].Biochim Biophys Acta,2007,1770(8):1169-80.