趙小琴,符立梧
(華南腫瘤學(xué)國家重點實驗室,中山大學(xué)腫瘤防治中心,廣東廣州 510060)
腫瘤是一種干細(xì)胞疾病,其發(fā)生、發(fā)展與腫瘤干細(xì)胞有十分密切的聯(lián)系??朔﨏SCs先天性和獲得性耐藥是目前臨床上治療大多數(shù)具有侵襲性和轉(zhuǎn)移性腫瘤的重大挑戰(zhàn)。
干細(xì)胞(stem cells)是一類未分化的原始細(xì)胞,具有多向分化潛能及自我更新能力。特定條件下,可以分化成不同特定功能的細(xì)胞,形成多種組織和器官。
側(cè)群(side population,SP)細(xì)胞能將進(jìn)入細(xì)胞的熒光染料Hoechst 33342排出胞外,并在熒光顯微鏡下觀察或流式細(xì)胞檢測時表現(xiàn)為不著色或淺著色的細(xì)胞,該特性的形成與跨膜轉(zhuǎn)運蛋白ABCG2的表達(dá)有著密切關(guān)系[1],并具備干細(xì)胞“永生”和處于靜止?fàn)顟B(tài)的特性。
CSCs是存在于腫瘤中的一小部分具有干細(xì)胞特性的細(xì)胞群體,通過不對稱性分裂維持自我更新和多向分化潛能,導(dǎo)致腫瘤細(xì)胞不斷增殖,促進(jìn)腫瘤異質(zhì)性和多樣性的形成。CSCs具有很強(qiáng)的抗損傷與轉(zhuǎn)移能力,故可能為腫瘤耐藥、惡性腫瘤治療后復(fù)發(fā)及腫瘤轉(zhuǎn)移的根源。
首先,CSCs具有干細(xì)胞的特性,CSCs具有強(qiáng)大的增殖分化潛能;此外具有SP細(xì)胞特性,即通過高表達(dá)ABCG2有效地將化療藥泵出細(xì)胞外,導(dǎo)致腫瘤的耐藥和復(fù)發(fā);與腫瘤的轉(zhuǎn)移密切相關(guān);促進(jìn)腫瘤血管的生成。近年來,主要是基于特異的細(xì)胞表面標(biāo)志、SP細(xì)胞特性、懸浮培養(yǎng)、BrdU法和異體移植實驗等方法來分離與鑒定不同腫瘤的CSCs,歸納總結(jié)如Tab 1所示。
Tab 1 Biomarker used for the identification CSCs
CD133+ALDH 2008尤文氏肉瘤[16] CD133+ 2009骨肉瘤[17] Oct-4+ 2009 CD133+ 2008 ALDH 2010黑色素瘤[18] netin+CD133+CD166+ 2007 Bmi-1+ 2007神經(jīng)膠質(zhì)瘤[19] A2B5+ 2008 CD133+nestin+ 2008 CD133+ 2006喉癌[20] CD133+ 2007鼻咽癌[21] cytokine 19+ 2007頭頸部鱗狀細(xì)胞癌[22] CD44+ 2007 CD44+ALDH 2010膀胱癌[23] Oct-4+ 2007子宮內(nèi)膜癌[24] Musashi-1+ 2008 CD133 2009卵巢癌[25] CD133+ 2008 CD44+CD117+ 2008 CD44+MyD88 2009
其次,CSCs還具有腫瘤細(xì)胞的特性,這是區(qū)別CSCs和正常干細(xì)胞的根本所在。CSCs的染色體核型為多倍體,不同于正常干細(xì)胞的二倍體,并且CSCs在接種后具有高致瘤和高轉(zhuǎn)移的特性。
腫瘤多藥耐藥是導(dǎo)致化療失敗的重要原因。CSCs具有對各種化療藥物的耐受性,就其較為明確的主要耐藥機(jī)制可從niche微環(huán)境、ABC轉(zhuǎn)運蛋白、DNA損傷修復(fù)功能3個方面概括。
3.1 niche微環(huán)境的改變 干細(xì)胞niche是干細(xì)胞生存所必需的一個微環(huán)境,是一個分散的動態(tài)的功能性區(qū)域,是由細(xì)胞-細(xì)胞,細(xì)胞-細(xì)胞外基質(zhì)(extracellular matrix,ECM),細(xì)胞-可溶性因子的相互作用,以及細(xì)胞的物理狀態(tài)和幾何約束力組成。niche能保持CSCs自我更新、分化和靜息的功能[26]。鑒于 niche能夠維持 CSCs的活性,破壞 CSCs與niche的相互作用也許能夠克服化療耐藥。
1978年,Schofield[27]首次提出起源于脾集落形成細(xì)胞(spleen colony-forming cells,CFU-S)的定向造血干細(xì)胞與骨髓造血干細(xì)胞相比增殖減慢,此現(xiàn)象歸因于失去了長期支持干細(xì)胞活動的“niche”。在線蟲和果蠅體內(nèi)發(fā)現(xiàn)了體細(xì)胞支持細(xì)胞能夠產(chǎn)生維持種系干細(xì)胞(germline stem cell,GSCs)的必須因子,為“niche”的存在提供了證據(jù)。
Niche中研究比較多的是HH、Wnt、Notch和SCF/c-KIT。正常干細(xì)胞的生存有賴于以上信號途徑的調(diào)控,上述信號通路異常時可能會導(dǎo)致腫瘤細(xì)胞增殖。此外,干細(xì)胞niche能通過為干細(xì)胞提供一些可溶性因子,如:GM-CSF、GMSF、IL-6、VEGF和TGF-β,調(diào)節(jié)化療耐藥表型的表達(dá)。因為其中多種藥物能夠誘導(dǎo)IL-6抑制凋亡。所以以這些可溶性因子為靶點進(jìn)行治療可能抑制CSCs的抗凋亡功能從而提高腫瘤的治療效果。
3.1.1 Wnt信號通路 Wnt信號能夠促進(jìn)干細(xì)胞發(fā)育,調(diào)節(jié)干細(xì)胞成熟以及介導(dǎo)細(xì)胞增殖、分化、存活、凋亡及細(xì)胞運動,是目前研究最多的信號通路。Wnt/β-catenin信號通路在維持CSCs的數(shù)量和特性如耐藥性、克隆形成能力、體內(nèi)成瘤性等方面起著重要作用,這種作用已在白血病、肝癌、大腸癌、皮膚癌等腫瘤中證實。慢性粒細(xì)胞性白血病(chronic myeloid leukemia,CML)由慢性期轉(zhuǎn)變?yōu)榧毙云跁r,伊馬替尼耐藥與作為Wnt/β-catenin轉(zhuǎn)錄標(biāo)志的核內(nèi)β-catenin的升高相關(guān)[28]。Wnt/β-catenin信號可能在ABCB1/MDR-1轉(zhuǎn)錄過程起重要作用[29]。胚胎干細(xì)胞標(biāo)記物Oct-4,最近被證實其在維持肺癌細(xì)胞的侵襲、克隆形成、耐藥方面有著重要作用,可能為肺癌CSCs的一個重要的分子標(biāo)記。Teng等[30]發(fā)現(xiàn)用氯化鋰激活Wnt/β-catenin信號通路后,肺癌A549細(xì)胞系的增殖、克隆形成、轉(zhuǎn)移以及耐藥性等方面的功能明顯增強(qiáng),表明Wnt信號可能通過Oct4對肺癌CSCs的特性(如耐藥性等方面)產(chǎn)生重要影響。
Fig 1 The basic concept of a stem cell niche
3.1.2 Hedgehog信號通路 Hedgehog簡稱為HH通路,有研究證明HH信號調(diào)節(jié)膠質(zhì)母細(xì)胞瘤、乳腺癌、胰腺癌、多發(fā)性骨髓瘤、慢性粒細(xì)胞性白血病中的CSCs。HH-Gli信號通路是維持成熟神經(jīng)干細(xì)胞和CD133+神經(jīng)膠質(zhì)瘤干細(xì)胞樣細(xì)胞增殖和自我更新所必須[31-33]。用跨膜蛋白Smoothened (Smo)抑制劑環(huán)杷明(cyclopamine)或者siRNA阻斷HH-Gli通路,能夠明顯降低神經(jīng)膠質(zhì)瘤干細(xì)胞樣細(xì)胞自我更新的能力[33]。Liu等[34]發(fā)現(xiàn)在標(biāo)記有CD44+/CD24-/low/Lin-的人乳腺癌干細(xì)胞中HH通路被激活,HH信號和Bmi-1基因共同調(diào)節(jié)人乳腺癌CSCs以及正常干細(xì)胞的自我更新。對伊馬替尼耐藥的 Bcr-Abl+的白血病干細(xì)胞(leukemic stem cells,LSCs)可能導(dǎo)致慢性髓細(xì)胞白血病病人復(fù)發(fā)和耐藥的產(chǎn)生。上調(diào)Smo表達(dá)能激活LSCs中的HH通路,促進(jìn)LSCs增殖,而抑制HH通路后能誘導(dǎo)Bcr-Abl+細(xì)胞凋亡,減少LSCs,提示抑制Smo可能有效抑制對伊馬替尼耐藥的LSCs增殖[35]。HH通路的激活可促進(jìn)多發(fā)性骨髓瘤干細(xì)胞生長,而不影響其分化;阻斷HH通路則顯著抑制多發(fā)性骨髓瘤干細(xì)胞克隆增殖。研究還發(fā)現(xiàn)[36]沉默p70S6K2可降低Gli基因的活性,引起HH通路活性降低,同時伴隨細(xì)胞活性的明顯下降??梢酝茢?,抑制p70S6K2可以下調(diào)HH/Gli通路,從而影響干細(xì)胞的擴(kuò)增,成為非小細(xì)胞肺癌的治療靶點之一。
3.1.3 Notch信號通路 在乳腺癌中,ESA+/CD44+/ CD24low的或者抗凋亡的CSCs的活性受Notch-4受體信號通路的特定調(diào)控。p66Shc基因是通過在缺氧環(huán)境下誘導(dǎo)乳腺癌細(xì)胞所鑒定出來,能控制干細(xì)胞調(diào)節(jié)基因Notch-3的表達(dá)。p66Shc/Notch-3相互作用能調(diào)節(jié)乳腺干細(xì)胞或者祖細(xì)胞的自我更新和低氧環(huán)境下的生存率[37]。GSIs是一種Notch-4單克隆抗體,能夠明顯降低乳腺原位導(dǎo)管癌形成球囊(即微球體,是干細(xì)胞樣細(xì)胞的指標(biāo)之一)的能力。在腦腫瘤中,阻斷Notch信號通路能明顯抑制CD133+細(xì)胞和SP細(xì)胞的生長。在干細(xì)胞樣細(xì)胞中Notch信號明顯高于普通細(xì)胞,推斷這些細(xì)胞對Notch信號通路的阻斷劑可能更加敏感[38]。GSIs通過阻斷 Notch信號通路,降低增殖,增加AKT、STAT3磷酸化降低導(dǎo)致的凋亡,降低標(biāo)記有CD133、nestin、Bmi1和Olig2的膠質(zhì)母細(xì)胞瘤干細(xì)胞的生存率。
3.1.4 SCF-/c-KIT信號途徑 干細(xì)胞因子(stem cell factor,SCF)又稱為KIT配體,是由骨髓微環(huán)境中的基質(zhì)細(xì)胞產(chǎn)生的一種酸性糖蛋白。相對于非腫瘤細(xì)胞,CSCs表達(dá)c-KIT并分泌SCF。SCF與其他細(xì)胞因子一起誘導(dǎo)干/祖細(xì)胞動員、增殖,延長其存活時間。Levina等[39]發(fā)現(xiàn)在非小細(xì)胞肺癌細(xì)胞系中CSCs具有高致瘤性、高轉(zhuǎn)移和惡性度高的特性,這與其高效的細(xì)胞因子網(wǎng)絡(luò)和特定的信號通路有關(guān),阻斷SCF-c-KIT信號能夠抑制由化療引起的CSCs增殖和存活,提示抑制SCF-c-KIT信號可能會提高非小細(xì)胞肺癌化療的療效。
除此之外,F(xiàn)unayama等[40]將白血病細(xì)胞系TF-1和間質(zhì)細(xì)胞MS-5共培養(yǎng)后,產(chǎn)生了類似于白血病CSCs niche的一個區(qū)域,使得白血病CSCs對阿糖胞苷、依托泊苷和柔紅霉素的耐藥性增強(qiáng)。白血病CSCs耐藥性的增強(qiáng)主要是通過增加細(xì)胞在G0/G1期的比例,促進(jìn)細(xì)胞周期蛋白依賴性激酶抑制蛋白的上調(diào)以及增加Bcl-2的水平,而不影響B(tài)AX或者藥物轉(zhuǎn)運蛋白ABCG2和ABCB1的表達(dá)。纖維連接因子受體VLA-4(α4β1整和素)的抗體能夠阻斷腫瘤細(xì)胞和轉(zhuǎn)移niche的聯(lián)系[41],并且在急性白血病模型中能夠降低微小殘留病灶的發(fā)生率。含大量透明質(zhì)酸的底物能夠保護(hù)造血干細(xì)胞抵抗5-Fu的細(xì)胞毒作用,而抗CD44抗體能夠減少急性白血病模型中微小殘留病灶[42]。因此,細(xì)胞外基質(zhì)蛋白和葡糖胺聚糖能夠影響干細(xì)胞的特性,可用于抗CSCs治療。
3.2 ABC轉(zhuǎn)運蛋白 人類基因組包含49種ABC轉(zhuǎn)運蛋白基因(ATP-binding cassette transporter,ABC transporter),其中P-糖蛋白(P-gp/ABCB1)、乳腺癌耐藥相關(guān)蛋白(BCRP/ABCG2)、ABCA3和多藥耐藥相關(guān)蛋白(multidrug resistance associated proteins,MRPs)與腫瘤細(xì)胞的多藥耐藥有關(guān)。ABC基因家族的過表達(dá)是保護(hù)干細(xì)胞的主要機(jī)制之一,早先發(fā)現(xiàn)P-gp的耐藥機(jī)制與細(xì)胞對藥物攝入量的減少有關(guān),而攝入的減少是由一種能量依賴性的主動外排機(jī)制引起的。研究證實[43]ABCG2與SP細(xì)胞的干細(xì)胞成分直接相關(guān);過表達(dá)BCRP的不同細(xì)胞系也表現(xiàn)出對一系列抗癌藥物的耐藥性。CSCs可能原發(fā)性地對許多標(biāo)準(zhǔn)治療不敏感,并且能夠在細(xì)胞毒藥物和靶點藥物治療后存活,最終導(dǎo)致腫瘤復(fù)發(fā)。另外,ABC轉(zhuǎn)運蛋白可能通過外排重要的轉(zhuǎn)錄因子和細(xì)胞分化因子來調(diào)節(jié)干細(xì)胞的活動[44]。表達(dá) BCRP和 P-gp的CSCs能特異性外排化療藥物,從而導(dǎo)致耐藥。其中,表達(dá)P-gp的CSCs能外排長春堿和紫杉醇,而表達(dá)BCRP的CSCs能抑制伊馬替尼、拓?fù)涮婵岛图装钡实姆e累。朱言亮等通過對人肺腺癌細(xì)胞株SPC-A1及其多西他賽耐藥株SPC-A1/ Docetaxel兩者的SP細(xì)胞的含量及其生物學(xué)特性、ABC轉(zhuǎn)運蛋白的表達(dá)及其對多西他賽耐藥性影響的比較,發(fā)現(xiàn)SPCA1-SP細(xì)胞基本具備了腫瘤干細(xì)胞的特性,而且BCRP表達(dá)也是SPC-A1-SP細(xì)胞多西他賽耐藥的一個主要因素。Sung等[45]也發(fā)現(xiàn)ABCG2表達(dá)對肺A549細(xì)胞系SP表型的多藥耐藥起重要作用。白血病的SP細(xì)胞里富集CSCs,具有很強(qiáng)的將化療藥物如多柔比星和米托蒽醌泵出細(xì)胞的能力,提示增強(qiáng)的藥物外排能力可導(dǎo)致白血病CSCs耐藥。成神經(jīng)瘤CSCs也能外排米托蒽醌,故其存活率高于成神經(jīng)瘤細(xì)胞[46]。
總之,ATP轉(zhuǎn)運依賴性的CSCs在形成腫瘤時相對普遍存在,將來應(yīng)考慮聯(lián)合應(yīng)用其它識別和針對CSCs的靶向藥物進(jìn)行聯(lián)合化療。表2為ABC家族在腫瘤干細(xì)胞樣細(xì)胞中表達(dá)情況及其底物的簡要總結(jié)歸納(見Comment in The ABC of glycosylation.[Nat Rev Cancer.2010])。
3.3 DNA修復(fù) 在自我更新或者DNA修復(fù)的過程中,干細(xì)胞可能通過減少細(xì)胞凋亡或者產(chǎn)生基因突變對化療產(chǎn)生耐藥性,因此導(dǎo)致化療耐藥和治療失敗。腫瘤干細(xì)胞樣細(xì)胞具有更強(qiáng)的DNA修復(fù)能力。DNA修復(fù)蛋白O6-methyl guanine-DNA methyltrans-ferase(MGMT)也稱為O6-alkylguanine-DNA alkyltransferase(AGT),能夠恢復(fù)6-氧烷基鳥嘌呤堿基結(jié)構(gòu)的完整性,因此能抵抗6-氧烷化劑的細(xì)胞毒性。神經(jīng)膠質(zhì)瘤中MGMT表達(dá)水平的增加與卡莫司汀和替莫唑胺耐藥密切相關(guān)。神經(jīng)膠質(zhì)瘤中CD133+的SP細(xì)胞中,MGMT的表達(dá)較CD133-細(xì)胞高出30多倍,導(dǎo)致對替莫唑胺的耐藥性增強(qiáng)[47]。
在膠質(zhì)母細(xì)胞瘤干細(xì)胞樣細(xì)胞中,抑制MEK能夠降低MDM2的表達(dá),而在抑制MEK或者M(jìn)DM2時導(dǎo)致p53的激活,同時伴有依賴于p53的MGMT表達(dá)的下調(diào);另一方面,抑制MEK能恢復(fù)耐藥的膠質(zhì)母細(xì)胞瘤干細(xì)胞樣細(xì)胞對替莫唑胺的敏感性,MEK抑制劑與替莫唑胺聯(lián)合用藥時能有效地抑制膠質(zhì)母細(xì)胞瘤干細(xì)胞樣細(xì)胞的致瘤能力。由此推斷靶向MEK-ERK-MDM2-p53通路聯(lián)合應(yīng)用替莫唑胺將會是一種新的有前途的治療策略[48]。
Tab 2 Selected ABC transporters,their expression in CSCs and chemotherapeutics
Fig 2 Cancer stem cell pathway-derived chemoresistance
3.4 其他機(jī)制 其他機(jī)制也參與調(diào)節(jié)CSCs的耐藥性。例如CD133+的結(jié)腸癌CSCs細(xì)胞中白細(xì)胞介素4(interleukin-4,IL-4)表達(dá)上調(diào),導(dǎo)致凋亡減少,而用抗體阻斷IL-4后使對氟尿嘧啶和奧沙利鉑耐藥的結(jié)腸CSCs重新變得敏感[49]。
肺癌CSCs中Hsp27在應(yīng)用過氧化物和傳統(tǒng)化療之后活性增加,而用化療藥物的同時阻斷Hsp27的表達(dá)會降低原本對傳統(tǒng)化療耐藥的肺CSCs的存活率,表明Hsp27是導(dǎo)致肺CSCs耐藥的重要原因[50]。Hermann等[51]在胰腺癌中發(fā)現(xiàn)CD133+的CSCs具有高致瘤性,對標(biāo)準(zhǔn)化療方案很高的耐藥性。Ma等[52]認(rèn)為肝細(xì)胞癌的CSCs通過表達(dá)AKT/PKB通路相關(guān)的生存蛋白從而對多柔比星和氟尿嘧啶產(chǎn)生耐藥。神經(jīng)膠質(zhì)瘤CSCs對替莫唑胺、卡鉑、依托泊苷和紫杉醇耐藥,其機(jī)制可能是通過高表達(dá)BCRP、MGMT、抗凋亡蛋白以及凋亡蛋白家族抑制劑[53]。在白血病CSCs中分子代謝調(diào)節(jié)劑ALDH1活性增加,導(dǎo)致對環(huán)磷酰胺等化療藥物的耐藥,而在乳腺癌CSCs中ALDH1的表達(dá)與預(yù)后較差明顯相關(guān),提示CSCs對化療藥物的耐藥機(jī)制會直接影響病人的預(yù)后。急、慢性髓性白血病CSCs處于相對靜止的狀態(tài),而化療對處于增殖期的細(xì)胞更敏感。此外,CSCs的不對稱性分裂紊亂可能導(dǎo)致腫瘤細(xì)胞過度增殖和耐藥。
CSCs具有自我更新的特性,其自我更新過程的失調(diào)很可能是腫瘤發(fā)生的原因。只有消除CSCs才有可能解決腫瘤治療的耐藥問題,提高療效,達(dá)到治愈腫瘤的目的。目前無論是傳統(tǒng)的化療還是現(xiàn)有的靶向治療措施尚無法徹底清除CSCs,以致發(fā)生耐藥和腫瘤復(fù)發(fā),因此,清除CSCs及其依賴的信號傳導(dǎo)通路已成為預(yù)防耐藥的一個重要方向。雖然對CSCs的研究還處于初級階段,但干細(xì)胞理論開闊了治療腫瘤、預(yù)防耐藥的思路,對于腫瘤治療的基礎(chǔ)理論研究的深入拓展和臨床實踐都具有積極的意義。
[1] 彭 蕾,薛仁宇,顧振剛,等.肺干細(xì)胞的研究進(jìn)展[J].中國藥理學(xué)通報,2009,25(5):569-72.
[1] Peng L,Xue R Y,Gu Z G,et al.Development of the lung stem cell[J].Chin Pharmacol Bull,2009;25(5):569-72.
[2] Al-Hajj M,Wicha M S,Benito-Hernandez A,et al.Prospective identification of tumorigenic breast cancer cells[J].Proc Natl Acad Sci U S A,2003,100(7):3983-8.
[3] Singh S K,Clarke I D,Terasaki M,et al.Identification of a cancer stem cell in human brain tumors[J].Cancer Res,2003,63 (18):5821-8.
[4] Ricci-Vitiani L,Lombardi D G,Pilozzi E,et al.Identification and expansion of human colon-cancer-initiating cells[J].Nature,2007,445(7123):111-5.
[5] Patrawala L,Calhoun T,Schneider-Broussard R,et al.Highly purified CD44+prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells[J].Oncogene,2006,25(12):1696-708.
[6] Bonnet D,Dick J E.Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J].Nat Med,1997,3(7):730-7.
[7] Cox C V,Diamanti P,Evely R S,et al.Expression of CD133 on leukemia-initiating cells in childhood ALL[J].Blood,2009,113 (14):3287-96.
[8] Yamazaki H,Nishida H,Iwata S,et al.CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells[J].Biochem Biophys Res Commun,2009,383 (2):172-7.
[9] Jones R J,Gocke C D,Kasamon Y L,et al.Circulating clonotypic B cells in classic Hodgkin lymphoma[J].Blood,2009,113 (23):5920-6.
[10] Li C,Heidt D G,Dalerba P,et al.Identification of pancreatic cancer stem cells[J].Cancer Res,2007,67(3):1030-7.
[11]Chen Y C,Hsu H S,Chen Y W,et al.Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells[J].PLoS One,2008,3(7):e2637.
[12]Bobryshev Y V,F(xiàn)reeman A K,Botelho N K,et al.Expression of the putative stem cell marker Musashi-1 in Barrett's esophagus and esophageal adenocarcinoma[J].Dis Esophagus,2010,23(7):580-9.
[13]Takaishi S,Okumura T,Tu S,et al.Identification of gastric cancer stem cells using the cell surface marker CD44[J].Stem Cells,2009,27(5):1006-20.
[14]Deng S,Yang X,Lassus H,et al.Distinct expression levels and patterns of stem cell marker,aldehyde dehydrogenase isoform 1 (ALDH1),in human epithelial cancers[J].PLoS One,5(4): e10277.
[15]Ma S,Chan K W,Hu L,et al.Identification and characterization of tumorigenic liver cancer stem/progenitor cells[J].Gastroenterology,2007,132(7):2542-56.
[16]Suva M L,Riggi N,Stehle J C,et al.Identification of cancer stem cells in Ewing's sarcoma[J].Cancer Res,2009,69(5):1776-81.
[17]Levings P P,McGarry S V,Currie T P,et al.Expression of an exogenous human Oct-4 promoter identifies tumor-initiating cells in osteosarcoma[J].Cancer Res,2009,69(14):5648-55.
[18]Klein W M,Wu B P,Zhao S,et al.Increased expression of stem cell markers in malignant melanoma[J].Mod Pathol,2007,20 (1):102-7.
[19]Ogden A T,Waziri A E,Lochhead R A,et al.Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas[J].Neurosurgery,2008,62(2):505-14.
[20]衛(wèi)旭東,周 梁,程 磊,等.CD133與喉癌腫瘤干細(xì)胞的實驗研究[J].中華耳鼻咽喉頭頸外科雜志,2007,42(9):692-6.
[20]Wei X D,Zhou L,Cheng L,et al.Investigation of CD133 as putative marker of tumor-initiating cell in laryngeal carcinoma[J].Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,2007,42(9): 692-6.
[21]Wang J,Guo L P,Chen L Z,et al.Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line[J].Cancer Res,2007,67(8):3716-24.
[22]Prince M E,Sivanandan R,Kaczorowski A,et al.Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma[J].Proc Natl Acad Sci USA,2007,104(3):973-8.
[23]Atlasi Y,Mowla S J,Ziaee S A,et al.OCT-4,an embryonic stem cell marker,is highly expressed in bladder cancer[J].Int J Cancer,2007,120(7):1598-602.
[24]Gotte M,Wolf M,Staebler A,et al.Increased expression of the adult stem cell marker Musashi-1 in endometriosis and endometrial carcinoma[J].J Pathol,2008,215(3):317-29.
[25]Ferrandina G,Bonanno G,Pierelli L,et al.Expression of CD133-1 and CD133-2 in ovarian cancer[J].Int J Gynecol Cancer,2008,18(3):506-14.
[26]李德冠,王小春,孟愛民.腫瘤干細(xì)胞靶向治療[J].中國藥理學(xué)通報,2009,25(6):701-3.
[26]Li D G,Wang X C,Meng A M.Target therapy of cancer stem cell[J].Chin Pharmacol Bull,2009,25(6):701-3.
[27] Schofield R.The relationship between the spleen colony-forming cell and the haemopoietic stem cell[J].Blood Cells,1978,4(1-2):7-25.
[28]Jamieson C H,Weissman I L,Passegue E.Chronic versus acute myelogenous leukemia:a question of self-renewal[J].Cancer Cell,2004,6(6):531-3.
[29]Takahashi-Yanaga F,Kahn M.Targeting Wnt signaling:can we safely eradicate cancer stem cells[J]?Clin Cancer Res,16(12): 3153-62.
[30]Teng Y,Wang X,Wang Y,et al.Wnt/beta-catenin signaling regulates cancer stem cells in lung cancer A549 cells[J].Biochem Biophys Res Commun,392(3):373-9.
[31]Clement V,Sanchez P,de Tribolet N,et al.Hedgehog-GLI1 signaling regulates human glioma growth,cancer stem cell self-renewal,and tumorigenicity[J].Curr Biol,2007,17(2):165-72.
[32]Palma V,Lim D A,Dahmane N,et al.Sonic hedgehog controls stem cell behavior in the postnatal and adult brain[J].Development,2005,132(2):335-44.
[33] Palma V,Ruizi Altaba A.Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex[J].Development,2004,131(2):337-45.
[34]Liu S,Dontu G,Mantle I D,et al.Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells[J].Cancer Res,2006,66(12):6063-71.
[35]Dierks C,Beigi R,Guo G R,et al.Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation[J].Cancer Cell,2008,14(3):238-49.
[36]Mizuarai S,Kawagishi A,Kotani H.Inhibition of p70S6K2 downregulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines[J].Mol Cancer,2009,8:44.
[37]Sansone P,Storci G,Giovannini C,et al.p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres[J].Stem Cells,2007,25(3):807-15.
[38]Fan X,Matsui W,Khaki L,et al.Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors[J].Cancer Res,2006,66(15):7445-52.
[39]Levina V,Marrangoni A,Wang T,et al.Elimination of human lung cancer stem cells through targeting of the stem cell factor-c-kit autocrine signaling loop[J].Cancer Res,70(1):338-46.
[40]Funayama K,Murai F,Shimane M,et al.Adhesion-induced drug resistance in leukemia stem cells[J].Pharmacology,86(2):79-84.
[41]Kaplan R N,Riba R D,Zacharoulis S,et al.VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche[J].Nature,2005,438(7069):820-7.
[42]Jin L,Hope K J,Zhai Q,et al.Targeting of CD44 eradicates human acute myeloid leukemic stem cells[J].Nat Med,2006,12 (10):1167-74.
[43]Zhou S,Morris J J,Barnes Y,et al.Bcrp1 gene expression is required for normal numbers of side population stem cells in mice,and confers relative protection to mitoxantrone in hematopoietic cells in vivo[J].Proc Natl Acad Sci USA,2002,99(19):12339-44.
[44]Besancon R,Valsesia-Wittmann S,Puisieux A,et al.Cancer stem cells:the emerging challenge of drug targeting[J].Curr Med Chem,2009,16(4):394-416.
[45]Sung J M,Cho H J,Yi H,et al.Characterization of a stem cell population in lung cancer A549 cells[J].Biochem Biophys Res Commun,2008,371(1):163-7.
[46]Hirschmann-Jax C,F(xiàn)oster A E,Wulf G G,et al.A distinct“side population”of cells with highdrug efflux capacity in human tumor cells[J].Proc Natl Acad Sci USA,2004,101(39):14228-33.
[47]Johannessen T C,Bjerkvig R,Tysnes B B.DNA repair and cancer stem-like cells--potential partners in glioma drug resistance[J]? Cancer Treat Rev,2008,34(6):558-67.
[48]Sato A,Sunayama J,Matsuda K,et al.MEK-ERK signaling dictates DNA-repair gene MGMT expression and temozolomide resistance of stem-like glioblastoma cells via the MDM2-p53 axis[J].Stem Cells,2011,29(12):1942-51.
[49]Todaro M,Perez Alea M,Scopelliti A,et al.IL-4-mediated drug resistance in colon cancer stem cells[J].Cell Cycle,2008,7(3): 309-13.
[50]Hsu H S,Lin J H,Huang W C,et al.Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27[J].Cancer,2011,117(7):1516-28.
[51]Hermann P C,Huber S L,Herrler T,et al.Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J].Cell Stem Cell,2007,1(3):313-23.
[52]Ma S,Lee T K,Zheng B J,et al.CD133+HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/ PKB survival pathway[J].Oncogene,2008,27(12):1749-58.
[53]Touho H,Karasawa J,Shishido H,et al.Hemodynamic evaluation in patients with superficial temporal artery-middle cerebral artery anastomosis-stable xenon CT-CBF study and acetazolamide[J].Neurol Med Chir(Tokyo),1990,30(13):1003-10.
[54]Crea F,Danesi R,F(xiàn)arrar W L.Cancer stem cell epigenetics and chemoresistance[J].Epigenomics,2009,1(1):63-79.