唐明田,王允艷
(江西理工大學(xué)理學(xué)院,江西贛州341000)
異方差回歸模型的經(jīng)驗(yàn)似然擬合優(yōu)度檢驗(yàn)
唐明田,王允艷
(江西理工大學(xué)理學(xué)院,江西贛州341000)
由于條件方差函數(shù)常常被用來(lái)建模和解釋統(tǒng)計(jì)數(shù)據(jù)的多變性,文中考慮了異方差回歸模型中的條件方差函數(shù),構(gòu)造了一個(gè)非參數(shù)檢驗(yàn)程序來(lái)檢驗(yàn)條件方差函數(shù)是否為參數(shù)形式.因?yàn)榻?jīng)驗(yàn)似然方法具有兩個(gè)非常吸引人的性質(zhì),一個(gè)是該方法的學(xué)生化能力使得其能夠自動(dòng)考慮非參數(shù)擬合的變化,另一個(gè)是由該方法得到的檢驗(yàn)統(tǒng)計(jì)量的漸近分布與未知參數(shù)無(wú)關(guān),避免了二次嵌入估計(jì),因此在檢驗(yàn)過(guò)程中文中使用經(jīng)驗(yàn)似然檢驗(yàn)技術(shù)來(lái)構(gòu)造擬合優(yōu)度檢驗(yàn)的程序,得到了經(jīng)驗(yàn)似然檢驗(yàn)統(tǒng)計(jì)量的漸近零分布.
條件異方差函數(shù);經(jīng)驗(yàn)似然;擬合優(yōu)度;Nadaraya-Watson估計(jì)量
設(shè){(Yi,Xi)}為嚴(yán)平穩(wěn)過(guò)程,令m(x)=E(Y=x)和σ2(x)=Var(Y=x)分別為條件均值函數(shù)和條件方差函數(shù).文中考慮如下的非參數(shù)異方差回歸模型:
文中將利用經(jīng)驗(yàn)似然方法來(lái)建立檢驗(yàn)程序,經(jīng)驗(yàn)似然方法是一種計(jì)算機(jī)密集型的非參數(shù)方法,與自助法(bootstrap)相比,經(jīng)驗(yàn)似然方法有類似于自助法的抽樣特性,但是相比之下也有其自身的優(yōu)越性,如所構(gòu)造的置信區(qū)間的形狀由數(shù)據(jù)自行決定、域保持性、變換不變性等.正因?yàn)閾碛羞@些優(yōu)點(diǎn),經(jīng)驗(yàn)似然方法自提出后已被應(yīng)用到統(tǒng)計(jì)的諸多領(lǐng)域.文獻(xiàn)[9]給出了該方法的詳細(xì)的全面的介紹.經(jīng)驗(yàn)似然已被證明和參數(shù)似然具有某些相同的性質(zhì),例如,Wilks'定理和Bartlett的可修正性原則,詳細(xì)介紹讀者可參考文獻(xiàn)[10].正是因?yàn)榻?jīng)驗(yàn)似然方法的諸多優(yōu)點(diǎn),使得其在很多領(lǐng)域都得到了廣泛的應(yīng)用并且被不斷改進(jìn).
文中的目的是檢驗(yàn)條件方差函數(shù)σ2(x)是否是參數(shù)形式,即考慮如下的原假設(shè):
和備擇假設(shè):
其中,θ∈Θ為未知參數(shù),Cn為當(dāng)n→∞時(shí)趨向于零的非負(fù)序列,Δn(x)為有界函數(shù)序列.令f(x)為X的密度函數(shù),對(duì)某個(gè)β〉0,I={x∈R(x)≥β}為緊集.為了不失一般性,文中假設(shè)I=[0,1].
文中的檢驗(yàn)統(tǒng)計(jì)量建立在如下的條件方差函數(shù)σ2(x)的非參數(shù)估計(jì)量上:
其中,Kh(·)=K(·/h)/h,K(·)為核函數(shù),h 為帶寬,并且
其中,Wh1(·)=W(·/h1)/h1,W(·)為核函數(shù),h1為帶寬.以下設(shè)?為θ在原假設(shè)下的相合估計(jì)量,并令:
為條件方差函數(shù)σ2(x)的參數(shù)估計(jì)量(x)的核平滑形式.
通過(guò)引入Lagrange乘子,得最優(yōu)權(quán)重為:
因?yàn)橄鄳?yīng)于σ2(x)的非參數(shù)估計(jì)量的最大經(jīng)驗(yàn)似然在ωi(x)=n-1處達(dá)到,因此(x)的對(duì)數(shù)經(jīng)驗(yàn)似然比為:
為了將經(jīng)驗(yàn)似然比統(tǒng)計(jì)量推廣成為擬合優(yōu)度的一個(gè)全局的度量,文中考慮如下的能夠全局度量擬合優(yōu)度的經(jīng)驗(yàn)似然基礎(chǔ)上的統(tǒng)計(jì)量:
文中的理論結(jié)果建立在如下的條件之上.
A1:核函數(shù)K(·)和W(·)是正的、連續(xù)、可微、對(duì)稱的密度函數(shù),具有緊支撐[-1,1],并且K(·)是Lipschitz連續(xù)的,
A2:當(dāng)n→∞時(shí),h→0,h1→0,nh→∞,nh1→∞,并且h=O(n-1/5).
A3:函數(shù)f(·),m(·)和σ2(·)在區(qū)間I上具有連續(xù)的二階導(dǎo)數(shù),且f(·)和σ2(·)在區(qū)間I上有界.
A5:Δn(x)關(guān)于x和n是一致有界的,并且原假設(shè)H0和備擇假設(shè)H1之間的差異的階數(shù)Cn=n-1/2h-1/4.
A6:令ηi=ri-σ2(Xi),對(duì)某個(gè)a0〉0,假設(shè)有且對(duì)某個(gè)k〉1有<∞.另外,
中Ωi-1為由生成的σ-域.
A7:給定Y的X的條件密度,fX|Y<∞.對(duì)任意l〉1,給定(Y1,Yl)的(X1,Xl)聯(lián)合條件密度是有界的,并且對(duì)t〉s〉1,(X1,Y1,Xs,Ys,Xt,Yt,)是連續(xù)有界的.
A8:過(guò)程{Xi,Yi}是嚴(yán)平穩(wěn)和α混合的,并且對(duì)某個(gè)α〉0和ρ∈(0,1),混合系數(shù)滿足α(k)≤aρk.
推論1假設(shè)條件A1~A8成立,則當(dāng)n→∞時(shí),有
上述式(2)~式(4)的證明與文獻(xiàn)[12]中引理1的證明類似,此處略.
定理1的證明:設(shè)γ(x)為定義在[0,1]上的隨機(jī)過(guò)程,δn為一序列,文中用γ(x)=p(δn)和γ(x)=(δn)分別表示=op(δn).
所以由引理1可得
推論1的證明:由定理1的證明可得.
文中考慮了異方差回歸模型中條件方差函數(shù)的經(jīng)驗(yàn)似然基礎(chǔ)上的擬合優(yōu)度檢驗(yàn)問(wèn)題,在構(gòu)造經(jīng)驗(yàn)似然統(tǒng)計(jì)量時(shí),條件異方差函數(shù)σ2(x)的非參數(shù)估計(jì)量使用的是Nadaraya-Watson估計(jì)量,即局部常數(shù)估計(jì)量.但眾所周知,Nadaraya-Watson估計(jì)量會(huì)產(chǎn)生較大的邊界偏差,而具有如下形式的局部線性估計(jì)量能解決邊界偏差較大問(wèn)題:
[1]Robert F Engle.Autoregressive conditional heteroscedasticity with estimatesofthevarianceofUnitedKingdominflation[J].Econometrica,1982,50(4):987-1008.
[2]MilanBorkovec.Asymptoticbehaviorofthesampleauto covariance and auto correlation function of the AR(1)process with ARCH(1)[J].Bernoulli,2001,7(6):847-872.
[3]Borkovec M,Klüppelberg C.The tail of the stationary distribution ofanautoregressiveprocesswithARCH(1)errors[J].AnnalsofApplied Probability,2001,11(4):1220-1241.
[4]唐明田,王允艷.隨機(jī)環(huán)境下非線性時(shí)間序列模型的漸近行為[J].江西理工大學(xué)學(xué)報(bào),2011,32(1):78-80.
[5]Federico M Bandi,Peter C B Phillips.Fully nonparametric estimation of scalar diffusion models[J].Econometrica,2003,71(1):241-283.
[6]Bernt Фksendal.Stochastic differential equations:An introduction with applications[M].New York:Springer,2005.
[7]Wang Y Y,Zhang L X.Tang M T.Re-weighted functional estimation of second-order diffusion processes[J].Metrika,2011,75(8):1129-1151.
[8]Dag Tjφtheim.Nonlinear time series:a selective revie w[J].Scandinvian Journal of Statistics,1994,21(2):97-130.
[9]Owen A B.Empirical likelihood[M].London:Chapman&Hall,2001.[10]Qin J,Lawless J.Empirical likelihood and general estimation equations[J].The Annals of Statistics,1994,22(1):300-325.
[11]Art Owen.Empirical likelihood ratio confidence regions[J].The Annals of Statistics,1990,18(1):90-120.
[12]Chen S X,H?rdle W,Li M.An empirical likelihood goodness-offit test for time series[J].Journal of the Royal Statistical Society:Series B,2003,65(3):663-678.
[13]Hjellvik V,Yao Q W,Tjφstheim D.Linearity testing using local polynomial approximation[J].Journal of Statistical Planning and Inference,1998,68(2):295-321.
[14]Fan J,Gijbels I.Local polynomial modeling and its applications[M].London:Chapman&Hall,1996.
[15]Fan J,Zhang C.A re-examination of diffusion estimations with applications to financial model validation[J].Journal of the American Statistical Association,2003,98:118-134.
An empirical likelihood goodness-of-test for heteroscedastic regression models
TANG Ming-tian,WANG Yun-yan
(Faculty of Science,Jiangxi Univeisity of Sciences and Technology,Ganzhou 341000,China)
Since conditional heteroscedasticity is often used in modelling and understanding the variability of statistical data,the conditional variance function in heteroscedastic regression models is taken into consideration,and a nonparametric test is constructed in the article to test the conditional variance function variance function being a known parametric form indexed by a vector of unknown parameters.The empirical likelihood technique is used to construct test procedure for a goodness-of-fit of a heteroscedastic regression model because the empirical likelihood method has two attractive features.One is its automatic consideration of the variation associated with the nonparametric fit due to the empirical likelihood's ability.The other one is that the asymptotic distributions of the test statistic are free of unknown parameters which avoid secondary plug-in estimation.The asymptotic null distribution of the proposed test statistic is established.
conditional variance function;empirical likelihood;goodness-of-fit test;Nadaraya-Watson estimator
O211.4
A
2012-06-28
江西省教育廳青年科學(xué)基金(GJJ12356)
唐明田(1981-),男,講師,主要從事非參數(shù)統(tǒng)計(jì)推斷等方面的研究,E-mail:mtt_csu@126.com.
2095-3046(2012)05-0074-04